OFFSET
0,2
COMMENTS
More generally coefficients of (1 - m*x - sqrt(m^2*x^2 - (2*m + 4)*x + 1))/(2*x) are given by a(0)=1 and, for n > 0, a(n) = (1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1).
Hankel transform is 6^C(n+1,2). - Philippe Deléham, Feb 11 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
FORMULA
Equals 6*A078018(n) for n > 0.
a(0)=1; for n > 0, a(n) = (1/n)*Sum_{k=0..n} 6^k*C(n, k)*C(n, k-1).
D-finite with recurrence: (n+1)*a(n) + 7*(1-2n)*a(n-1) + 25*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 08 2011
a(n) ~ sqrt(12 + 7*sqrt(6))*(7 + 2*sqrt(6))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 6*hypergeom([1 - n, -n], [2], 6) for n > 0. - Peter Luschny, May 22 2017
G.f.: 1/(1 - 5*x - x/(1 - 5*x - x/(1 - 5*x - x/(1 - 5*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018
MAPLE
A082302_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 6*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a, list)end: A082302_list(18); # Peter Luschny, May 19 2011
a := n -> `if`(n=0, 1, 6*hypergeom([1 - n, -n], [2], 6)):
seq(simplify(a(n)), n=0..18); # Peter Luschny, May 22 2017
MATHEMATICA
Table[SeriesCoefficient[(1-5*x-Sqrt[25*x^2-14*x+1])/(2*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) a(n)=if(n<1, 1, sum(k=0, n, 6^k*binomial(n, k)*binomial(n, k-1))/n)
(PARI) x='x+O('x^99); Vec((1-5*x-(25*x^2-14*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
(GAP) Concatenation([1], List([1..20], n->(1/n)*Sum([0..n], k->6^k*Binomial(n, k)*Binomial(n, k-1)))); # Muniru A Asiru, Apr 05 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-5*x-Sqrt(25*x^2-14*x+1))/(2*x))); // G. C. Greubel, Aug 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 10 2003
STATUS
approved