
The pure descent statistic on permutations

Jean-Luc Baril and Sergey Kirgizov

LE2I UMR-CNRS 6306, Université de Bourgogne
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Abstract

We introduce a new statistic based on permutation descents which has a distribution

given by the Stirling numbers of the first kind, i.e., with the same distribution as for the

number of cycles in permutations. We study this statistic on the sets of permutations

avoiding one pattern of length three by giving bivariate generating functions. As a

consequence, new classes of permutations enumerated by the Motzkin numbers are

obtained. Finally, we deduce results about the popularity of the pure descents in all

these restricted sets.

Keywords: Stirling number, permutation, descent, Dyck path, popularity.

1 Introduction and notations

Let Sn be the set of permutations of length n, i.e., all one-to-one correspondences from
[n] = {1, 2, . . . , n} into itself. We represent a permutation π ∈ Sn in one-line notation,
π = π1π2 . . . πn where πi = π(i), 1 ≤ i ≤ n. Moreover, if σ = σ(1)σ(2) . . . σ(n) is a length n
permutation then the product σ · π is the permutation σ(π1)σ(π2) . . . σ(πn). In Sn, a k-cycle
π = 〈i1, i2, . . . , ik〉 is a length n permutation verifying π(i1) = i2, π(i2) = i3, . . . , π(ik−1) =
ik, π(ik) = i1 and π(j) = j for j ∈ [n]\{i1, . . . , ik}. For 1 ≤ k ≤ n, we denote by Cn,k the set
of all n-length permutations which admit a decomposition in a product of k disjoint cycles.
The cardinality of Cn,k is given by the signless Stirling numbers of the first kind c(n, k)
satisfying the relation:

c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1) (1)

with the initial conditions c(n, k) = 0 if n ≤ 0 or k ≤ 0, except c(0, 0) = 1. See for in-
stance [16, 18] and the sequence A132393 in the Sloane’s on-line encyclopedia of integer
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sequences [15]. These numbers are also usually defined by means of the following combina-
torial identity (see for instance [8, 9, 16])

n
∑

k=1

c(n, k)xk = x(x+ 1)(x+ 2) · · · (x+ n− 1). (2)

Also, they enumerate n-length permutations π having k left-to-right maxima, i.e., values
i ∈ [n] such that πj < πi for every j < i. Indeed, erasing the parentheses from the standard

representation of a permutation π in a product of disjoint cycles (each cycle is written with
its largest element first and the cycles are in increasing order of their largest element),
one constructs a bijection on Sn (see [16]) that transports cycles into left-to-right maxima.
See [1, 2] for efficient generating algorithms of the sets of permutations with a given number
of cycles or left-to-right maxima.

Surprisingly and to our knowledge, these two linked statistics on permutations are the
only examples studied in the literature that interpolate the Stirling numbers of the first kind.
In this paper, we introduce a new statistic on permutations (called pure descent statistic)
which has the same distribution as the number of cycles. Its definition is based on the well
known Eulerian statistic of descents in permutations (a descent in π is a value i ∈ [n−1] such
that πi > πi+1). In Section 2, we define the notion of pure descent and we show how their
distribution on permutations realizes an interpolation of the Stirling numbers of the first kind.
In Section 3, we focus our study on the sets of permutations avoiding one pattern of length
three by giving bivariate generating functions with respect to the length of permutation and
the number of pure descents. Finally, we deduce the total number of pure descents in all
permutations of these restricted sets, which is usually called the popularity [5, 13].

2 Pure descent statistics

Let π be a permutation in Sn. Let us recall that a descent in π is a value i ∈ [n − 1] such
that πi > πi+1. In the case where there is no j < i such that πj ∈ [πi+1, πi], we call it a pure

descent. We denote by Dn,k the set of permutations of length n with k pure descents. For
instance, in π = 231645, the descents are 2 and 4, and 4 is the only one pure descent (see
Figure 1).

Theorem 1. For 0 ≤ k ≤ n− 1, the number of n-length permutations with k pure descents
is given by the signless Stirling number of the first kind c(n, k + 1).

Proof. Let us define the insertion operator ψ from Sn−1 × [n] to Sn by ψ(π, j) = π′ where

π′
i =















πi if πi < j,

πi + 1 if πi ≥ j,

j if i = n.

For instance, if π = 2413 then we have ψ(π, 3) = 25143 and ψ(π, 2) = 35142.
Let π ∈ Dn−1,k be a permutation of length n− 1 with k pure descents. If j 6= πn−1 then

the insertion operator provides a permutation π′ = ψ(π, j) that lies into Dn,k. Indeed, the
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Figure 1: The value 4 is a pure descent in π = 231645, while 2 is a descent but not a pure
descent.

pure descents of π are preserved in π′ and no pure descents are created. Setting dn,k = |Dn,k|,
there are (n− 1)dn−1,k permutations π′ ∈ Sn with k pure descents satisfying π′

n 6= π′
n−1 − 1.

Now, let π ∈ Dn−1,k−1 be a permutation of length n − 1 with k − 1 pure descents. If
j = πn−1 then the insertion provides π′ = ψ(π, j) that lies into Dn,k. Indeed, the pure
descents of π are preserved in π′, and a new pure descent is created between π′

n−1 and
π′
n = π′

n−1 − 1. Hence, there are dn−1,k−1 permutations π′ ∈ Sn with k pure descents for
which π′

n = π′
n−1 − 1.

This induces the recurrence relation dn,k = (n− 1)dn−1,k + dn−1,k−1 for n, k ≥ 0 with the
initial conditions dn,k = 0 if n ≤ 0 or k < 0, except d0,−1 = 1. Using relation (1), we obtain
dn,k = c(n, k + 1).

Now, we define recursively a bijection φ on Sn that transports the number of pure descents
into the number of cycles. Let π be a permutation in Sn and σ the permutation in Sn−1 such
that ψ(σ, πn) = π, i.e., σ is obtained from π by deleting the element πn on the right, and
after a normalization in Sn−1. Then we set φ(1) = 1 and

φ(π) =















φ(σ) · 〈n, n〉 if πn = πn−1 − 1,

φ(σ) · 〈πn, n〉 if πn < πn−1 − 1,

φ(σ) · 〈πn − 1, n〉 if πn > πn−1.

For instance, if π = 2731645 ∈ D7,2 then we have σ = 263154, π7 = 5 and φ(π) = 〈1, 2〉 ·
〈3, 3〉 · 〈1, 4〉 · 〈3, 5〉 · 〈6, 6〉 · 〈4, 7〉 = 〈1, 4, 7, 2〉 · 〈3, 5〉 · 〈6, 6〉 = 4157362 has a decomposition
in three disjoint cycles.

Theorem 2. The map φ defined above is a bijection on Sn. Moreover, for k ≥ 0, φ(π) has
k + 1 cycles if and only if π has k pure descents.

Proof. Due to the recursive definition of φ, it is straightforward to see that φ is injective and
surjective. Furthermore, φ(π) consists of a product of 2-cycles Πn

i=1〈pi, i〉 where p1p2 . . . pn
appears in the literature as the transposition array of φ(π) (see for instance [3]). Lemma 1
in [3] proves that the number of cycles of φ(π) is the number of indices i, 1 ≤ i ≤ n, such
that pi = i. According to the recursive definition of φ(π), the number of these indices minus
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one (we do not consider i = 1) is exactly the number of pure descents in π; indeed, if
i 6= 1 then pi = i means that after the ith step of the induction, the current permutation
σ = σ1σ2 . . . σn−1σn satisfies φ(σ) = 〈p1, 1〉 · 〈p2, 2〉 · · · 〈pi, i〉 with pi = i. Using the definition
of φ, σ is such that σi = σi−1 − 1, which implies that i − 1 is a pure descent in π since π
has no value πj , j < i, such that πi < πj < πi−1. All these arguments are reversible, so the
converse is also available.

An immediate consequence of these last two results is the following corollary about the
popularity [5] of the pure descents among Sn, i.e., the total number of pure descents in all
permutations of length n.

Corollary 1. The popularity of the pure descents among the set Sn is given by the gener-
alized Stirling number (see A001705 in [15])

n! · (Hn − 1)

where Hn =
∑n

k=1
1
k
is the n-th harmonic number.

Proof. Using Theorem 1, the total number of pure descents in all permutations of length n is

given by a(n) =
n−1
∑

k=0

k ·d(n, k). Since d(n, k) = c(n, k+1), we deduce a(n) =
n
∑

k=1

(k−1)·c(n, k),

and a(n) =
n
∑

k=1

k · c(n, k)−
n
∑

k=1

c(n, k). The first sum equals the total number of cycles in all

permutations of length n, it is enumerated by n!Hn (see A000254 in [15]); the second sum is
n!. We obtain the result.

Notice that the total number of pure descents in all permutations A001705 equals the
total number of cycles of length at least two in all permutations, while the distributions of
these two statistics are different.

3 Pure descents in permutations avoiding one pattern

of length three

A permutation π of length k is a pattern of a permutation σ ∈ Sn if there is a subsequence of σ
which is order-isomorphic to π, i.e., a subsequence σi1 . . . σik of σ with 1 ≤ i1 < · · · < ik ≤ n

and such that σiℓ < σim whenever πℓ < πm. A permutation σ that does not contain π as a
pattern is said to avoid π. For example, σ = 2413 avoids the pattern 123. We denote by Sn(π)
the set of permutations of length n avoiding the pattern π. See for instance [6, 11, 14, 17].

In this section, we provide bivariate generating functions for the distributions of the pure
descents on the sets of permutations avoiding one pattern of length three. Table 1 focuses on
the cases of permutations that do not contain any pure descent. Notice that Proposition 2.1
in [10], which enumerates permutations avoiding the pattern 213 and the generalized pattern
2̄−31, is a particular case of our result for permutations having no pure descents and avoiding
the pattern 213.

4

http://oeis.org/A001705
http://oeis.org/A000254
http://oeis.org/A001705


Pattern Sequence Sloane an, 1 ≤ n ≤ 11

{} (n− 1)! A000142 1, 1, 2, 6, 24, 120, 720, . . .

{231} 1 A000124 1, 1, 1, . . .

{123} A007477 1, 1, 1, 2, 3, 6, 11, 22, 44, 90, 187

{132}, {213}, {312} Motzkin A001006 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188

{321} A035929 1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918, 27770

Table 1: Number of permutations with no pure descents and avoiding one pattern of length
three.

3.1 The pattern α ∈ {132, 213, 312}
The following theorem proves that the pure descent statistic has the same distribution on
the sets Sn(α) of permutations avoiding a pattern α ∈ {132, 213, 312}.

Theorem 3. Let A(x, y) =
∑

n≥0,k≥0 an,kx
nyk be the bivariate generating function where

the coefficient of xnyk is the number an,k of permutations of length n with k pure descents
and avoiding the pattern α, α ∈ {132, 213, 312}. Then, we have

A(x, y) =
1 + x− xy −

√

x2y2 + 2 x2y − 3 x2 − 2 xy − 2 x+ 1

2x
.

For instance, the first terms of A(x, y) are 1+x+x2 +2 x3+4 x4+9 x5+21 x6+51 x7+
x2y + 2 x3y + 6 x4y + 16 x5y + 45 x6y + x3y2 + 3 x4y2 + 12 x5y2 + x4y3 (see Table 2).

Proof. Case α = 132: let π be a permutation in Sn(132). If π is not empty, then it can be
written π = σnγ where γ ∈ Sk(132) for some k, 0 ≤ k ≤ n − 1, and σ is obtained from a
permutation in Sn−k−1(132) by adding k on all these entries. We distinguish two cases: (i)
σ is empty, and (ii) σ is not empty.

For the case (i), the permutation π is of the form π = nγ where γ ∈ Sn−1(132); if γ is
not empty then γ has one pure descent less than π (π contains the pure descents of γ and
the pure descent created by n at the first position). Hence, the generating function for these
permutations is given by x+ xy(A(x, y)− 1).

For the case (ii), the entry n does not create any pure descent in π. Thus, the generating
function for these permutations is given by x(A(x, y)− 1)A(x, y).

Combining the two cases, the following functional equation provides the result

A(x, y) = 1 + x+ xy(A(x, y)− 1) + x(A(x, y)− 1)A(x, y).

Case α = 312: let π be a permutation in Sn(312). If π is not empty, then it can be written
π = σ1γ where σ1 ∈ Sk(312) for some k, 1 ≤ k ≤ n, and γ is obtained from a permutation
in Sn−k(312) by adding k on all these entries. We distinguish two cases: (i) γ is empty, and
(ii) γ is not empty. Let A1(x, y) (resp. A2(x, y)) be the generating function for the set of
permutations π satisfying (i) (resp. (ii)). Obviously, we have A(x, y) = 1+A1(x, y)+A2(x, y).

For the case (i), the permutation π is of the form π = σ1, where σ is obtained from
a permutation in Sn−1(312) by adding 1 to all these entries. If σ belongs to the case (i),
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then σ has one pure descent less than π (π contains the pure descents of σ and the pure
descent created by the last value of σ and 1); otherwise, σ and π have the same number of
pure descents. Hence, the generating function for these permutations satisfies the functional
equation A1(x, y) = xyA1(x, y) + x(A2(x, y) + 1).

For the case (ii), σ1 satisfies the case (i), and γ can satisfy the two cases. Thus,
the generating function for these permutations satisfies the functional equation A2(x, y) =
A1(x, y)(A(x, y)− 1).

Combining the two cases, we obtain the following system of functional equations:
{

A1(x, y) = xyA1(x, y) + x(A2(x, y) + 1)

A2(x, y) = A1(x, y)(A1(x, y) + A2(x, y)).

Thus, we obtain A1 =
1+x−xy−

√
x2y2+2x2y−3x2−2xy−2x+1

2(1+x−xy)
, and

A2 =
1−x−2xy−2x2+x2y+x2y2+(xy−1)

√
x2y2+2x2y−3x2−2xy−2x+1

2x(1+x−xy)
which completes the proof.

Case α = 213: let π be a permutation in Sn(213). If π is not empty, it can be written
π = σ1γ where 1γ ∈ Sk(213) for some k, 1 ≤ k ≤ n, and σ is obtained from a permutation
in Sn−k(213) by adding k on all these entries. We distinguish two cases: (i) γ is empty
and (ii) otherwise. Let A1(x, y) (resp. A2(x, y)) be the generating function for the set of
permutations π satisfying (i) (resp. (ii)). Obviously, we have A(x, y) = 1+A1(x, y)+A2(x, y).

For the case (i), the permutation π is of the form π = σ1, where σ is obtained from
a permutation in Sn−1(213) by adding 1 to all these entries. If σ belongs to the case (i),
then σ has one pure descent less than π (π contains the pure descents of σ and the pure
descent created by the last value of σ and 1); otherwise, σ and π have the same number of
pure descents. Hence, the generating function for these permutations satisfies the functional
equation A1(x, y) = xyA1(x, y) + x(A2(x, y) + 1).

For the case (ii), σ1 satisfies the case (i), and γ can satisfy the two cases. Thus,
the generating function for these permutations satisfies the functional equation A2(x, y) =
A1(x, y)(A(x, y)− 1). We conclude mutatis mutandis as for the pattern 312.

k\n 1 2 3 4 5 6 7 8

0 1 1 2 4 9 21 51 127

1 1 2 6 16 45 126 357

2 1 3 12 40 135 441

3 1 4 20 80 315

4 1 5 30 140

5 1 6 42

6 1 7

Table 2: Coefficients an,k for 1 ≤ n ≤ 8 and 0 ≤ k ≤ 6.
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Corollary 2. For α ∈ {132, 213, 312} and n ≥ 1, the permutations in Sn(α) with no pure
descent are enumerated by the Motzkin numbers (see A001006 in [15]).

Proof. We obtain the result by calculating A(x, 0) = 1+x−
√
−3x2−2x+1
2x

, which is the generating
function for the Motzkin numbers.

Corollary 3. For α ∈ {132, 213, 312} and n ≥ 1, the popularity of the pure descents among
the set Sn(α) is given by the binomial coefficient

(

2n−2
n−2

)

(see A001791 in [15]).

Proof. We need to calculate the numbers
n−1
∑

k=0

k.an,k for n ≥ 0, which are the coefficients of

xn in ∂A(x,y)
∂y

⌋y=1. A simple calculation provides ∂A(x,y)
∂y

⌋y=1 =
1−2x−

√
1−4x

2
√
1−4x

which induces the
result.

3.2 The pattern 231

Since any descent in a permutation avoiding 231 is also a pure descent, the set of permutations
of length n with no pure descents and avoiding the pattern 231 is clearly reduced to the
identity permutation 12 . . . n.

Theorem 4. Let B(x, y) =
∑

n≥0,k≥0 bn,kx
nyk be the bivariate generating function where

the coefficient of xnyk is the number bn,k of permutations of length n with k pure descents
and avoiding the pattern 231. Then, we have

B(x, y) =
1− x+ xy −

√

1− 2x− 2xy + x2 − 2x2y + x2y2

2xy
.

For instance, the first terms of B(x, y) are 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x2y +
3 x3y + 6 x4y + 10 x5y + 15 x6y + x3y2 + 6 x4y2 + 20 x5y2 + x4y3 (see the Narayana numbers
A001263 in [15]).

Proof. Let π be a permutation in Sn(231). If π is not empty, then it can be written π = σnγ

where σ ∈ Sk(231) for some k, 0 ≤ k ≤ n − 1, and γ is obtained from a permutation in
Sn−k−1(231) by adding k on all these entries.

In the case where γ is empty, the generating function for these permutations is given
by xB(x, y) (π and σ have the same number of pure descents); otherwise, the generating
function is given by xyB(x, y)(B(x, y)− 1) (π contains the pure descents of σ and the pure
descent created by n and the first value of γ).

Hence we deduce the functional equation:

B(x, y) = 1 + xB(x, y) + xyB(x, y)(B(x, y)− 1),

and a simple calculation gives the result.

Corollary 4. The popularity of the pure descents among the set Sn(231), n ≥ 1, is given
by the binomial coefficient

(

2n−1
n−2

)

(see A002054 in [15]).

Proof. Using Theorem 4, the result is given by the coefficient of xn in ∂B(x,y)
∂y

⌋y=1 =
1−3x−(1−x)

√
1−4x

2x
√
1−4x

.
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3.3 The pattern α ∈ {321, 123}
In this section, we investigate the distribution of pure descents on the sets Sn(α) for α ∈
{321, 123}, but we proceed differently than we did in the subsections 3.1 and 3.2. Using
classical bijections between Sn(123) (or Sn(321)) and Dyck paths, the method consists in
translating the pure descents on permutations into some specifical patterns on Dyck paths
on which we study the distributions.

A Dyck path of semilength n, n ≥ 0, is a lattice path starting at (0, 0), ending at (2n, 0),
and never going below the x-axis, consisting of up steps U = (1, 1) and down steps D =
(1,−1). Let Pn be the set of all Dyck paths of semilength n. The first return decomposition

of a Dyck path P is the unique decomposition P = UQDR where Q and R are two (possibly
empty) Dyck paths.

Given a permutation π ∈ Sn(321), we consider the path on the graphical representation
of π with up and right steps along the edges of the squares that goes from lower-left corner
to the upper-right corner and leaving all the points (i, πi), i ∈ [n], to the right and remaining
always as close to the diagonal y = x as possible (the path can possibly reach the diagonal
but never crosses it). See Figure 2 for an example of this construction. Let us define the
Dyck path of length 2n (called Dyck path associated with π) obtained from this lattice path
by reading an up-step U every time the path moves up, and a down-step D every time the
path moves to the right. This already known construction (see for instance [12]) induces a
bijection χ from Sn(321) to Pn. The following lemma shows how this bijection translates
pure descents of permutations into some particular configurations of Dyck paths.

1 2 3 4 5 6

1

2

3

4

5

6

Figure 2: The Dyck path χ(π) = UUDUDDUUUDDD associated to the permutation
π = 231645 ∈ S6(321).

Lemma 1. Let π be a permutation in Sn(321). Then, π has a pure descent in position d,
d ≥ 1, if and only if its associated Dyck path χ(π) is of the form γUkDDδ, k ≥ 2, where γ
is a Dyck path of semilength d− 1 ≥ 0 and δ is a word in {U,D}∗.

Proof. Let π be a permutation in Sn(321) and let d be a pure descent in π. Let λ1 < λ2 <

· · · < λℓ be the left-to-right maxima of π, i.e., the values πi such that πj < πi for j < i. So,
we can write π = λ1w1 . . . λℓwℓ where wj are some words possibly empty so that the word
w1 . . . wℓ is increasing.
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So, the descents in π occur necessarily between λj and the first letter of wj whenever wj

is not empty. Thus, the descents in π are in one to one correspondence with the occurrences
of UDD in χ(π). Since π avoids 321, all integers j such that j < πd+1 must be placed before
πd, and every other integer must stay on the right of πd+1, since d is a pure descent. This
implies that γ = χ(π1 . . . πd−1) is a Dyck path and χ(π) is of the form γUkDDδ for some
k ≥ 2 and δ is a word in {U,D}∗. See Figure 3 for an illustration of this proof.

y = x

γ

Figure 3: The configuration γUkDD, k ≥ 2, for a pure descent in Sn(321).

Theorem 5. Let F (x, y) =
∑

n≥0,k≥0 fn,kx
nyk be the bivariate generating function where

the coefficient of xnyk is the number fn,k of permutations of length n with k pure descents
and avoiding the pattern 321. Then, we have

F (x, y) =
1−

√
1− 4x

3x− 2x2 + 2x2y − xy + x(y − 1)
√
1− 4x

.

For instance, the first terms of F (x, y) are 1+x+x2+2 x3+6 x4+19 x5+61 x6+200 x7+
x2y + 3 x3y + 7 x4y + 18 x5y + 53 x6y + x4y2 + 5 x5y2.

Proof. Using Lemma 1, we need to provide the bivariate generating function for Dyck paths
of semilength n with respect to the number of different decompositions of the form γUkDDδ,
k ≥ 2, where γ is a Dyck path and δ is a word in {U,D}∗. For short, the occurrence of
UkDD in this decomposition will be called a crochet.

Now, we consider the first return decomposition of a Dyck path P = UQDR where Q
and R are two Dyck paths.

We distinguish two cases: (i) P starts with an occurrence of UkDU for some k ≥ 1,
or P = UD; and (ii) otherwise. Let F1(x, y) (resp. F2(x, y)) be the bivariate generating
function for the set of permutations π satisfying (i) (resp. (ii)). Obviously, we have F (x, y) =
F1(x, y) + F2(x, y).

In the first case, the Dyck paths P = UQDR and R have the same number of crochets
(the crochets of Q do not appear in P ). Hence, the generating function F1(x, y) for these
paths satisfies the functional equation F1(x, y) = x(F1(x, 1)− x+ 1)F (x, y).

In the second case, P is either empty, or P is a Dyck path starting with a crochet UkDD

for some k ≥ 2. Then, for the non trivial case, P = UQDR has one pure descent more than
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R (a crochet is created at the beginning of the path). Hence, the generating function F2(x, y)
for these paths satisfies the functional equation F2(x, y) = 1 + xy(F2(x, 1)− 1 + x)F (x, y).

So, we obtain the functional equation:

F (x, y) = 1 + x(F1(x, 1)− x+ 1)F (x, y) + xy(F2(x, 1)− 1 + x)F (x, y), (3)

where F1(x, 1) + F2(x, 1) = C(x) = 1−
√
1−4x
2x

is the Catalan generating function for the
sets Sn(321), n ≥ 0.

By fixing y = 1 in (3), we obtain F1(x, 1) =
(1−x)(1−2x−

√
1−4x)

2x
and F2(x, 1) =

2−3x+(x−2)
√
1−4x

1−
√
1−4x

which allows to entirely determine the generating function F (x, y).

Corollary 5. The popularity of the pure descents among the set Sn(321), n ≥ 1, is given
by the generating function

1− 3x+ (x− 1)
√
1− 4x

2x

(see A000245 in [15]).

Proof. Using Theorem 5, the result is given by ∂F (x,y)
∂y

⌋y=1 =
1−3x+(x−1)

√
1−4x

2x
.

Finally, we study the distribution of the pure descents on the sets Sn(123). From a
permutation π ∈ Sn(123), we consider the path on the graphical representation of π with
right and down steps along the edges of the squares that goes from upper-left corner to
the lower-right corner and leaving all the points (i, πi), i ∈ [n], to the left and remaining
always as close to the diagonal y = n − x + 1 as possible (the path can possibly reach the
diagonal but never crosses it). See Figure 4 for an example of this construction. Let us
define the Dyck path of length 2n (called Dyck path associated with π) obtained from this
lattice path by reading an up-step U every time the path moves right, and a down-step D
every time the path moves down. This construction induces a bijection Ω from Sn(123) to
Pn. The following lemma shows how this bijection translates pure descents of permutations
into some particular configurations of Dyck paths. Notice that Lemma 2 is a refinement for
pure descents of the Proposition 1 in [4].

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4: The Dyck path Ω(π) = UUDUDDUUUDDD associated to the permutation
π = 465213 ∈ S6(123).
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Lemma 2. Let π be a permutation in Sn(123). Then, π has a pure descent in position d,
d ≥ 1, if and only if its associated Dyck path Ω(π) has one of the three following forms:

(a) γUDUDδ, where γ and δ are two words in {U,D}∗ and γ contains d− 1 steps U ,

(b) γUUUδ, where γ and δ are two words in {U,D}∗ and γ contains d− 1 steps U ,

(c) γUDUδ, where γ is a Dyck path of semilength d − 1 ≥ 0, and Uδ is a Dyck path of
semilength at least two.

Proof. Using Proposition 1 in [4], Barnabei et al. prove that the descents of a permutation
π ∈ Sn(123) are translated by Ω, modulo a symmetry, into the occurrences of UUU and DU
in a Dyck path and vice versa.

Now let us study what happens whenever the descent is pure. Let λ1 > λ2 > · · · > λℓ
be the right-to-left maxima of π, i.e., the values πi such that πi > πj for i < j. So, we can
write π = w1λ1 . . . wℓλℓ where wj are some words possibly empty so that the word w1 . . . wℓ

is decreasing.
The pure descents appear in the three following configurations (see Figure 5):
(C1) between two consecutive right-to-left maxima with consecutive values,
(C2) between two consecutive letters of a word wi,
(C3) between the right-to-left maximum λi and the first letter x of wi+1 (whenever wi+1

is non-empty), such that there does not exist any value πj lying in [x, λi] on the left of λi.
Translating configurations (C1) and (C2) in terms of Dyck paths using the map Ω, we

obtain easily the following correspondences:
- a pure descent satisfying (C1) is mapped into an occurrence of UDUD,
- a pure descent satisfying (C2) is mapped into an occurrence of UUU .
For the case (C3), since a pure descent d is obviously a descent, it is mapped with an

occurrence of UDUδ where Uδ is a Dyck path.
Moreover, if d is a pure descent, then there is no j < d such that πd+1 < πj < πd. As πd

is a right-to-left maximum, we have πd ≥ d; since πd+1 is not right-to-left maximum there is
πk > πd+1 for k > d+1, so the avoidance of 123 implies that all values on the left of πd+1 are
greater than πd+1. Finally, for all j < d, we have πj > πd ≥ d, which implies that πd = d.
Hence, π1 . . . πd−1 is obtained from a permutation of Sd−1(123) by adding d to all its values.
This implies that Ω(π1 . . . πd−1) is a Dyck path and Ω(π) is of the form γUDUδ where γ is
a Dyck path of semilength d − 1 and Uδ is also a Dyck path. Finally, the fact that πd+1

is not a right-to-left maximum ensures that this case is not the same as (C1) and thus, we
necessarily have Uδ is of semilength at least two.

Theorem 6. Let G(x, y) =
∑

n≥0,k≥0 gn,kx
nyk be the bivariate generating function where

the coefficient of xnyk is the number gn,k of permutations of length n with k pure descents
and avoiding the pattern 123. Then, we have

G(x, y) =
x3y3 − 2x3y2 + x3y − 3x2y2 + 3x2y + 3xy − x− 1 + (xy − x− 1)R(x, y)

x3y3 − x3y2 − 3x2y2 + x2y + 2x2 + 3xy − 1 + (xy − 1)R(x, y)

where

R(x, y) =
√

x4y4 − 2x4y3 + x4y2 − 4x3y3 + 4x3y2 + 4x3y + 6x2y2 − 4x3 − 2x2y − 4x2 − 4xy + 1.
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(C1) (C2) (C3)

Uδ

y = n− x + 1

Figure 5: The three configurations (C1), (C2) and (C3) for a pure descent in Sn(123).

For instance, the first terms of G(x, y) are 1 + x+ x2 + x3 + 2 x4 + 3 x5 + 6 x6 + 11 x7 +
x2y + 3 x3y + 5 x4y + 13 x5y + 26 x6y + x3y2 + 6 x4y2 + 15 x5y2 + x4y3.

Proof. Using Lemma 2, we need to provide the bivariate generating function for the number
of Dyck paths of semilength n with respect to the number of configurations (C1), (C2) and
(C3).

We distinguish two cases: (i) the Dyck path starts with UD, and (ii) otherwise.
Let H(x, y, z) (resp. HUD(x, y, z), HUU(x, y, z)) be the trivariate generating function

where the coefficient of xnykzℓ is the number of Dyck paths of semilength n (resp. starting
with UD, resp. starting with UU), having k configurations (C1) or (C2) and ℓ configurations
(C3). Obviously, we have H(x, y, z) = 1 +HUD(x, y, z) +HUU(x, y, z).

Using the first return decomposition, we obtain the system of functional equations (4):















H(x, y, z) = 1 +HUD(x, y, z) +HUU(x, y, z)

HUD(x, y, z) = x+ xzHUU(x, y, z) + xyHUD(x, y, z)

HUU(x, y, z) = xyHUU(x, y, 1)H(x, y, z) + xHUD(x, y, 1)H(x, y, z).

(4)

Indeed, let P be a non empty Dyck path having its first return decomposition P = UQDR

where Q and R are two Dyck paths. When Q is empty (P starts with UD): if R starts with
UD, then P and R have the same number of configurations (C2) and (C3), and P has
one configuration (C1) more than R. Hence the generating function for this subcase is
xyHUD(x, y, z); if R starts with UU , then P and R have the same number of configurations
(C1) and (C2), and P has one configuration (C3) more than R. Hence the generating
function for this subcase is xzHUU (x, y, z).

When Q is not empty, the juxtaposition with R does not create any new configuration
(C1), (C2) or (C3): if Q starts with UU , then P has one configuration (C2) more than the
total number of configurations (C2) in Q and R; the configurations (C3) of Q do not appear
in P . Hence the generating function for this subcase is xyHUU(x, y, 1)H(x, y, z). In the same
way, we obtain the generating function xHUD(x, y, 1)H(x, y, z) whenever Q starts with UD.

Resolving this system of equations (4), after fixing z = y, we obtain the expected bivariate
generating function G(x, y) = H(x, y, y).
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Corollary 6. The popularity of the pure descents among the set Sn(123), n ≥ 1, is given
by the generating function

4x2 − 9x+ 2 + (5x− 2)
√
1− 4x

8x− 2

(see A129869 in [15]).

Proof. Using Theorem 6, the result is given by ∂G(x,y)
∂y

⌋y=1 =
4x2−9x+2+(5x−2)

√
1−4x

8x−2
.
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