WO2016063968A1 - 燃料電池用電極触媒及びその製造方法 - Google Patents
燃料電池用電極触媒及びその製造方法 Download PDFInfo
- Publication number
- WO2016063968A1 WO2016063968A1 PCT/JP2015/079926 JP2015079926W WO2016063968A1 WO 2016063968 A1 WO2016063968 A1 WO 2016063968A1 JP 2015079926 W JP2015079926 W JP 2015079926W WO 2016063968 A1 WO2016063968 A1 WO 2016063968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- electrode catalyst
- platinum
- cobalt
- alloy
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell electrode catalyst and a method for producing the same.
- a fuel cell is a power generator that can continuously take out electric power by replenishing fuel and has a low environmental burden. Due to the growing interest in protecting the global environment in recent years, great expectations are placed on fuel cells. In addition, since the fuel cell has high power generation efficiency and can be downsized, it is expected to be used in various fields such as portable devices such as personal computers and mobile phones, vehicles such as automobiles and railways.
- a fuel cell is composed of a pair of electrodes (cathode and anode) and an electrolyte, and the electrode includes a support and an electrode catalyst made of a catalytic metal supported on the support.
- Carbon is generally used as a carrier in conventional fuel cells.
- platinum or a platinum alloy is generally used as the catalyst metal.
- Patent Documents 1 to 7 In order to improve the performance of the fuel cell, it is necessary to increase the activity of the electrode catalyst. Many techniques for improving activity have been reported (for example, Patent Documents 1 to 7).
- an initial performance of a fuel cell has been improved by using an electrode catalyst in which an alloy of platinum (Pt) and cobalt (Co) (hereinafter referred to as “PtCo alloy”) is finely supported on a carbon support. It was broken.
- PtCo alloy an alloy of platinum (Pt) and cobalt (Co)
- an electrode catalyst containing a PtCo alloy elutes Co in a long-term durability test and increases the proton resistance of the fuel cell.
- the use of the PtCo alloy improves the initial performance of the fuel cell, but has a problem that the durability performance decreases.
- an object of the present invention is to achieve both initial performance and durability performance of the fuel cell.
- the present invention by using a solid carbon support instead of the hollow carbon support, it is avoided that a PtCo alloy is included in the support. As a result, the PtCo alloy can be sufficiently acid-treated, and Co elution can be suppressed. As a result, it is possible to achieve both the initial performance and the durability performance of the fuel cell.
- the present invention includes the following embodiments.
- An electrode catalyst for a fuel cell comprising a solid carbon support and an alloy of platinum and cobalt supported on the support.
- [5] The electrode catalyst for fuel cells according to any one of [1] to [4], which is acid-treated at 70 to 90 ° C.
- [6] The electrode catalyst for fuel cells according to any one of [1] to [5], wherein the elution amount of cobalt is 115 ppm or less.
- [7] [1] A fuel cell comprising the fuel cell electrode catalyst according to any one of [1] to [6].
- [8] A supporting process for supporting platinum and cobalt on a solid carbon support; and an alloying process for alloying platinum and cobalt supported on a solid carbon support; The manufacturing method of the electrode catalyst for fuel cells containing this.
- both the initial performance and durability of the fuel cell can be achieved.
- the relationship between Pt / Co molar ratio and mass activity is shown.
- the relationship between the average particle diameter of PtCo alloy and mass activity is shown.
- the relationship between the average particle diameter of a PtCo alloy and ECSA maintenance factor is shown.
- the relationship between Co elution amount and proton resistance is shown.
- Electrode catalyst for a fuel cell
- electrocatalyst for fuel cell including a solid carbon support and a PtCo alloy supported on the support.
- the solid carbon as compared with the hollow carbon, a carbon voids inside the carbon is small, specifically, to calculate the surface area of the particles outside the BET surface area determined and t-Pot (particle size by N 2 adsorption ) With an external surface area ratio (t-Pot surface area / BET surface area) of 40% or more.
- Examples of the solid carbon include carbon described in Japanese Patent No. 4362116. Specific examples include acetylene black having a specific surface area of 500 to 1100 m 2 / g and a crystal layer thickness (Lc) measured by X-ray diffraction of 15 to 40 mm. More specifically, Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd. can be used.
- the average particle size of the solid carbon support is preferably 30 ⁇ m or less, more preferably 13 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
- Examples of the lower limit of the average particle diameter include 0.01 ⁇ m and 0.1 ⁇ m.
- the upper limit and the lower limit of the average particle diameter may be appropriately combined to define a new range.
- the initial performance of the fuel cell can be improved by using a PtCo alloy in the electrode catalyst.
- the mass activity of the electrode catalyst can be further increased by setting the molar ratio of Pt and Co in the PtCo alloy to 11 or less: 1.
- Co elution can be further suppressed by setting the molar ratio of Pt and Co in the PtCo alloy to 4: 1. Therefore, the initial performance and durability of the fuel cell can be further improved by setting the molar ratio of Pt to Co in the PtCo alloy to 4 to 11: 1.
- More preferable molar ratio of Pt and Co includes, for example, 5 to 9: 1.
- a new range may be defined by appropriately combining the upper limit and the lower limit of the range of the molar ratio.
- the mass activity of the electrode catalyst can be further increased by setting the average particle size of the PtCo alloy to 4.1 nm or less.
- the average particle size of the PtCo alloy can be 3.5 nm or more.
- the ECSA maintenance rate can be used as an index of durability performance. Therefore, the initial performance and durability performance of the fuel cell can be further improved by setting the average particle size of the PtCo alloy to 3.5 to 4.1 nm. More preferable examples of the average particle size of the PtCo alloy include 3.6 nm to 4.0 nm.
- a new range may be defined by appropriately combining the upper limit and the lower limit of the above range of the average particle diameter.
- the degree of dispersion of the PtCo alloy supported on the solid carbon support is preferably 44% or less, more preferably 40% or less, and particularly preferably 36% or less when measured by the X-ray small angle scattering method (SAXS). .
- SAXS X-ray small angle scattering method
- the degree of dispersion by the X-ray small angle scattering method can be used as an index of uniformity of the PtCo alloy. By having a dispersity of 44% or less, the performance of the fuel cell can be further improved.
- Examples of the lower limit of the degree of dispersion include 5% and 10%. A new range may be defined by appropriately combining the upper limit and the lower limit of the degree of dispersion.
- the degree of dispersion by the X-ray small angle scattering method can be calculated using analysis software.
- analysis software include nano-solver (manufactured by Rigaku Corporation).
- the amount of the PtCo alloy supported on the solid carbon support is, for example, preferably 47.7 to 53.6% by weight, more preferably 48.0 to 52.52%, based on the total weight of the solid carbon support and the PtCo alloy. It is 9% by weight, particularly preferably 49.1 to 51.5% by weight.
- a new range may be defined by appropriately combining the upper limit and the lower limit of the range of the loading amount.
- the amount of Pt supported on the solid carbon support is, for example, preferably 46.5 to 49.9 wt%, more preferably 47.1 to 49.1 based on the total weight of the solid carbon support and the PtCo alloy. % By weight, particularly preferably 47.3 to 48.7% by weight.
- a new range may be defined by appropriately combining the upper limit and the lower limit of the range of the loading amount.
- the supported amount of Pt may be, for example, a low supported amount of 10 to 50% by weight or a high supported amount of 50 to 90% by weight.
- the electrode catalyst is acid-treated under appropriate conditions (70 to 90 ° C.), Co elution is suppressed.
- the acid-treated electrode catalyst has a specific condition (a condition in which 20 mL of sulfuric acid solution and 0.5 g of an electrode catalyst are placed in a sample bottle together with a stirrer, mixed and dispersed with a stirrer, and mixed at room temperature for 100 hours. ),
- the elution amount of Co is preferably 115 ppm or less, more preferably 40 ppm or less, and particularly preferably 30 ppm or less.
- Examples of the lower limit of the Co elution amount include 0 ppm and 5 ppm. A new range may be defined by appropriately combining the upper limit and the lower limit of the Co elution amount.
- Electrode for a fuel cell
- electrolyte an electrode for a fuel cell
- ionomer examples include, for example, Nafion (registered trademark) DE2020, DE2021, DE520, DE521, DE1020 and DE1021 manufactured by Du Pont, and Aciplex (registered trademark) SS700C / 20 and SS900 / 10 manufactured by Asahi Kasei Chemicals Corporation. And SS1100 / 5.
- the types of fuel cells include polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and alkaline electrolyte fuels. Examples thereof include a battery (AFC) and a direct fuel cell (DFC). Although not particularly limited, the fuel cell is preferably a solid polymer fuel cell.
- PEFC polymer electrolyte fuel cells
- PAFC phosphoric acid fuel cells
- MCFC molten carbonate fuel cells
- SOFC solid oxide fuel cells
- alkaline electrolyte fuels examples thereof include a battery (AFC) and a direct fuel cell (DFC).
- the fuel cell is preferably a solid polymer fuel cell.
- the electrode containing the above electrode catalyst may be used as a cathode, may be used as an anode, or may be used as both a cathode and an anode.
- the fuel cell may further include a separator.
- High power can be obtained by stacking single cells each having a membrane electrode assembly (MEA) composed of a pair of electrodes (cathode and anode) and an electrolyte membrane sandwiched between a pair of separators to form a cell stack.
- MEA membrane electrode assembly
- One embodiment of the present invention relates to a method for producing the above electrode catalyst, specifically, a supporting step of supporting Pt and Co on a solid carbon support; and Pt supported on a solid carbon support. And an alloying step of alloying with Co.
- the supporting step Pt and Co are supported in a molar ratio of preferably 2.5 to 6.9: 1, more preferably 3.1 to 5.7: 1. Since a part of Co is removed in the acid treatment step described below, in the supporting step, a larger amount of Co is supported as compared with a preferable molar ratio of Pt and Co in the finished electrode catalyst. By using an electrode catalyst manufactured using such a molar ratio, the initial performance and durability of the fuel cell can be further improved.
- Pt and Co are alloyed preferably at 700 to 900 ° C., more preferably at 750 to 850 ° C.
- the manufacturing method of this embodiment further includes an acid treatment step of acid-treating a PtCo alloy supported on a solid carbon support.
- the PtCo alloy supported on the solid carbon support is preferably acid-treated at 70 to 90 ° C., more preferably 75 to 85 ° C.
- the acid treatment at such a temperature, Co that does not contribute to the reaction can be sufficiently removed. Thereby, Co elution can be suppressed.
- acids used in the acid treatment step include inorganic acids (nitric acid, phosphoric acid, permanganic acid, sulfuric acid, hydrochloric acid, etc.) and organic acids (acetic acid, malonic acid, oxalic acid, formic acid, citric acid, lactic acid, etc.). Can be mentioned.
- Example 1 Supporting process: Denka black (1.0 g: manufactured by Denki Kagaku Kogyo Co., Ltd.) was dispersed in pure water (41.6 mL). A dinitrodiamine platinum nitric acid solution containing platinum (1.0 g) (patent No. 4315857: manufactured by Cataler Co., Ltd.) was added dropwise to fully blend with Denka Black. Ethanol (3.2 g) was added as a reducing agent to carry out reduction loading. The dispersion was filtered and washed, and the resulting powder was dried to obtain a platinum-supported catalyst. Next, the amount of oxygen on the surface of the platinum-supported catalyst was reduced to 4% by weight or less, and cobalt (0.03 g) was supported so that the product ratio (molar ratio) was 7: 1 Pt: Co.
- Denka black used in this example is solid carbon, has a crystal layer thickness (Lc) of 19 mm measured by X-ray diffraction, and has a BET surface area and t-Pot (particle size) determined by N 2 adsorption.
- the ratio (t-Pot surface area / BET surface area) to the external surface area is 49.6%.
- the t-Pot surface area / BET surface area is 28.1%.
- Alloying step The obtained supported catalyst was alloyed at 800 ° C. in an argon atmosphere.
- Acid treatment step The alloyed supported catalyst was acid treated with 0.5N nitric acid at 80 ° C. to obtain an electrode catalyst.
- Examples 2 to 27, Comparative Examples 1 to 73 An electrode catalyst was produced in the same process as in Example 1 except that Pt: Co (molar ratio), alloying temperature, and acid treatment temperature were changed. The production conditions for the examples and comparative examples are shown in Tables 1 to 4.
- Electrode catalysts produced in Examples and Comparative Examples were dispersed in an organic solvent, and the dispersion was applied to a Teflon (registered trademark) sheet to form an electrode.
- the electrodes were bonded to each other by hot pressing through a polymer electrolyte membrane, and a diffusion layer was disposed on both sides thereof to produce a single cell for a polymer electrolyte fuel cell.
- Cyclic voltammetry (CV) and IV measurement were performed using a small single cell evaluation system (manufactured by Toyo Corporation) with a cell temperature of 80 ° C. and a relative humidity of both electrodes of 100%.
- the range was 0.05 to 1.2 V, the speed was 100 mV / s, the potential scan was performed 5 times, and the ECSA (electrochemical per Pt mass) was calculated from the charge amount of the H 2 adsorption region of the fifth CV. Surface area) was calculated.
- the current was arbitrarily controlled in the range of 0.01 to 1.0 A / cm 2 .
- the current value per mass of Pt at 0.76 V was defined as mass activity.
- ⁇ Average particle size of PtCo alloy> It calculated from the intensity
- FIG. 1 shows the relationship between Pt / Co molar ratio and mass activity.
- Each plot in Figure 1 is from the left: Comparative Example 13 (Pt / Co molar ratio: 3, mass activity: 253 mA / cm 2 @ 0.76 V); Example 14 (Pt / Co molar ratio: 4, mass activity: 200 mA / cm 2 @ 0.76 V); Example 1 (Pt / Co molar ratio: 7, mass activity: 185 mA / cm 2 @ 0.76 V); Example 23 (Pt / Co molar ratio: 11, mass activity: 175 mA / cm 2 @ 0.76 V); Comparative Example 86 (Pt / Co molar ratio: 15, mass activity: 165 mA / cm 2 @ 0.76 V); Corresponding to
- the mass activity required for the electrode catalyst mounted on the FC vehicle is 175 mA / cm 2 @ 0.76 V or more. Therefore, the Pt / Co molar ratio is preferably 11 or less.
- the preferred Pt / Co molar ratio is 4-11.
- FIG. 2 shows the relationship between the average particle size and mass activity of the PtCo alloy.
- FIG. 3 shows the relationship between the average particle size of the PtCo alloy and the ECSA retention rate.
- Comparative Example 44 (average particle size: 3 nm, mass activity: 203 mA / cm 2 @ 0.76 V, ECSA retention: 37%);
- Example 8 (average particle size: 3.5 nm, mass activity: 191 mA / cm 2 @ 0.76 V, ECSA retention: 40%);
- Example 1 (average particle size: 4 nm, mass activity: 185 mA / cm 2 @ 0.76 V, ECSA retention: 50%);
- Example 5 average particle size: 4.1 nm, mass activity: 178 mA / cm 2 @ 0.76 V, ECSA retention: 52%);
- Comparative Example 23 (average particle size: 6 nm, mass activity: 135 mA / cm 2 @ 0.76 V, ECSA retention: 71%);
- Comparative Example 55 (average particle size: 7 nm, mass activity: 113 mA / cm 2 @ 0.76 V, ECSA maintenance rate: 83%);
- required by the electrode catalyst mounted in FC car is 175 mA / cm ⁇ 2 > @ 0.76V or more. Therefore, the average particle size of the PtCo alloy is preferably 4.1 nm or less. Moreover, the ECSA maintenance factor calculated
- FIG. 4 shows the relationship between the Co elution amount and proton resistance.
- Each plot in Figure 4 is from the left: Example 8 (Co elution amount: 4 ppm, proton resistance: 0.50 m ⁇ ⁇ 13 cm 2 );
- Example 1 (Co elution amount: 16 ppm, proton resistance: 0.51 m ⁇ ⁇ 13 cm 2 );
- Example 5 (Co elution amount: 27 ppm, proton resistance: 0.52 m ⁇ ⁇ 13 cm 2 );
- Comparative Example 13 (Co elution amount: 145 ppm, proton resistance: 0.63 m ⁇ ⁇ 13 cm 2 ); Comparative Example 26 (Co elution amount: 350 ppm, proton resistance: 0.80 m ⁇ ⁇ 13 cm 2 );
- the proton resistance required for the electrode catalyst is 0.6 m ⁇ or less. Therefore, the preferred Co elution amount is 115 ppm or less.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
Description
従来使用されていた中空カーボン担体にPtCo合金を担持すると、一部のPtCo合金が中空カーボン担体の内部に包含されることになる。この場合、Coの溶出を抑制するための酸処理を行っても、担体内部に存在するPtCo合金を十分に処理することは困難である。その結果、担体内部に存在するPtCo合金からCoが溶出しやすくなる。
[1]
中実カーボン担体と、当該担体に担持された白金とコバルトとの合金とを含む、燃料電池用電極触媒。
[2]
前記合金における白金とコバルトとのモル比が4~11:1である、[1]に記載の燃料電池用電極触媒。
[3]
前記合金の平均粒径が3.5~4.1nmである、[1]又は[2]に記載の燃料電池用電極触媒。
[4]
X線小角散乱法により測定した前記合金の分散度が44%以下である、[1]~[3]のいずれかに記載の燃料電池用電極触媒。
[5]
70~90℃で酸処理されている、[1]~[4]のいずれかに記載の燃料電池用電極触媒。
[6]
コバルトの溶出量が115ppm以下である、[1]~[5]のいずれかに記載の燃料電池用電極触媒。
[7]
[1]~[6]のいずれかに記載の燃料電池用電極触媒を含む、燃料電池。
[8]
中実カーボン担体に白金とコバルトとを担持する担持工程;及び
中実カーボン担体に担持された白金とコバルトとを合金化する合金化工程;
を含む、燃料電池用電極触媒の製造方法。
[9]
担持工程において、白金とコバルトとを2.5~6.9:1のモル比で担持する、[8]に記載の製造方法。
[10]
合金化工程において、白金とコバルトとを700~900℃で合金化する、[8]又は[9]に記載の製造方法。
[11]
中実カーボン担体に担持された白金とコバルトとの合金を70~90℃で酸処理する酸処理工程を更に含む、[8]~[10]のいずれかに記載の製造方法。
本発明の一実施形態は、中実カーボン担体と、当該担体に担持されたPtCo合金とを含む、燃料電池用電極触媒(以下、単に「電極触媒」ともいう)に関する。
本発明の一実施形態は、上記電極触媒とアイオノマーとを含む燃料電池用電極(以下、単に「電極」という)と、電解質とを含む燃料電池に関する。
本発明の一実施形態は、上記電極触媒の製造方法に関するものであり、具体的には、中実カーボン担体にPtとCoとを担持する担持工程;及び中実カーボン担体に担持されたPtとCoとを合金化する合金化工程;を含む、燃料電池用電極触媒の製造方法に関する。
[実施例1]
担持工程:デンカブラック(1.0g:電気化学工業株式会社製)を純水(41.6mL)に分散させた。白金(1.0g)を含むジニトロジアミン白金硝酸溶液(特許第4315857号:キャタラー株式会社製)を滴下し、デンカブラックと十分に馴染ませた。還元剤としてエタノール(3.2g)を加え、還元担持を行った。分散液をろ過洗浄し、得られた粉末を乾燥させ、白金担持触媒を得た。次に、白金担持触媒の表面上の酸素量を4重量%以下まで低減させ、製品比率(モル比)でPt:Coが7:1となるようにコバルト(0.03g)を担持させた。
酸処理工程:合金化した担持触媒を0.5N硝酸を使用して80℃で酸処理し、電極触媒を得た。
Pt:Co(モル比)、合金化温度、酸処理温度を変更したこと以外は実施例1と同一の工程で電極触媒を製造した。
実施例及び比較例の製造条件を表1~4に示す。
実施例及び比較例で製造した電極触媒を有機分溶媒に分散させ、分散液をテフロン(登録商標)シートへ塗布して電極を形成した。電極をそれぞれ高分子電解質膜を介してホットプレスによって貼り合わせ、その両側に拡散層を配置して固体高分子形燃料電池用の単セルを作成した。
JIS K 0131に準拠したX線回折法(XRD法)で測定されたXRDチャートにおける、Pt金属単体が示すピークの強度から算出した。
硫酸溶液20mLと電極触媒0.5gをサンプル瓶中に撹拌子と共に入れ、スターラーで混合分散し、室温下で100時間混合する。その後、混合液を固液分離(ろ過)し、ろ液中のCo濃度をICPで測定した。
単セルのIVを測定後、交流インピーダンス法によりプロトンを算出した。
図1にPt/Coモル比と質量活性との関係を示す。
図1における各プロットは、左から:
比較例13(Pt/Coモル比:3、質量活性:253mA/cm2@0.76V);
実施例14(Pt/Coモル比:4、質量活性:200mA/cm2@0.76V);
実施例1(Pt/Coモル比:7、質量活性:185mA/cm2@0.76V);
実施例23(Pt/Coモル比:11、質量活性:175mA/cm2@0.76V);
比較例86(Pt/Coモル比:15、質量活性:165mA/cm2@0.76V);
に対応する。
図2にPtCo合金の平均粒径と質量活性との関係を示す。また、図3にPtCo合金の平均粒径とECSA維持率との関係を示す。
比較例44(平均粒径:3nm、質量活性:203mA/cm2@0.76V、ECSA維持率:37%);
実施例8(平均粒径:3.5nm、質量活性:191mA/cm2@0.76V、ECSA維持率:40%);
実施例1(平均粒径:4nm、質量活性:185mA/cm2@0.76V、ECSA維持率:50%);
実施例5(平均粒径:4.1nm、質量活性:178mA/cm2@0.76V、ECSA維持率:52%);
比較例23(平均粒径:6nm、質量活性:135mA/cm2@0.76V、ECSA維持率:71%);
比較例55(平均粒径:7nm、質量活性:113mA/cm2@0.76V、ECSA維持率:83%);
に対応する。
図4に、Co溶出量とプロトン抵抗との関係を示す。
図4における各プロットは、左から:
実施例8(Co溶出量:4ppm、プロトン抵抗:0.50mΩ・13cm2);
実施例1(Co溶出量:16ppm、プロトン抵抗:0.51mΩ・13cm2);
実施例5(Co溶出量:27ppm、プロトン抵抗:0.52mΩ・13cm2);
比較例13(Co溶出量:145ppm、プロトン抵抗:0.63mΩ・13cm2);
比較例26(Co溶出量:350ppm、プロトン抵抗:0.80mΩ・13cm2);
に対応する。
Claims (11)
- 中実カーボン担体と、当該担体に担持された白金とコバルトとの合金とを含む、燃料電池用電極触媒。
- 前記合金における白金とコバルトとのモル比が4~11:1である、請求項1に記載の燃料電池用電極触媒。
- 前記合金の平均粒径が3.5~4.1nmである、請求項1又は2に記載の燃料電池用電極触媒。
- X線小角散乱法により測定した前記合金の分散度が44%以下である、請求項1~3のいずれかに記載の燃料電池用電極触媒。
- 70~90℃で酸処理されている、請求項1~4のいずれかに記載の燃料電池用電極触媒。
- コバルトの溶出量が115ppm以下である、請求項1~5のいずれかに記載の燃料電池用電極触媒。
- 請求項1~6のいずれかに記載の燃料電池用電極触媒を含む、燃料電池。
- 中実カーボン担体に白金とコバルトとを担持する担持工程;及び
中実カーボン担体に担持された白金とコバルトとを合金化する合金化工程;
を含む、燃料電池用電極触媒の製造方法。 - 担持工程において、白金とコバルトとを2.5~6.9:1のモル比で担持する、請求項8に記載の製造方法。
- 合金化工程において、白金とコバルトとを700~900℃で合金化する、請求項8又は9に記載の製造方法。
- 中実カーボン担体に担持された白金とコバルトとの合金を70~90℃で酸処理する酸処理工程を更に含む、請求項8~10のいずれかに記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177007105A KR102097952B1 (ko) | 2014-10-24 | 2015-10-23 | 연료 전지용 전극 촉매 및 그 제조 방법 |
US15/521,037 US10950869B2 (en) | 2014-10-24 | 2015-10-23 | Fuel cell electrode catalyst and method for producing the same |
JP2016555401A JP6232505B2 (ja) | 2014-10-24 | 2015-10-23 | 燃料電池用電極触媒及びその製造方法 |
EP15852553.5A EP3211696A4 (en) | 2014-10-24 | 2015-10-23 | Fuel cell electrode catalyst and manufacturing method thereof |
CN201580047707.0A CN106605325B (zh) | 2014-10-24 | 2015-10-23 | 燃料电池用电极催化剂及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014216946 | 2014-10-24 | ||
JP2014-216946 | 2014-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063968A1 true WO2016063968A1 (ja) | 2016-04-28 |
Family
ID=55760998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079926 WO2016063968A1 (ja) | 2014-10-24 | 2015-10-23 | 燃料電池用電極触媒及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10950869B2 (ja) |
EP (1) | EP3211696A4 (ja) |
JP (1) | JP6232505B2 (ja) |
KR (1) | KR102097952B1 (ja) |
CN (1) | CN106605325B (ja) |
WO (1) | WO2016063968A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018163843A (ja) * | 2017-03-27 | 2018-10-18 | トヨタ自動車株式会社 | 燃料電池 |
DE102018206378A1 (de) | 2017-04-28 | 2018-10-31 | Cataler Corporation | Elektrodenkatalysator für Brennstoffzellen und Verfahren zu dessen Herstellung |
WO2019177060A1 (ja) | 2018-03-16 | 2019-09-19 | 株式会社キャタラー | 燃料電池用電極触媒及びそれを用いた燃料電池 |
WO2019221168A1 (ja) | 2018-05-15 | 2019-11-21 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
EP3614472A4 (en) * | 2017-04-18 | 2020-05-06 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for solid polymer electrolyte fuel cells and method for producing same |
WO2021193256A1 (ja) | 2020-03-23 | 2021-09-30 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
WO2021193257A1 (ja) | 2020-03-23 | 2021-09-30 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
WO2022071321A1 (ja) | 2020-09-29 | 2022-04-07 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
WO2022071320A1 (ja) | 2020-09-29 | 2022-04-07 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
WO2022172948A1 (ja) | 2021-02-09 | 2022-08-18 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、ガス拡散電極の製造方法、及び、膜・電極接合体の製造方法 |
WO2022172947A1 (ja) | 2021-02-09 | 2022-08-18 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、ガス拡散電極の製造方法、及び、膜・電極接合体の製造方法 |
US11715833B2 (en) | 2021-03-11 | 2023-08-01 | Toyota Jidosha Kabushiki Kaisha | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same |
US11901565B2 (en) | 2021-03-11 | 2024-02-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same |
KR20240149981A (ko) | 2022-03-04 | 2024-10-15 | 닛신보 홀딩스 가부시키 가이샤 | 금속담지촉매, 전극 및 전지 |
EP4456206A1 (en) | 2023-03-09 | 2024-10-30 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell and solid polymer fuel cell including the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109273732B (zh) * | 2018-09-28 | 2021-05-14 | 中能源工程集团氢能科技有限公司 | 一种具有质子传输功能的钴包覆碳载铂催化剂及其制备方法 |
JP7464553B2 (ja) * | 2021-03-04 | 2024-04-09 | トヨタ自動車株式会社 | 電極触媒 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092441A (ja) * | 1996-09-13 | 1998-04-10 | Asahi Glass Co Ltd | 固体高分子型燃料電池 |
JP2010253408A (ja) * | 2009-04-27 | 2010-11-11 | Aisin Seiki Co Ltd | 貴金属触媒担持方法 |
JP2012529135A (ja) * | 2009-06-02 | 2012-11-15 | ビーエーエスエフ ソシエタス・ヨーロピア | 電気化学用途の触媒 |
JP2013033701A (ja) * | 2011-06-29 | 2013-02-14 | Toyota Motor Corp | 再酸化防止高分子型燃料電池電極触媒 |
JP2013118049A (ja) * | 2011-12-01 | 2013-06-13 | Cataler Corp | 固体高分子形燃料電池用カソード触媒及びその製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3874380B2 (ja) | 1996-08-26 | 2007-01-31 | エヌ・イーケムキャット株式会社 | 空格子点型格子欠陥を有するカーボン担持白金スケルトン合金電極触媒 |
JP3643552B2 (ja) * | 2001-10-31 | 2005-04-27 | 田中貴金属工業株式会社 | 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法 |
JP5082187B2 (ja) * | 2003-10-06 | 2012-11-28 | 日産自動車株式会社 | 固体高分子型燃料電池用電極触媒粒子の製造方法 |
JP4539086B2 (ja) | 2003-12-02 | 2010-09-08 | 日産自動車株式会社 | 電極触媒、触媒担持電極、燃料電池用meaおよび燃料電池 |
KR100551035B1 (ko) | 2004-04-27 | 2006-02-13 | 삼성에스디아이 주식회사 | 연료전지용 촉매 및 그 제조방법과 이를 포함하는연료전지 시스템 |
JP2007109599A (ja) * | 2005-10-17 | 2007-04-26 | Asahi Glass Co Ltd | 固体高分子形燃料電池用膜電極接合体 |
JP4362116B2 (ja) | 2005-10-20 | 2009-11-11 | 電気化学工業株式会社 | アセチレンブラックとその製造方法、及び燃料電池用触媒 |
EP2006943B1 (en) * | 2006-03-31 | 2012-08-01 | Cataler Corporation | Production process of electrode catalyst for fuel cell |
WO2007119640A1 (ja) | 2006-03-31 | 2007-10-25 | Toyota Jidosha Kabushiki Kaisha | 燃料電池用電極触媒及びその製造方法 |
US20080182153A1 (en) * | 2007-01-30 | 2008-07-31 | Jang Bor Z | Fuel cell electro-catalyst composite composition, electrode, catalyst-coated membrane, and membrane-electrode assembly |
KR101541207B1 (ko) * | 2007-11-09 | 2015-07-31 | 바스프 에스이 | 촉매 제조 방법 및 그 촉매의 용도 |
JP2009140657A (ja) | 2007-12-04 | 2009-06-25 | Nissan Motor Co Ltd | 燃料電池用電極触媒 |
JP2010027364A (ja) | 2008-07-18 | 2010-02-04 | Nissan Motor Co Ltd | 燃料電池用電極触媒およびその製造方法 |
JP2010027464A (ja) * | 2008-07-22 | 2010-02-04 | Sumitomo Wiring Syst Ltd | 端子金具及び端子金具付き電線 |
WO2010047415A1 (ja) * | 2008-10-22 | 2010-04-29 | 新日本製鐵株式会社 | 固体高分子型燃料電池触媒、固体高分子型燃料電池用電極、及び燃料電池 |
JP5270468B2 (ja) | 2009-06-22 | 2013-08-21 | トヨタ自動車株式会社 | 燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池 |
JP4880064B1 (ja) * | 2010-12-08 | 2012-02-22 | 田中貴金属工業株式会社 | 固体高分子形燃料電池用触媒及びその製造方法 |
JP5754686B2 (ja) | 2011-05-11 | 2015-07-29 | 石福金属興業株式会社 | 高活性な燃料電池用カソード白金触媒 |
JP5601280B2 (ja) | 2011-05-26 | 2014-10-08 | 新日鐵住金株式会社 | 固体高分子型燃料電池用触媒 |
JP5400924B2 (ja) | 2012-06-07 | 2014-01-29 | 田中貴金属工業株式会社 | 金担持カーボン触媒の製造方法 |
-
2015
- 2015-10-23 EP EP15852553.5A patent/EP3211696A4/en not_active Withdrawn
- 2015-10-23 US US15/521,037 patent/US10950869B2/en active Active
- 2015-10-23 CN CN201580047707.0A patent/CN106605325B/zh active Active
- 2015-10-23 JP JP2016555401A patent/JP6232505B2/ja active Active
- 2015-10-23 WO PCT/JP2015/079926 patent/WO2016063968A1/ja active Application Filing
- 2015-10-23 KR KR1020177007105A patent/KR102097952B1/ko active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092441A (ja) * | 1996-09-13 | 1998-04-10 | Asahi Glass Co Ltd | 固体高分子型燃料電池 |
JP2010253408A (ja) * | 2009-04-27 | 2010-11-11 | Aisin Seiki Co Ltd | 貴金属触媒担持方法 |
JP2012529135A (ja) * | 2009-06-02 | 2012-11-15 | ビーエーエスエフ ソシエタス・ヨーロピア | 電気化学用途の触媒 |
JP2013033701A (ja) * | 2011-06-29 | 2013-02-14 | Toyota Motor Corp | 再酸化防止高分子型燃料電池電極触媒 |
JP2013118049A (ja) * | 2011-12-01 | 2013-06-13 | Cataler Corp | 固体高分子形燃料電池用カソード触媒及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3211696A4 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018163843A (ja) * | 2017-03-27 | 2018-10-18 | トヨタ自動車株式会社 | 燃料電池 |
US11145874B2 (en) | 2017-04-18 | 2021-10-12 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for solid polymer fuel cells and method for producing same |
EP3614472A4 (en) * | 2017-04-18 | 2020-05-06 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for solid polymer electrolyte fuel cells and method for producing same |
EP3614472B1 (en) | 2017-04-18 | 2021-07-28 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for solid polymer electrolyte fuel cells and method for producing same |
DE102018206378A1 (de) | 2017-04-28 | 2018-10-31 | Cataler Corporation | Elektrodenkatalysator für Brennstoffzellen und Verfahren zu dessen Herstellung |
JP2018190545A (ja) * | 2017-04-28 | 2018-11-29 | 株式会社キャタラー | 燃料電池用電極触媒及びその製造方法 |
DE102018206378B4 (de) | 2017-04-28 | 2024-11-14 | Cataler Corporation | Verfahren zur Herstellung eines Elektrodenkatalysators für Brennstoffzellen |
US11217796B2 (en) | 2017-04-28 | 2022-01-04 | Cataler Corporation | Electrode catalyst for fuel cell and method of production of same |
WO2019177060A1 (ja) | 2018-03-16 | 2019-09-19 | 株式会社キャタラー | 燃料電池用電極触媒及びそれを用いた燃料電池 |
US11949113B2 (en) | 2018-03-16 | 2024-04-02 | Cataler Corporation | Electrode catalyst for fuel cell, and fuel cell using same |
US11271219B2 (en) | 2018-05-15 | 2022-03-08 | N.E. Chemcat Corporation | Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly and fuel cell stack |
KR20210006991A (ko) | 2018-05-15 | 2021-01-19 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택 |
WO2019221168A1 (ja) | 2018-05-15 | 2019-11-21 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
WO2021193257A1 (ja) | 2020-03-23 | 2021-09-30 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
KR20220157946A (ko) | 2020-03-23 | 2022-11-29 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택 |
WO2021193256A1 (ja) | 2020-03-23 | 2021-09-30 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
KR20220157381A (ko) | 2020-03-23 | 2022-11-29 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택 |
WO2022071320A1 (ja) | 2020-09-29 | 2022-04-07 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
KR20230079100A (ko) | 2020-09-29 | 2023-06-05 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택 |
KR20230079099A (ko) | 2020-09-29 | 2023-06-05 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택 |
WO2022071321A1 (ja) | 2020-09-29 | 2022-04-07 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック |
WO2022172947A1 (ja) | 2021-02-09 | 2022-08-18 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、ガス拡散電極の製造方法、及び、膜・電極接合体の製造方法 |
KR20230145365A (ko) | 2021-02-09 | 2023-10-17 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매의 제조 방법, 가스 확산 전극의 제조 방법및 막-전극 접합체의 제조 방법 |
KR20230145364A (ko) | 2021-02-09 | 2023-10-17 | 엔.이. 켐캣 가부시키가이샤 | 전극용 촉매의 제조 방법, 가스 확산 전극의 제조 방법및 막-전극 접합체의 제조 방법 |
WO2022172948A1 (ja) | 2021-02-09 | 2022-08-18 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、ガス拡散電極の製造方法、及び、膜・電極接合体の製造方法 |
US11715833B2 (en) | 2021-03-11 | 2023-08-01 | Toyota Jidosha Kabushiki Kaisha | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same |
US11901565B2 (en) | 2021-03-11 | 2024-02-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same |
KR20240149981A (ko) | 2022-03-04 | 2024-10-15 | 닛신보 홀딩스 가부시키 가이샤 | 금속담지촉매, 전극 및 전지 |
EP4456206A1 (en) | 2023-03-09 | 2024-10-30 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell and solid polymer fuel cell including the same |
Also Published As
Publication number | Publication date |
---|---|
EP3211696A1 (en) | 2017-08-30 |
CN106605325A (zh) | 2017-04-26 |
KR102097952B1 (ko) | 2020-04-07 |
US10950869B2 (en) | 2021-03-16 |
CN106605325B (zh) | 2020-12-25 |
KR20170044146A (ko) | 2017-04-24 |
US20170338495A1 (en) | 2017-11-23 |
EP3211696A4 (en) | 2017-08-30 |
JPWO2016063968A1 (ja) | 2017-06-15 |
JP6232505B2 (ja) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6232505B2 (ja) | 燃料電池用電極触媒及びその製造方法 | |
EP2477264B1 (en) | Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode including the active particles for lithium air battery, and lithium air battery including the electrode | |
JP6141741B2 (ja) | 燃料電池用電極触媒及びその製造方法 | |
EP1808920A1 (en) | Nanosized catalysts for the anode of a PEM fuel cell | |
JP6727266B2 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
CN101596453A (zh) | 一种以碳载体为载体的Pt催化剂的制备方法 | |
JP2011159517A (ja) | 燃料電池触媒層の製造方法 | |
CN108808027B (zh) | 燃料电池用电极催化剂及其制造方法 | |
JPWO2006114942A1 (ja) | カーボン粒子、白金および酸化ルテニウムを含んでなる粒子およびその製造方法 | |
Kulesza et al. | Electroreduction of oxygen at tungsten oxide modified carbon-supported RuSe x nanoparticles | |
JP6727263B2 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
Han et al. | Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells | |
JP6956851B2 (ja) | 燃料電池用電極触媒及びそれを用いた燃料電池 | |
JP6727264B2 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
WO2012133017A2 (ja) | 燃料電池用アノード用触媒及びその製造方法 | |
Zeng et al. | Binary oxide-doped Pt/RuO2–SiOx/C catalyst with high performance and self-humidification capability: the promotion of ruthenium oxide | |
JP6727265B2 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
JP2022138872A (ja) | 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池 | |
JP2007250214A (ja) | 電極触媒とその製造方法 | |
Sekar et al. | Integrating Hydrogenated TiO2-Modified Carbon-Supported PtRu Anodes and Fe–N–C Cathodes for High-Performance Direct Methanol Fuel Cells | |
JP2005141920A (ja) | 触媒担持電極 | |
EP4035769B1 (en) | Catalyst, catalyst layer, membrane electrode assembly, electrochemical device, and method for producing catalyst | |
JP5515309B2 (ja) | カソード極触媒層及びそれを用いた燃料電池 | |
JP2022138904A (ja) | 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池 | |
CN103119765A (zh) | 燃料电池用负载催化剂、其制造方法及燃料电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15852553 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016555401 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177007105 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015852553 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |