Three Dimensional Narayana and Schroder Numbers

R. A. Sulanke*

Abstract

Consider the 3-dimensional lattice paths running from (0,0,0) to (n,n,n), con-
strained to the region {(z,y,2z) : 0 < z < y < z}, and using various step sets.
With C(3,n) denoting the set of constrained paths using the steps X := (1,0,0),
Y :=(0,1,0), and Z := (0,0,1), we consider the statistic des(P) := |[{i : pipi+1 €
{YX,ZX,ZY},1 < i < 3n — 1}|, where P = p1py...p3, € C(3,n). A combinatorial
cancellation argument and a result of MacMahon yield a formula for the 3-Narayana
number, N(3,n,k) := |[{P € C(3,n) : des(P) = k + 2}|. We define other statistics
distributed by the 3-Narayana number and show that 43", 2°N (3,7, k) yields the n-th
large 3-Schroder number which counts the constrained paths using the seven positive
steps of the form (1, &2,&3), & € {0,1}.

1 Introduction

We begin by reviewing the usual Narayana and Schréder numbers. Let C(2,n) denote the set
of planar lattice paths using the unit steps £ := (1,0) and N := (0, 1), running from (0, 0)
to (n,n), and lying in the wedge {(z,y) : 0 < z < y}. Common, and essentially equivalent,
statistics on C(2,n) are the number of peaks and the number of valleys. These are defined
as the number of NE pairs (EN pairs, respectively) on P, which we denote by peaks(P)
(vals(P), respectively). If we define the Narayana number

N(n, k) :=|{P €C(2,n) : vals(P) = k}| = |{P € C(2,n) : peaks(P) =k + 1}|,
for 0 < k <n—1, it is well known that
_1fn noy (41 (Z:Li)
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(See Section 6 and sequence A001263 in [12].)
We define the Narayana polynomial so

N2n ZN n, k‘ tk Z t'uals(P) _ Z tpeaks(P) L
Pec(2,n) Pec(2,n)

Note that (|C(2,7)])n>0 = (Non(1))n>o is the sequence of Catalan numbers. When ¢ =
2, consider counting the set of all copies of the paths of C(2,n) on which the peaks are
independently colored blue or red. If on each copy we change each blue peak into a diagonal
step of the form (1, 1) and discard the red color, then the copies are transformed into Schréder
paths. Indeed (2N3,(2))n>1 (with initial term for n = 0 equal 1) is the sequence of large
Schréder numbers (sequence A006318 in [12]).

For 3-dimensional results, let C(3,n) denote the set of paths using the steps X := (1,0, 0),
Y :=(0,1,0), and Z := (0,0, 1), running from (0,0, 0) to (n,n,n), and lying in the chamber
{(z,y,2) : 0 <z <y < z}. On C(3,n) we define the statistics, the number of descents
(briefly des) and the number of ascents (briefly ascs) so that for any path P := pips...ps,,

des(P) = |{i : pipis1 €{YX, ZX,ZY}, 1 <i<3n-1},
ascs(P) = |{i : pipiq1 € {XY, XZ,YZ},1<i<3n-—1}.
P e€C(3,2) || des(P) | ascs(P) | des(P) — ascs(P)
Z22YYXX 2 0 2
ZZY XY X 3 1 2
ZYZY XX 3 1 2
2YZXYX 3 2 1
ZYXZYX 4 1 3

Table 1: The statistical values for paths in C(3,2).

For 0 < k < 2n — 2, we define the 3-Narayana numbers and the 3-Narayana polynomial,
respectively, to be

N(3,n,k) = |{P€C(3,n) : ascs(P) =k},
Nin(t) = > N(3,n,k)t*

We find that (see sequence A087647 in [12]; [17])

Ng’l (t) - ]_
N3o(t) =1+ 3t + 2
N33(t) =1+ 10t + 206 + 1083 + ¢*
N34(t) =1+ 22¢ + 113t% + 190¢3 + 113t* + 22t + ¢
N35(t) = 1+ 40t + 400¢? 4 1456t° + 2212¢* + 1456¢° + 400t° + 40t + ¢
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When t =1 and n > 0, as seen in Section 2.1,

2(3n)!

€@l =Noall) = i 7 o)1

(2)

which are known as the 3-dimensional Catalan numbers ([8, p.133],[18]. Sequence A005789
in [12]). As we will see in Section 5 where we count paths with steps being the edges and
diagonals of the unit cube, we should take the sequence

(4N35,(2))n>1 = (4,44, 788, 18372, 505156, 15553372, 520065572, 18518471492, . . .)

to be the 3-dimensional analogue of the large Schroder numbers. (Sequences A088594 in

[12]).
In section 2 we will use a combinatorial cancellation argument and a result of MacMahon
to prove

Proposition 1 If M(n,h,i,j) denotes the matrix
e e (0T
(h—z’—]2_|_(2 i+j ) (h—i—nj_zl(z’-i—j) (h—i—j)n( i+j ) |
(h—j h—j h—j

then, for 2 < h < 2n,

h o h
{PeC(3,n) : des(P)=h}[ =) det(M(n,h,i,j)). (3)
i=0 j=0
In section 3 we will establish a bijection showing

Proposition 2 The statistics ascs and des —2 are equi-distributed, i.e., for 0 < k < 2n—2,
{P e€C(3,n) : ases(P) =k} =|{P€C(3,n) : des(P)=Fk+2}|.

In section 4 we will indicate how the following result can be routinely deduced from more
general results of MacMahon [8]:

Proposition 3 For 0 <k <2n— 2,
k S N\ -1
3n+1 n-i—z-l—j)(n-l—z)
N(3,n,k) . 4
=Y o) “

Moreover, the 3-Narayana polynomial N3, (t) is a reciprocal polynomial (i.e., the sequence
of its coefficients is palindromic) of degree 2n — 2.
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(2n-3,n+3)
(2n—-2,n+2)
— (2n-1,n+1)
(-3.3) : 4[
(-2.2)
(-1,1)

Figure 1: The triple of paths (R, R, R") belonging to N (4) C T(4,01). This triple corre-
sponds to the path ZYZY XZZY XY XX € C(3,4).

This paper emphasizes the derivation of formula (3). Upon reviewing the methods used
to derive (3) and (4), it does not appear that either method can be modified so that formula
(3) can be derived directly with respect to the number of ascents or that formula (4) can
be derived directly with respect to the number of descents. In [17] the author studies (4),
showing it to be much more tractable than (3) for establishing the reciprocity of the 3-
Narayana polynomials, for finding recurrence relations, and for generalizing results to higher
dimensions.

2 Derivation of the determinantal formula (3)

In subsection 2.1 we will “twist” the combinatorial-cancellation scheme of the Gessel-Viennot
method [3, 4] to enumerate unconstrained paths with respect to the number of descents. We
do so by first mapping the paths of C(3,n) to certain nonintersecting triples of planar lattice
paths, which are a special case of “vicious walkers” introduced by Fisher [2] (See also [4, 5].).
We will then do our counting using these triples.

In subsection 2.2 we will complete the derivation of formula (3) by using a result of
MacMahon regarding the equi-distribution of the number of descents and the number of
excedances to enumerate the unconstrained paths using the steps X, Y, and Z. The extension
of the techniques of this section to higher dimensions does not appear to yield a neat general
formula.

2.1 Combinatorial cancellation with a twist

Let S; denote the set of the permutations on {1, 2, 3}. Using the notation, o = (,(1) o(2) o(3) )
we designate the permutations as 01 = (123), 00 = (323), 05 = (133), 04 = (
(323), and 05 = (1332). Observe that their signs satisfy sgn(o;) = sgn(o4) = sg



while sgn(oy) = sgn(o3) = sgn(og) = —1.
For o0 € 83 and n > 1, let T (n,o) denote the set of all ordered triples of 2-dimensional
lattice paths (R, R', R") where

(i) the paths R = riry...7r3,, R = rirh...r% , and R" = r{r]...r{ use the steps £ =
(1,0) and N = (0, 1),

(ii) R runs from (—o(1),0(1)) to (2n —1,n+ 1),
(iii) R runs from (—0(2),0(2)) to (2n —2,n + 2),
(iv) R" runs from (—o(3),0(3)) to (2n — 3,n + 3),
(v)

Figures 1 and 3 illustrate triples belonging to T (4,01), 7 (7,01), and T (7,05). Further,
let 7 (n,o0, XY) denote that subset of triples (R, R', R") in T (n,0) where R and R’ have
the most north-eastern point of intersection. Likewise, let 7T (n,0,Y Z) denote that subset
of triples (R, R, R") in T (n,o) where R' and R" have the most north-eastern point of
intersection. Condition (v) guarantees that there is no triple where R and R” have the most
north-eastern point of intersection. Let A (n) denote that subset of 7 (n,o;) containing no
intersecting paths.

Let L£(n1,n2,n3) denote the set of unconstrained lattice paths running from (0,0, 0)
to (ni1,n9,n3) using the unit steps X, Y, and Z. We define a bijection v with domain
Uyes, 7 (n,0) so that, for each o € Ss,

for each i, 1 < i < 3n, exactly one of 7, r}, and r is an N step.

v:T(n,o) = Ln+1—0(1),n+2-0(2),n+3—0(3))
and, if v((R, R', R")) = pips . . . P3n, then, for 1 <i < 3n,

(ri,riymi) = (N,E,E) ifand only if p;, =X
(ri,ri,m!) = (E,N,E) ifand onlyif p;, =Y
(ri,ri,r?) = (E,E,N) if and only if p; = Z.

We now define an involution x on | J, s, 7 (n, o), which is sign reversing with respect to
the signs of the permutations, by the following three cases. Figures 2 and 3 illustrate this
involution.

Case (i): For (R,R",R") e N(n), u((R,R,R")) = (R, R, R").
Case (ii): For (R,R',R") € T(n,0,XY), factor R" as R" = R R} R} R} where
Ry =r{...r{, Rgy=vri...ry, Ry=ry ...r¢, Ri=ry ...r3

77 0
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T(n,o, XY)YUN()UT (n,01,Y Z)

/

T(n,02,YZ)UT(n,09, XY) T(n,o3,YZ)JT (n,o3, XY)

T(n,o,YZ)JT(n,o04, XY) T(n,o5,YZ)JT(n,o5 XY)

N\ /

T(n,as,XY) U T(n, UG,YZ)

Figure 2: The action of the involution p on ,¢s, T(n,0).

so that the initial points of the steps r,.; and r;,, are the most north-eastern point of
intersection of R and R', and so that R/ and R} are maximal subpaths (perhaps empty)
consisting only of NV steps. Using the j, k, and ¢ so determined, let

R1:7‘1...’r‘j, RQZTj+1...Tk, R3:7”k_|_1...7‘g, R4:7“g_|_1...7“3n

ro_ 0 ! ' 1 't ! ro_ 0 !
Ri=ri...r;, Ry=rj...1 Ry=rpq...ry Ry=ryy...13,

For any path Q = ¢y ... ¢n, let Q denote ¢, . ..q;; this is the “twist” of ). We then define

u(R, R, R")) = (RiRyRy Ry, R\ Ry R4 R}, R Ry RS RY)).

Case (iii): Similarly for (R, R, R") € T (n,0,Y Z), factor R as R = Ry Ry R3R, where
R1:T'1...T‘j, RQZT']'_H...’I'k, R3:T'k+1...7“g, R4=7‘g+1...7'3n

so that the initial points of the steps r;,, and ry,, are the most north-eastern point of
intersection of R’ and R”, and so that R; and R3 are maximal subpaths (perhaps empty)
consisting only of N steps. Using the j, k, and £ so determined, let

! ! / L ! [ ! ! .l !
Ry=ri...riy, Ry=rjy...ry Ry=rpyq..omy Ry=rp .. 73,

RY=r{...r}, Ry=ri...ry, Ry=rj,...r¢, Ri=rg,,...13,
We then define
p((R, R, R”)) = (RlR#QR?»R% RIIR_IQIRgRib RYERgRZ)-
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Figure 3: The first triple belongs to 7(7,01,XY) and corresponds to the
path ZZYXXXZXYZXYYZZYYZXX € L(71,7,7). The second triple is

its image under . It belongs to 7T (7,00,XY) and corresponds to the path
ZZXXYZXYZYYYXZZYYZYXX € L(6,8,7).

In essence, u acts by cutting out a section (Ry, R, RY), twisting (i.e., rotating) each
subpath of this section 180 degrees, and then re-attaching each subpath according to the
relevant permutation. We observe that, except on N (n), p is sign reversing with respect to
the permutations defining the set of triples. Importantly, one can routinely check that the
twisting scheme yields

des(v(pu(R, R', R"))) = des(v(R, R', R")).
for all (R, R, R") € J,cs, T(n,0). Hence, by the cancellation summarized in Figure 2, we
have
Lemma 1 Forn > 1,

Z tdes(u(R,R’,R“)) — Z sgn(a) Z tdes(u(R,R’,R”))

(R,R,R")EN (n) oES3 (R,R/,R")ET (n,0)
or equivalently,

Z tdes(P) _ Z Sg?’L(O') Z tdes(P)'

PeC(3,n) 0€S3 PeL(n+1—0(1),n+2—0(2),n+3—0(3))
In the case that ¢ = 1, we immediately obtain the formula for the three dimensional
Catalan numbers. Since the cardinality of L(nq, ng, n3) is (n; +ng+ns3)!/(n1!ng!ng!), Lemma
1 implies the following, which simplifies to (2):

1 1 1
nl! (n—ll)! (n—12)!
o= @Entdet | @iy 4t
(n+2)!  (n+1)! n!

-3



2.2 Two statistics for unconstrained paths

With L£(n;, ng, ng) previously defined, we now seek a formula for ZPeﬁ(m,nz,ns) tdes(P) - Order
the steps so that X < Y < Z. We recall two statistics considered by MacMahon |8,
arts. 149-151]: the number of descents (called number of major contacts in [8]) and number
of excedances. For any path P = pipy...py, in L(n1,n2,n3), define

e des(P)=|{i : pi>piy1}| = the number of ZY, ZX, or Y X pairs on P.

o cxced(P) = |{i : p; > ¢}| where ¢i¢s ... ¢y is that path in L£(n, ne, n3) for which
¢ < gip1 for 1 <o <m.

Observe that exced(P) is the number of Z steps in first n; + ng positions of P plus the
number of Y steps in first n; positions of P.

We will use a result of MacMahon [7, 8] which is considered bijectively by Foata, as
recorded in [6] and [7, pp. 455-6], and which in our case reduces to the following:

Proposition 4 The statistics des and exced are identically distributed on L(ny,na,n3).

Hence, using this proposition and counting the paths having ¢ Z’s and j Y’s in the first
ny positions and £ Z’s and £ Y’s in the next ny positions, we have

oo 1™ = NP : des(P) = h}t"

Peﬁ(n17n27n3)

h
= Z\{P . exced(P) = h}[t"
h
= Z g(nbn2an3>iajak7€)ti+j+k
i,j,kﬂe
where g(ni,ng, n3, 1, J, k, £) denotes

n1! TLQ! 77,3!
iilny —i— ) kW (ng —k — ) (ng — i — k) (no— j — O)1(i+ j + k + £ — ng)!"

Consequently, upon applying the Chu-Vandermonde convolution, we find

Z tdes(P) —

PeL(ny,n2,n3)

()OO

We remark that MacMahon [8, art. 151] derives an equivalent formula. Finally, Lemma 1
and (5), with £ = h — i — j, yield formula (3).
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000 101 000 010
Mp:=1|100 M. := [000 M,:=|110 Mp:=1]110

110 001 010 000

000 000 000 101

M, =011 VM, .= |101 001 001

001 100 101 000

011] 000 101 000

VM, :=|000 My:=1]010 100 100
010] 011 000 101

100 011 010 000

My := {000 My:=]001 011 011

101 000 000 010

001 100 001 011

101 110 000 000

000 000 011 001

110 010 110 100

010 000 000 000

000 110 100 110

Table 2: The candidate matrices

3 Other statistics having the 3-Narayana distribution

Our main intention is obtain a bijective proof of Proposition 2. To do so, we will consider
24 statistics for C(3,n), each of which is encoded in terms of a 3 by 3 0-1 matrix M. With
Xi=X,Xo:=Y, X5:=Y, with P :=pips...ps, € C(3,n), and with (M);, denoting the
entry in row j and column £ of M, we let ©,,; denote a statistic such that

3

j=1 ¢=1

OO
SO
O ==

For example, the statistic ascs corresponds to the matrix My := [ ] , since

(J,SCS(P) = ‘{’L P DiDi+1 € {XlXQ,Xng,XQXg}}‘.

Similarly, the statistic des corresponds to the matrix Mp := [(%) § §] .

For small values of n, a simple search over C(3,n) shows that, if a statistic has the
prescribed form O, and is distributed by N(3,n,k — ¢), for some ¢ € {0,1, 2}, then it must
correspond to one of the 24 matrices of Table 2. A series of lemmas will establish

Proposition 5 For n > 1, each matrix M 1in the first two columns of Table 2 yields a
statistic Oy — (M) — (M)39 having the 3-Narayana distribution. In particular, ascs and
des — 2 are equi-distributed. (The sum (M)o1 + (M)s2 adjusts the statistic so |{P € C(3,n) :

Ou(P) = (M)o1 — (M)32 = k}| = N(3,n,k).)
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P Owmp (P) | Oms(P) | Onr (P) | Ongy (P) | hdes(P)
ZZYY XX 0 1 1 2
ZZY XY X 3 1 1 2 1
ZYZY XX 3 1 1 0 1
Z2YZXYX 3 2 0 1 1
ZYXZY X 4 1 2 1 0

Table 3: Statistical values

Conjecture 1 For n > 1, each matriz M in the last two columns of Table 2 yields a
statistic ©pr — (M )91 — (M)39 having the 3-Narayana distribution. Consequently, the statistic
des—ascs—1 (which was introduced in Table 1) has the 3-Narayana distribution in agreement

with My + My + M, = Hm

If one considers any two statistics ©; and ©, on C(3,n) to be equivalent when either
©1+ 6, or ©; — 0O, is a constant statistic for each n, then Table 3 shows the non-equivalency
of ©n,, Oumy,, On, and @Mf. The statistic hdes counting the high descents, considered at
the end of this section, requires n = 3 to see that it is not equivalent to the others. Lemma
2, below, shows that each column of Table 2 corresponds to an equivalence class.

For each matrix M being considered, we define the horizontal complement, HM , and the
vertical complement, V M, to be matrices defined so

0 if 7 is a zero row of M
HM); =
(HM)je { 1 —(M)je if otherwise,
0 if ¢ is a zero column of M
M)y =
(VM)se { 1—(M)j, if otherwise.

(E.g., see Table 2, where M, = HMp. See also Figure 4.)
Lemma 2 For any M in Table 2 and for any P € C(3,n),

2n if row 1 of M s a zero row

Ou(P)+Oum(P) = { 2n — 1 if otherwise,

01 (P) + Oy ui(P) { 2n if column 1 of M is a zero column

2n — 1 if otherwise.

Proof. We note that each path begins with Z, ends with X, and has a total of 3n — 1
consecutive step pairs. If row 1 of M is a zero row, then the n — 1 non-final X steps, all of
which immediately precede some other step on P, do not contribute to ©(P) + Oy (P).
Hence, ©5/(P) + Oy (P) = 3n —1) — (n — 1). If row 2 of M is a zero row, then only

10



Mp v, Svm, Lo, 5o, v, vy Y My
Figure 4: The schema for proving that des — 2 and ascs are equi-distributed.

the n Y steps, which must immediately precede some other step on P, do not contribute to
Oy (P) +Ogun(P) = (3n — 1) — n. Similarly, the other instances of the lemma are valid. [J

Lemma 3 For any M in Table 2 and for any P € C(3,n),

Oun(P) — (M) — (M)32 + Oar(P) — (HM)o3 — (HM)32 = 2n— 2.
@M(P) — (M)23 - (M)32 + ®VM(P) — (VM)23 — (VM)32 = 2’/’L — 2.

Proof. This is an easily checked consequence of Lemma 2. [J

Lemma 4 Suppose that ©1 is distributed by a reciprocal polynomial of degree 2n — 2 on
C(3,n). If ©1(P) +0O4(P) =2n—2 for all P € C(3,n), then ©, and Oy are equi-distributed.

Proof.

Z t®2 Z $2n—2- O.(P Z tel

PeC(3,n) PeC(3,n) PeC(3,n)

Lemma 5 For M, and M, defined in Table 2 and for 1 < k < 2n — 2, there is an explicit
bijection
B:{P€C(3,n):0um,(P)=Fk} =>{Pe€C(3,n): 0O, (P) =k},

and hence Oy and Oy, are equi-distributed.

Proof. For any P € C(3,n), we split P into maximal blocks (i.e., maximal subpaths)
which either contain only Y steps or contain no Y step. In each block of the second type,
we exchange its initial maximal subblock (perhaps empty) of X steps with its final maximal
subblock (perhaps empty) of X steps. B(P) is the resulting path. We note that 3(P) €
C(3,n) since the condition 0 < z < y < z for any point (z,y, z) on a path holds during the
exchanges. The action of § leaves the number of XX and ZZ pairs fixed and transforms
the number of ZX pairs to the number of X Z pairs. Since M, = T M,, where T denotes the
usual transpose operator, the proof is complete. [

Proof of Proposition 5: This is a consequence of Lemmas 3, 4, 5, and the reciprocity of

the 3-Narayana polynomials, which is considered in Section 4. See Figure 4 where 1" denotes
the transpose operator.
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In particular by Lemma 2, for any P € C(3,n), the following identities

O, (P) + O, (P) = 2n, On, (P) +Ovn, (P) =2n -1,
Ov, (P) + O, (P) = 2n — 1, Oum, (B(P)) +Ovm, (B(P)) =2n -1,
Ovm, (B(P)) + Ou,(B(P)) = 2n, Oum, (B(P)) +Oum,(B(P)) =2n —1,

together with ©,, (P) = O, (8(P)), yield bijectively that Oy, (P) —2 = O, (B(P)). O

High descents: On any planar path a high peak is any Y X pair whose intermediate
vertex (z,y) satisfies y — 2 > 1. Deutsch [1] introduced the statistic hpeaks(P), which
gives the number of high peaks on the path P, and showed that hpeaks has the Narayana
distribution on C(2,n).

Now, for any path P = pipy...ps, € C(3,n), call any step pair p;p;11 a high descent
if pipiy1 = X; X, for j > £ and its intermediate vertex (zi,z2,3) satisfies z; — z, > 1.
With hdes(P) denoting the number of high descents on the path P, we show in [17] that
{P € C(3,n) : hdes(P) = k}| = N(3,n,h).

4 Another formula for the 3-Narayana numbers

Here we briefly indicate how Proposition 3 can be obtained by specializing and, then trans-
lating into our notation, g-results of MacMahon (8], Articles 436-498. One can also obtain
formula (4) either from a fundamental theorem on order polynomials on posets developed
by Stanley [13][14, Theorem 4.5.14] or from an alternative proof of the author [17].

In 1910 MacMahon [7, 8] introduced the sub-lattice function, which is a g-analogue of a
“d-dimensional Narayana number”. Instead of the steps X, Y, and Z, MacMahon uses the
symbols v, B, and «, respectively. He uses “lattice permutation” for “constrained path in
C(3,n).” Hence, for example, “the constrained path ZZY XY X with one ascent at XY”
corresponds to his “lattice permutation aafyBvy with one major contact at v3.” Specific to
the 3-dimensional case (and in our notation), the “sub-lattice function of order £”, denoted
by Li(n,3;00), is defined to satisfy

Z Lk(n, 3; OO)tk — Z taSCS(P)qL(P)
k

PeC(3,n)

where (in our notation) ¢(P) denotes the lessor index of P, i.e., t(p1peps - - - pi - - - P3n) denotes
the sum of the indices ¢ where p;p; ;1 is an ascent. Hence, when ¢ — 1,

Ly(n,3;00) = N(3,n, k).

In [8, art. 429] MacMahon uses GF'(n; d; j) to denote the generating function, with respect
to the sum of the parts with size marked by ¢, of the plane partitions having at most n

12



columns, at most d rows, and part size bounded by j. In [8, art. 443] he records the bottom
formula of page 197, which reduces to

. L . L . . L _ . 2n—2
ZGF(n; 3 j)g’ = 0(n,3;00) + L1(n,3;00)g + - -+ + Loy 32(77,, 3;00)g (6)
r (1-9)(1-gq)---(1—gqg*)
In [8, art. 495] he obtains a formula for GF(n;3;j) which becomes, for ¢ — 1,

orwos 10717

1=0

With ¢ — 1, this and (6) yield

Zk:N(&"’k)gk: (1_9)3n+1zg <j+z+i) (n;—i)_l'

Since (1 — g)*"*! = Zj(—lg)j (3";1), formula (4) follows by forming the convolution.

MacMahon gave a proof for the reciprocity of the polynomial Nj,(¢) in [7, art. 29]; his
argument in [8, art. 449] seems incomplete. The reciprocity can also be derived either from
the results of [13, sect. 18][14, sect. 4.5] or by two different methods in [17]. The degree of
this polynomial is considered in [8, art. 445], in [14, sect. 4.5], and in [17].

5 Three dimensional Schroder paths

Now we count constrained paths using the seven steps corresponding to the edges and the
diagonals of the unit cube. Let D(n) denote the set of paths running from (0, 0, 0) to (n,n,n),
lying in {(z,y,2) : 0 <z <y < 2z}, and using the nonzero steps of the form (&;, &, &) where
& € {0,1} for 1 <4 < 3. One might call each path in D(n), a 3-Schrider path.

Proposition 6 Forn > 1, D(n) has cardinality equal to 4N3,(2).

Proof. Let C'(3,n) denote the set of all possible paths formed by independently coloring
blue or red the intermediate vertices of the Y X, ZX, and ZY pairs on copies of the paths
of C(3,n). Hence, C'(3,n) has cardinality Y, 2"|{P € C(3,n) : des(P) = h}| = 4N3,(2).

Next we define a bijection

p:C'(3,n) — D(n)
so that, for each P € C'(3,n), u(P) is obtained by first replacing sequentially each maximal
factor of steps having consecutively blue, B, intermediate vertices as follows:

YBX — (1,1,0)
ZBX — (1,0,1)
ZBY — (0,1,1)
ZBYBX — (1,1,1)
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On the resulting path keep the remaining nondiagonal unit steps and remove the color red.
Hence the cardinalities of C'(3,n) and D(n) agree. O

6 Notes

In MacMahon’s text [8], one finds the formula for the Narayana numbers as a special case
of the 5th formula of article 495. In 1955, using different terminology, Narayana [9, 10],
introduced the number £ () (,",) to count, in essence, pairs of nonintersecting paths using
the steps E and N, where the lower path runs from (1,0) to (h,n — h) and the upper path
runs from (0,1) to (h —1,n — h+1). His interest was the derivation of distributions related
to statistical tests of the Kolmogorov-Smirnov type. Implicit in [10] (explicit in [16, Sect. 2])
is a bijection between these pairs of such nonintersecting paths and paths in C(2,n) having
h peaks. The papers [15, 16] study the Narayana polynomial.

We are appreciative of the references on counting paths in higher dimensions given us by
Heinrich Niederhausen, especially those listed in his paper [11], which studies enumerating
constrained walks in terms of diffusion walks where particles from different sources with
opposite charges cancel upon meeting. His cancellation scheme differs from reflection or that
of this note.

We thank Christian Krattenthaler for refreshing our memory about bijection v and the
result of Proposition 4. His recent paper [5] includes a summary of the literature on the
enumeration of general higher-dimensional walks in regions bounded by hyperplanes and the
associated enumeration of n-tuples of nonintersecting walks in the plane.
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