Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory
<p>Timeline of radar developments at Lincoln Laboratory.</p> "> Figure 2
<p>The Millstone Hill Radar (MHR) antenna.</p> "> Figure 3
<p>The Haystack antenna as it stood from 1964 to 2014 in a cut-away view. The figures pictured near the subreflector provide a human scale. An RF box can be seen being hoisted into place for insertion at the antenna feed.</p> "> Figure 4
<p>The ARPA-Lincoln C-band Observables Radar (ALCOR) antenna, pictured during its construction in 1968.</p> "> Figure 5
<p>The generation of a range-Doppler image from a time series of range, Doppler and radar cross-section (RCS) measurements of individual scatterers (a dumbbell of two scatterers here).</p> "> Figure 6
<p>The US Skylab space station, in orbit 1973–1979 (<b>left</b>). A simulated ALCOR image [<a href="#B19-remotesensing-16-01530" class="html-bibr">19</a>] of the Skylab space station illustrating a range-Doppler image (<b>right</b>).</p> "> Figure 7
<p>A view of the LRIR feed showing the X-band horn aperture, the support structure and the water-cooled WR28 waveguide.</p> "> Figure 8
<p>The Millimeter-Wave Radar (MMW) antenna is seen in the foreground as a new GoreTex<sup><tt>®</tt></sup> radome was installed in 2003.</p> "> Figure 9
<p>A schematic of the original MMW microwave system (1983).</p> "> Figure 10
<p>A schematic of the quasi-optical MMW microwave system (1992).</p> "> Figure 11
<p>The Haystack Auxiliary Radar (HAX) antenna.</p> "> Figure 12
<p>Wideband radar images of the USA Space Shuttle obtained by the TIRA (images courtesy of Fraunhofer FHR, Wachtberg, Germany).</p> "> Figure 13
<p>The Haystack Ultra-Wideband Satellite Imaging Radar (HUSIR) antenna. The backstructure and drives are seen at the top, while at the bottom, a “fisheye” lens photo provides a view of the reflector surface.</p> "> Figure 14
<p>The MHR antenna with the facility housing the new transmitter in the foreground.</p> "> Figure 15
<p>The interior of the new transmitter facility with one of two klystrons (<b>left</b>) and its output waveguide and isolator (<b>right</b>). Coolant water is provided from the mezzanine level above.</p> "> Figure 16
<p>The HUSIR feed (<b>left</b>) and the new design for increased power (<b>right</b>).</p> "> Figure 17
<p>The 50 kW peak-power HUSIR gyroTWT mounted in a test stand at CPI.</p> "> Figure 18
<p>The cryogenic latching-circulator receiver protector for HUSIR (<b>left</b>) and its mounting in the 20 K dewar (<b>right</b>). The picture on the (<b>right</b>) shows mounting provisions for W-band receiver hardware, which is not installed in this picture.</p> "> Figure 19
<p>The progressive improvement in image resolution obtained at Lincoln Laboratory. Although ALCOR could image large objects, as seen in <a href="#remotesensing-16-01530-f006" class="html-fig">Figure 6</a>, it is omitted from this chart, which focuses on the more recent need to image small orbiting payloads. Improved image resolution is achieved via increased radar waveform bandwidth, achieved both through increased center frequency with constant fractional bandwidth (e.g., HUSIR) and increased fractional bandwidth (e.g., MMW).</p> "> Figure 20
<p>An illustration of the spatial distribution of man-made resident space objects about Earth (courtesy of AstriaGraph, University of Texas at Austin). Active satellites are color-coded in orange (the geostationary belt is clearly visible as an ellipse), inactive satellites in light blue, rocket bodies in violet and uncategorized objects in pink.</p> "> Figure 21
<p>Reproduced from [<a href="#B75-remotesensing-16-01530" class="html-bibr">75</a>], the population of man-made resident space objects as a function of time. The numbered annotations show significant fragmentation events due to collisions in space, these being the 2007 Chinese anti-satellite (ASAT) test (1), the 2009 collision of Cosmos 2251 and Iridium 33 (2) and the 2013 Russian ASAT test (3).</p> ">
Abstract
:1. Introduction
2. Progress in High-Power and Wideband Radar Technology at MIT Lincoln Laboratory
2.1. The Millstone Hill Radar (MHR; Constructed in 1956, Reconfigured in 1965)
2.2. The Haystack Planetary Radar (Constructed in 1964, Antenna Replaced in 2014)
2.3. The ARPA-Lincoln C-Band Observables Radar (ALCOR; 1970)
2.4. The Long-Range Imaging Radar (LRIR (1978)/HUSIR-X (2014))
2.5. The Millimeter-Wave Radar (MMW; Constructed in 1983, Upgraded in 1993 and 2012)
2.6. The Haystack Auxiliary Radar (HAX; 1993)
2.7. The Cobra Gemini Radar (1996) and the XTR-1 Radar (2012)
2.8. Haystack Ultra-Wideband Satellite Imaging Radar (HUSIR-W; 2014)
3. Upgrades in Progress and Future Plans
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Massachusetts Institute of Technology. Radiation Laboratory Series (28 Volumes); Ridenour, L., Collins, G., Eds.; McGraw-Hill: New York, NY, USA, 2020; pp. 1948–1951. Available online: https://archive.org/details/mit-rad-lab-series-version-2 (accessed on 9 March 2024).
- Technology in Support of National Security; Grometstein, A. (Ed.) MIT Lincoln Laboratory: Lexington, MA, USA, 2011; Available online: https://www.ll.mit.edu/sites/default/files/other/doc/2018-04/MIT_Lincoln_Laboratory_history_book.pdf (accessed on 9 March 2024).
- Ricardi, L.; Niro, L. Design of a 12-horn monopulse feed. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 21–25 March 1966; pp. 49–56. [Google Scholar] [CrossRef]
- Millstone Hill Incoherent Scatter Radar. Available online: https://www.haystack.mit.edu/about/haystack-telescopes-and-facilities/millstone-hill-incoherent-scatter-radar/ (accessed on 9 March 2024).
- Evans, J. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef]
- Pensa, A. Historical Perspective. In Perspectives in Space Surveillance; Sridharan, R., Pensa, A., Eds.; MIT Press: Cambridge, MA, USA, 2017; pp. 1–13. [Google Scholar]
- Sridharan, R.; Kupiec, I. Technology Development for Space Surveillance with Narrow-beam Radars. In Perspectives in Space Surveillance; Sridharan, R., Pensa, A., Eds.; MIT Press: Cambridge, MA, USA, 2017; pp. 15–73. [Google Scholar]
- Welch, S.; Hogan, G.; Morrison, R.; Bassa, C.; Pisano, T. Long baseline radar bistatic measurements of geostationary satellites. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 17–20. [Google Scholar] [CrossRef]
- Ruze, J. Antenna tolerance theory-a review. Proc. IEEE 1965, 54, 633–640. [Google Scholar] [CrossRef]
- Weiss, H. The Millstone and Haystack radars. IEEE Trans. Aerosp. Elect. Syst. 2001, 37, 365–379. [Google Scholar] [CrossRef]
- Whitney, A.; Lonsdale, C.; Fish, V. Insights into the Universe: Astronomy with Haystack’s radio telescope. Linc. Lab. J. 2014, 21, 8–27. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_2_Whitney.pdf (accessed on 9 March 2024).
- Shapiro, I.; Pettengill, G.; Ash, M.; Stone, M.; Smith, W.; Ingalls, R.; Brockelman, R. Fourth test of General Relativity: Preliminary results. Phys. Rev. Lett. 1968, 20, 1265–1269. [Google Scholar] [CrossRef]
- Delaney, W.; Ward, W. Radar development at Lincoln Laboratory: An overview of the first fifty years. Linc. Lab. J. 2000, 12, 147–166. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radardevelopment.pdf (accessed on 9 March 2024).
- Roth, K.; Austin, M.; Frediani DKnittel, G.; Mrstik, A. The Kiernan re-entry measurements system at Kwajalein Atoll. Linc. Lab. J. 1989, 2, 247–276. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol02_no2/2.2.7.kiernanreentry.pdf (accessed on 9 March 2024).
- Avent, R.; Shelton, J.; Brown, P. The ALCOR C-band imaging radar. IEEE Antennas Prop. Mag. 1996, 38, 16–27. [Google Scholar] [CrossRef]
- Skolnik, M. (Ed.) Introduction to Radar Systems, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Axelbank, M.; Camp, W.; Lynn, V.; Margolin, J. ALCOR: A high-sensitivity radar with one-half meter range resolution. In Proceedings of the 1971 IEEE International Convention Digest, New York, NY, USA, 22–25 March 1971; pp. 112–113. [Google Scholar]
- Purdy, R.; Blankenship, P.; Muehe, C.; Rader, C.; Stern, E.; Williamson, R. Radar signal processing. Linc. Lab. J. 2000, 12, 297–320. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radarsignalprocessing.pdf (accessed on 9 March 2024).
- Camp, W.; Mayhan, J.; O’Donnell, R. Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites. Linc. Lab. J. 2000, 12, 267–280. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf (accessed on 9 March 2024).
- Solodyna, C. Overview of Wideband Imaging Radar Technology. In Perspectives in Space Surveillance; Sridharan, R., Pensa., A., Eds.; MIT Press: Cambridge, MA, USA, 2017; pp. 75–117. [Google Scholar]
- Brown, W.; Pensa, A. History of Haystack. Linc. Lab. J. 2014, 21, 4–7. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_1_Brown.pdf (accessed on 9 March 2024).
- James, B.; Zitelli, L. A 100 kW peak 50 kW average coupled cavity TWT with 10% bandwidth centered at 10 GHz. In Proceedings of the IEEE Electron Devices Meeting, Washington, DC, USA, 1–2 December 1975; p. 133. [Google Scholar] [CrossRef]
- Goudey, K.; Sciambi, A. High power X-band monopulse tracking feed for the Lincoln Laboratory Long Range Imaging Radar. IEEE Trans. Microw. Theory Tech. 1978, 26, 326–332. [Google Scholar] [CrossRef]
- Goldie, H. A 2-kilowatt average power X-band receiver protector. IEEE Trans. Electron. Dev. 1977, 24, 53–55. [Google Scholar] [CrossRef]
- Bromaghim, D.; Perry, J. A wideband FM linear ramp generator for the Long-Range Imaging Radar. IEEE Trans. Microw. Theory Tech. 1978, 26, 322–325. [Google Scholar] [CrossRef]
- Sangiolo, T.; Spence, L. PACS: A processing and control system for the Haystack Long-range Imaging Radar. In Proceedings of the 1990 IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 480–485. [Google Scholar] [CrossRef]
- Abouzahra, M.; Avent, R. The 100-kW millimeter wave radar at the Kwajalein Atoll. IEEE Antennas Prop. Mag. 1994, 36, 7–19. [Google Scholar] [CrossRef]
- Ingwersen, P.; Lemnios, W. Radars for ballistic missile defense research. Linc. Lab. J. 2000, 12, 245–266. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2ballisticmissiledefense.pdf (accessed on 9 March 2024).
- Hall, T.; Duff, G.; Maciel, L. The space mission at Kwajalein. Linc. Lab. J. 2012, 19, 48–63. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol19_no2/19_2_3_Hall.pdf (accessed on 9 March 2024).
- Fitzgerald, W. A 35 GHz beam waveguide system for the Millimeter Wave Radar. Linc. Lab. J. 1992, 5, 245–272. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol05_no2/5.2.4.35ghzwaveguide.pdf (accessed on 9 March 2024).
- Dionne, G. Laboratory-scale mirrors for submillimeter wavelengths. Int. J. Infrared Millim. Waves 1982, 3, 417–423. [Google Scholar] [CrossRef]
- Goldsmith, P. Quasioptical Systems; IEEE Press: New York, NY, USA, 1998. [Google Scholar]
- Dionne, G.; Weiss, A.; Allen, G. Non-reciprocal magneto-optics for millimeter waves. IEEE Trans. Magn. 1988, 24, 2817–2819. [Google Scholar] [CrossRef]
- McHarg, J.; Abouzahra, M.; Lucey, R. 95-GHz Millimeter-wave Radar. In Millimeter and Submillimeter Waves Appl. III, Proceedings of the 1996 SPIE International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, USA, 5–9 August 1996; SPIE: Denver, CO, USA, 1996; Volume 2842, pp. 494–500. [Google Scholar] [CrossRef]
- Linde, G.; Ngo, M.; Danly, B.; Cheung, W.; Gregers-Hansen, V. WARLOC: A high-power coherent 94 GHz radar. IEEE Trans. Aerosp. Elect. Sys. 2008, 44, 1102–1117. [Google Scholar] [CrossRef]
- Stambaugh, J.; Lee, R.; Cantrell, W. The 4 GHz bandwidth Millimeter Wave Radar. Linc. Lab. J. 2012, 19, 64–76. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol19_no2/19_2_4_Stambaugh.pdf (accessed on 9 March 2024).
- Jones, G.; Abouzahra, M. Major improvements at the KREMS Millimeter Wave Radar. In Proceedings of the 1992 Space Surveillance Workshop, Lexington, MA, USA, 7–9 April 1992; pp. 239–244. [Google Scholar]
- Ingalls, R.; Antebi, J.; Ball, J.; Barvainis, R.; Cannon, J.; Carter, J.; Charpentier, P.; Corey, B.; Crowley, J.; Dudevoir, K.; et al. Upgrading the Haystack radio telescope for operation at 115 GHz. Proc. IEEE 1994, 82, 742–755. [Google Scholar] [CrossRef]
- Stansbery, E.; Settecerri, T. A Comparison of Haystack and HAX measurements of the orbital debris environment. In Proceedings of the Second European Conference on Space Debris, Organised by ESA, Darmstadt, Germany, 17–19 March 1997; ESOC: Darmstadt, Germany, 1997. ESA-SP 393. p. 59. [Google Scholar]
- Robinson, P.; North, W. Compact floating-deck modulator for the HAX transmitter. In Proceedings of the Twentieth Conference Record on Power Modulator Symposium, Myrtle Beach, SC, USA, 23–25 June 1992; pp. 41–44. [Google Scholar] [CrossRef]
- James, B. Re-Entrant Double-Staggered Ladder Circuit. U.S. Patent 4866343A, 12 September 1989. [Google Scholar]
- Corbett, E.; Rossini, P.; Gallon, D.; Hotz, A. Pointing and tracking servo for the Haystack Auxiliary antenna (HAX). In Proceedings of the First IEEE Conference on Control Applications, Dayton, OH, USA, 13–16 September 1992; Volume 2, pp. 1134–1139. [Google Scholar] [CrossRef]
- Available online: https://orbitaldebris.jsc.nasa.gov/measurements/radar.html (accessed on 9 March 2024).
- Ruiz, G.; Patzelt, T.; Leuschake, L.; Loffeld, O. Autonomous tracking of space objects with the FGAN tracking and imaging radar. In Proceedings of the Informatik 2006—Informatik fur Menschen, Band 1, Bonn: Gesellschaft fur Informatik e.V., Dresden, Germany, 2–6 October 2006; pp. 349–353. Available online: https://dl.gi.de/handle/20.500.12116/23700 (accessed on 9 March 2024).
- Karamanavis, V.; Dirks, H.; Fuhrmann, L.; Schlichthaber, F.; Egli, N.; Patzelt, T.; Klare, J. Characterization of deorbiting satellites and space debris with radar. Adv. Sp. Res. 2023, 72, 3269–3281. [Google Scholar] [CrossRef]
- Mayhan, J.; O’Donnell, W.; Willner, D. The Cobra Gemini radar. In Proceedings of the 1996 IEEE National Radar Conference, Ann Arbor, MI, USA, 13–16 May 1996; pp. 380–385. [Google Scholar] [CrossRef]
- Rejto, S. Radar open systems architecture and applications. In Proceedings of the IEEE 2000 International Radar Conference, Alexandria, VA, USA, 12 May 2000; pp. 654–659. [Google Scholar] [CrossRef]
- Nelson, J. Radar open system architecture provides net centricity. IEEE Aerosp. Elect. Syst. Mag. 2010, 25, 17–20. [Google Scholar] [CrossRef]
- MIT Lincoln Laboratory. 2012 Annual Report, Page 17. Available online: https://archive.ll.mit.edu/publications/Annual_Report_2012.pdf (accessed on 9 March 2024).
- Missile Defense Agency. Flight Test Infrastructure Data Sheet, SS Pacific Tracker, 16-MDA-8889, Attachment 5. 14 October 2016. Available online: https://govtribe.com/file/government-file/mda17dtrfi01-attachment-5-xtr-1-tts-2-fact-sheet-dot-pdf (accessed on 9 March 2024).
- Czerwinski, M.; Usoff, J. Development of the Haystack Ultrawideband Satellite Imaging Radar. Linc. Lab. J. 2014, 21, 28–44. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_3_Czerwinski.pdf (accessed on 9 March 2024).
- Waggener, N. Construction of the HUSIR antenna. Linc. Lab. J. 2014, 21, 45–82. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_5_Waggener.pdf (accessed on 9 March 2024).
- Usoff, J.; Clarke, M.; Liu, C.; Silver, M. Optimizing the HUSIR antenna surface. Linc. Lab. J. 2014, 21, 83–105. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_6_Usoff.pdf (accessed on 9 March 2024).
- MacDonald, M.; Anderson, J.; Lee, R.; Gordon, D.; McGrew, G. The HUSIR W-band transmitter. Linc. Lab. J. 2014, 21, 106–114. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_4_MacDonald.pdf (accessed on 9 March 2024).
- Eshbaugh, J.; Morrison, R.; Hoen, E.; Hiett, T.; Benitz, G. HUSIR signal processing. Linc. Lab. J. 2014, 21, 115–133. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_7_Eshbaugh.pdf (accessed on 9 March 2024).
- Kauffman, J.; Rajagopalan, G.; Akiyama, K.; Fish, V.; Lonsdale, C.; Matthews, L.; Pillai, T. The Haystack telescope as an astronomical instrument. Galaxies 2023, 11, 9. [Google Scholar] [CrossRef]
- Jacobs, J.; Kennedy, T. Haystack Ultra-Wideband Satellite Imaging Radar Measurements of the Orbital Debris Environment: 2018; NASA/TP-2020-5006606; National Aeronautics and Space Administration: Washington, DC, USA, 2018.
- Rodenbeck, C.; Tierney, B.; Park, J.; Parent, M.; Depuma, C.; Bauder, C.; Pizzillo, T.; Jaffe, P.; Simakauskas, B.; Mayhan, T. Terrestrial microwave power beaming. IEEE J. Microw. 2021, 2, 28–43. [Google Scholar] [CrossRef]
- Blank, M.; Borchard, P.; Cauffman, S.; Felch, K. Design and demonstration of W-band gyrotron amplifiers for radar applications. In Proceedings of the 2007 Joint 32nd International Conference on Infrared and Millimeter Waves, Cardiff, UK, 2–9 September 2007; pp. 358–361. [Google Scholar] [CrossRef]
- Doane, J. Propagation and Mode Coupling in Corrugated and Smooth-wall Circular Waveguides, Ch. 5. In Infrared and Millimeter Waves, Vol. 13, Millimeter Components and Techniques, Part IV; Button, K., Ed.; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Kempkes, M.; Hawkey, T.; Gaudreau, M.; Phillips, R. W-band transmitter upgrade for the Haystack Ultra-wideband Satellite Imaging Radar. In Proceedings of the 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources, Monterey, CA, USA, 25–27 April 2006; pp. 551–552. [Google Scholar] [CrossRef]
- Maiwald, F.; Lin, R.; Dengler, R.; Smith, S.; Pearson, J.; Mehdi, I.; Gaier, T.; Crowley, J. High output power low noise amplifier chains at 100 GHz. In Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, CA, USA, 21–23 March 2007; pp. 131–134. [Google Scholar]
- MacDonald, M. Measured thermal dynamics of the HUSIR antenna and Haystack Radome. IEEE Trans. Antennas Prop. 2013, 61, 2441–2448. [Google Scholar] [CrossRef]
- Antebi, J.; Kan, F. Replacement of elevation structure to upgrade Haystack 37-m radio telescope. In Proceedings of the Astronomical Structures and Mechanisms Technology, Glasgow, UK, 21–22 June 2004; Volume 5495. [Google Scholar] [CrossRef]
- Doyle, K.; Brenner, M.; Antebi, J.; Kan, F.; Valentine, D. RF-mechanical performance for the Haystack radio telescope. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 24 September 2011; Volume 8125. [Google Scholar] [CrossRef]
- Eshbaugh, J.; Clarke, M.; Maglathlin, G. Haystack Antenna Control System Design Document. Project Report HUSIR-8, MIT Lincoln Laboratory, Defense Technical Information Center Report ESC-TR-2010-071. 7 December 2010. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA533478.pdf (accessed on 9 March 2024).
- MacDonald, M. An overview of radomes for large ground-based antennas. IEEE Aerosp. Elect. Syst. Mag. 2019, 34, 36–43. [Google Scholar] [CrossRef]
- Beals, D.; Abouzahra, M.; Schoenfeld, M.; MacGibbon, P. Millstone Hill Radar L-band sensitivity upgrade. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey/Seaside, CA, USA, 26–30 March 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Grimes, D.; MacDonald, M. Enabling deep space radar with EM simulation. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey/Seaside CA, USA, 26–30 March 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Abouzahra, M.; MacDonald, M.; Lee, R.; Grimes, D.; Simakauskas, B.; Lopez, N.; Eckert, C.; Usoff, J. Upgrading the HUSIR radar for deep-space satellite imaging. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium—IMS 2022, Denver, CO, USA, 19–24 June 2022; pp. 429–432. [Google Scholar] [CrossRef]
- Lee, R.; Simakauskas, B.; Eckert, C.; Abouzahra, M. Development of the HUSIR dual-band feed. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 29–32. [Google Scholar] [CrossRef]
- Lopez, N.; MacDonald, M.; Abouzahra, M. LSSC Solid-state high-power amplifiers. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 25–28. [Google Scholar] [CrossRef]
- Soric, J.; Kolias, N.; Saunders, J.; Kotce, J.; Brown, A.; Rodenbeck, C.; Gyurcsik, R. A 100-Watt GaN SSPA. IEEE Microw. Wirel. Comp. Lett. 2022, 32, 712–715. [Google Scholar] [CrossRef]
- Soric, J.; Kolias, N.; Saunders, J.; Kotce, J.; Gyurcsik, R.; Abouzhara, M.; MacDonald, M. A 92-100 GHz 100 W SSPA for the HUSIR Deep-Space Upgrade. In Proceedings of the 54th European Microwave Conference (EuMC), Paris, France, 22–27 September 2024. (In press). [Google Scholar]
- Available online: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv26i1.pdf (accessed on 9 March 2024).
- Available online: https://spacenews.com/space-surveillance-telescope-developed-by-the-u-s-begins-operations-in-australia/ (accessed on 9 March 2024).
- Available online: https://www.jhuapl.edu/work/projects/deep-space-advanced-radar-capability-darc-technology-demonstration (accessed on 9 March 2024).
- Available online: https://www.spaceforce.mil/News/Article-Display/Article/3604036/ (accessed on 9 March 2024).
- Lee, C.; Rodriguez-Alvarez, N.; Giorgini, J.D.; Jao, J.S.; Majid, W.; Naudet, C.J.; Oudrhiri, K.; Yang, Y.-M. Cis-lunar space debris radar capability and feasibility. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023. [Google Scholar] [CrossRef]
- Available online: http://echo.jpl.nasa.gov/ (accessed on 9 March 2024).
Radar * | Construction | RF Parameters | Observation Parameters |
---|---|---|---|
MHR | 25.6 m dia. antenna aperture 12-horn monopulse feed | 1.3 GHz center freq. 20 MHz bandwidth | |
3.0 MW peak power | 50 dB reference SNR ** | ||
42.6°N, 71.4°W | 300 kW average power * | Deep space capable | |
Cobra Gemini-S | 4.5 m dia. antenna aperture Compatible with radome Transportable | S band 300 MHz bandwidth 50 kW avg. power | 0.8 m range accuracy |
ALCOR | 12.2 m dia. antenna aperture 4-horn monopulse feed 20.7 m dia. radome 9.4°N, 167.5°E | 5.67 GHz center freq. 512 MHz bandwidth 3 MW peak power 6.0 kW average power | 0.4 m range accuracy 100 urad angle accuracy 50 cm image resolution 23 dB reference SNR ** |
Cobra Gemini-X | 4.5 m dia. antenna aperture | X band | 0.25 m range accuracy |
Compatible with radome Transportable | 1 GHz bandwidth 35 kW avg. power | ||
LRIR/HUSIR-X | 36.6 m dia. antenna aperture 4-horn monopulse feed | 10.0 GHz center freq. 1 GHz bandwidth | 25 cm image resolution |
45.7 m dia. radome | 400 kW peak power | 53 dB reference SNR ** | |
42.6°N, 71.4°W | 120 kW average power | Deep space capable | |
HAX | 12.2 m dia. antenna aperture 4 horn monopulse feed | 16.7 GHz center freq. 2 GHz bandwidth | |
20.7 m dia. radome 42.6°N, 71.4°W | 40 kW peak power | 12 cm image resolution 36 dB reference SNR ** | |
MMW | 13.7 m dia. antenna aperture 4 horn monopulse feed 20.7 m dia. radome 9.4°N, 167.5°E | 35 GHz center freq. 4 GHz bandwidth 60 kW peak power | 40 urad angle accuracy 6 cm image resolution 26 dB reference SNR ** |
HUSIR-W | 36.6 m dia. antenna aperture 4-horn monopulse feed 45.7 m dia. radome 42.6°N, 71.4°W | 96 GHz center freq. 8 GHz bandwidth 1 kW peak power 400 W average power (50 kW Ppk in future *) | 3 cm image resolution 34 dB reference SNR ** (Deep space cap. in future *) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacDonald, M.; Abouzahra, M.; Stambaugh, J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sens. 2024, 16, 1530. https://doi.org/10.3390/rs16091530
MacDonald M, Abouzahra M, Stambaugh J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sensing. 2024; 16(9):1530. https://doi.org/10.3390/rs16091530
Chicago/Turabian StyleMacDonald, Michael, Mohamed Abouzahra, and Justin Stambaugh. 2024. "Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory" Remote Sensing 16, no. 9: 1530. https://doi.org/10.3390/rs16091530
APA StyleMacDonald, M., Abouzahra, M., & Stambaugh, J. (2024). Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sensing, 16(9), 1530. https://doi.org/10.3390/rs16091530