WO2012133017A2 - 燃料電池用アノード用触媒及びその製造方法 - Google Patents
燃料電池用アノード用触媒及びその製造方法 Download PDFInfo
- Publication number
- WO2012133017A2 WO2012133017A2 PCT/JP2012/057109 JP2012057109W WO2012133017A2 WO 2012133017 A2 WO2012133017 A2 WO 2012133017A2 JP 2012057109 W JP2012057109 W JP 2012057109W WO 2012133017 A2 WO2012133017 A2 WO 2012133017A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- range
- catalyst
- fuel cell
- platinum
- anode
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 116
- 239000000446 fuel Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 179
- 239000002245 particle Substances 0.000 claims abstract description 85
- 210000004027 cell Anatomy 0.000 claims abstract description 64
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 50
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 44
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 39
- 239000000956 alloy Substances 0.000 claims abstract description 39
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 33
- 239000012528 membrane Substances 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910000929 Ru alloy Inorganic materials 0.000 claims abstract description 13
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 9
- 210000000170 cell membrane Anatomy 0.000 claims abstract description 9
- 239000001257 hydrogen Substances 0.000 claims description 43
- 229910052739 hydrogen Inorganic materials 0.000 claims description 43
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 34
- 239000012298 atmosphere Substances 0.000 claims description 33
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- 238000001816 cooling Methods 0.000 claims description 27
- 229910044991 metal oxide Inorganic materials 0.000 claims description 24
- 150000004706 metal oxides Chemical class 0.000 claims description 24
- 239000001307 helium Substances 0.000 claims description 21
- 229910052734 helium Inorganic materials 0.000 claims description 21
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 21
- 150000003058 platinum compounds Chemical class 0.000 claims description 19
- 150000003304 ruthenium compounds Chemical class 0.000 claims description 19
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical group O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 5
- 229910001887 tin oxide Inorganic materials 0.000 claims description 5
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 abstract description 4
- 229910002849 PtRu Inorganic materials 0.000 description 34
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 26
- 229910002091 carbon monoxide Inorganic materials 0.000 description 26
- 229910006404 SnO 2 Inorganic materials 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 239000007789 gas Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229920000557 Nafion® Polymers 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- -1 hydrogen ions Chemical class 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 208000001408 Carbon monoxide poisoning Diseases 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910002848 Pt–Ru Inorganic materials 0.000 description 1
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- UYXRCZUOJAYSQR-UHFFFAOYSA-N nitric acid;platinum Chemical compound [Pt].O[N+]([O-])=O UYXRCZUOJAYSQR-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9058—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8684—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell anode catalyst and a method for producing the same.
- the present invention further relates to a fuel cell anode using the catalyst, a fuel cell membrane electrode assembly using the anode, and a fuel cell using the fuel cell membrane electrode assembly.
- Solid polymer fuel cells can achieve higher energy efficiency than conventional power generation technologies, and are expected to be put to practical use as a power generation source with a low environmental load.
- hydrogen is supplied to the anode (fuel electrode) of the polymer electrolyte fuel cell and air is supplied to the cathode (air electrode)
- the following reaction occurs. That is, hydrogen ions (protons) are generated in the fuel electrode by the action of the anode catalyst, and protons and oxygen that have passed through the electrolyte membrane are combined to generate water in the air electrode.
- Fuel electrode H 2 ⁇ 2H + + 2e ⁇ Air electrode: 1 / 2O 2 + 2H + + 2e ⁇ ⁇ H 2 O
- Hydrogen as a fuel is often produced by steam reforming natural gas. Hydrogen produced by this method contains a trace amount of carbon monoxide (CO), and it is known that CO is adsorbed on the anode catalyst to lower the catalytic activity. Therefore, various efforts are being made toward the development of an anode catalyst with high CO resistance.
- CO carbon monoxide
- Patent Documents 1-5 and Non-Patent Documents a catalyst in which platinum and ruthenium are supported on carbon fine particles (PtRu / C catalyst) is known to have the most excellent CO resistance (Patent Documents 1-5 and Non-Patent Documents).
- Reference 1 Patent Documents 1, 2, and 3 describe a method for producing an alloy catalyst in which Pt and Ru are alloyed by heat treatment.
- Patent Documents 1 and 3 and Non-Patent Document 1 describe that a catalyst having a predetermined ratio of Pt and Ru supported on a carrier is excellent in CO resistance.
- Patent documents 1 to 3 are patent documents belonging to the same family.
- Patent Document 4 describes that a catalyst in which an alloy of Pt and Ru having a particle size of 0.5 to less than 2.0 nm is supported on a carrier is excellent in CO resistance.
- Patent Document 5 describes that a catalyst in which Pt having a particle size of less than 2 nm and Ru having a particle size of less than 1 nm are supported on a carrier is excellent in CO resistance.
- Patent Document 1 WO99 / 66576
- Patent Document 2 Japanese Patent No. 3839996
- Patent Document 3 US Patent No. 6339038
- Patent Reference 4 US Patent No. 6066410
- Patent Reference 5 US Patent No. 6007934
- Non-Patent Reference 1 Tada et al. "Effect of composition ratio of heat diffusion platinum ruthenium alloy catalyst on carbon monoxide poisoning characteristics", Journal of the Electrochemical Society, 2008, 76, No. 11, p. 813-
- Patent Documents 1 to 5 and Non-Patent Document 1 are specifically incorporated herein by reference.
- the present inventor has studied various methods and conditions for producing a PtRu / C catalyst, and treated a C material carrying a Pt compound and a Ru compound by a specific method and conditions, thereby significantly improving CO resistance.
- the present invention was completed by finding that a battery anode catalyst was obtained.
- Pt platinum to ruthenium
- Ru ruthenium
- the catalyst wherein the alloy has an average particle diameter of 1 to 5 nm and a standard deviation of particle diameter of 2 nm or less.
- N (Ru) / (N (Pt) + N (Ru)) at the platinum site is in the range of 0.9 to 1.1 times the theoretical value
- N (Pt) / (N (Ru) + N (at the Ru site) The catalyst according to any one of [1] to [4], wherein Pt)) is in the range of 0.9 to 1.1 times the theoretical value.
- Pt The catalyst according to any one of [1] to [5], wherein the fuel cell is a methanol fuel cell.
- a membrane electrode assembly for a fuel cell in which the anode and the cathode according to [7] are laminated with a polymer electrolyte membrane interposed therebetween.
- a fuel cell comprising the fuel cell membrane electrode assembly according to [8]. [10] (1) a step of supporting a platinum compound and a ruthenium compound on a carbon material; (2) A step of placing the carbon material carrying the platinum compound and the ruthenium compound in step (1) in a hydrogen-containing atmosphere, (3) a step of heating the carbon material obtained in step (2) in a helium-containing atmosphere; (4) A step of heating the carbon material obtained in step (3) in a hydrogen-containing atmosphere, The manufacturing method of the catalyst for anodes for fuel cells as described in [1] containing this.
- step (1) The production method according to [10], further comprising a step of supporting a metal oxide on the carbon material before the step (1).
- step (2) In the step (1), the platinum compound is supported on the carbon material, and then the ruthenium compound is supported, [10] or [11].
- step (2) of placing in a hydrogen-containing atmosphere is carried out at a temperature in the range of 0 ° C. to 50 ° C. for a period of 0.1 hours to 10 hours.
- step (3) The heating step in the helium-containing atmosphere in step (3) is performed at a temperature in the range of 700 ° C. to 1000 ° C.
- a fuel cell anode catalyst with significantly improved CO resistance can be obtained. Furthermore, according to the present invention, an anode for a fuel cell using the catalyst and having significantly improved CO resistance, a membrane electrode assembly for a fuel cell using the anode, and a fuel cell using the membrane electrode assembly for the fuel cell Can also be provided.
- FIG. 9 shows the “in situ FTIR” measurement results for the PtRu / SnO 2 / C catalyst prepared in Example 5 and the Pt 2 Ru 3 / C catalyst shown in Comparative Example 1.
- FIG. 9 It is the measurement result of the voltage in the current density of 0.2 A / cm ⁇ 2 > of the fuel cell which used the catalyst of Example 9 and 10 as an anode catalyst, respectively.
- the present invention is a fuel cell anode catalyst in which an alloy of platinum and ruthenium is supported on a carbon material.
- the molar ratio of platinum to ruthenium (Pt: Ru) in the alloy is in the range of 1: 1 to 5, and the Pt atoms at the atomic sites in the alloy are measured by X-ray absorption fine structure.
- N (Pt) and N (Ru) are expressed as N (Pt) and N (Ru), respectively, N (Ru) / (N (Pt) + N (Ru)) at the platinum site is 0.
- the range is 8 to 1.1 times, and N (Pt) / (N (Ru) + N (Pt)) at the Ru site is in the range of 0.8 to 1.1 times the theoretical value.
- the particle diameter is in the range of 1 to 5 nm, and the standard deviation of particle diameter is in the range of 2 nm or less.
- the catalyst of the present invention is used as a catalyst in an anode for a fuel cell, and this catalyst is used as an anode for a fuel cell having a composition layer for an anode composed of a mixture with a proton conductive polymer on the substrate surface. Therefore, it is preferably in the form of particles, and in the case of particles, the average particle diameter can be in the range of 10 nm to 10 mm, for example. From the same viewpoint, the average particle diameter is preferably in the range of 10 nm to 1000 nm.
- Examples of the carbon material are not particularly limited, and examples thereof include carbon black, activated carbon, and graphite.
- the carbon material may have a specific surface area in the range of, for example, 500 to 3000 m 2 / g, preferably 700 to 2500 m 2 / g.
- materials such as alumina (aluminum oxide), titanium oxide, tin oxide, zirconia (zirconium oxide), ceria (cerium oxide), and ceria-zirconia can also be used as a carrier for an alloy of platinum and ruthenium.
- a mixture of a carbon material and a material other than the carbon material can be used as a carrier.
- Platinum and ruthenium alloys have a platinum to ruthenium molar ratio (Pt: Ru) in the range of 1: 1-5.
- Pt: Ru platinum to ruthenium molar ratio
- the amount of Ru is small, and as a result, the bond of Pt—Ru decreases, and the CO resistance tends to decrease.
- the molar ratio (Pt: Ru) exceeds 1: 5, the amount of Ru becomes excessive, and as a result, the amount of Pt at the active site decreases, and the catalytic effect of Pt tends to decrease.
- the molar ratio of platinum to ruthenium is preferably in the range of 1: 1 to 4, more preferably 1: It is in the range of 1 to 3, more preferably in the range of 1: 1 to 2.
- the platinum-ruthenium alloy has N (Ru) / (N (Pt) + N (Ru)) at the platinum site measured by X-ray absorption fine structure (XAFS) of 0.8 to 1.1 times the theoretical value.
- N (Pt) / (N (Ru) + N (Pt)) at the Ru site is a range of 0.8 to 1.1 times the theoretical value.
- N (Pt) and N (Ru) measured by XAFS represent the number of Pt atoms and the number of Ru atoms in the alloy, and N (Ru) at the platinum site is based on the Ru and Pt molar ratio forming the alloy.
- N (Pt) + N (Ru)) and N (Pt) / (N (Ru) + N (Pt)) at the Ru site For example, in an alloy having a molar ratio (Pt: Ru) of 2: 3, the theoretical value of N (Ru) / (N (Pt) + N (Ru)) is 0.60 (3 / (3 + 2)). Yes, the theoretical value of N (Pt) / (N (Ru) + N (Pt)) is 0.40 (2 / (2 + 3)).
- the platinum site is a platinum site coordinated in the alloy, and the Ru site is a Ru site coordinated in the alloy.
- N (Ru) / (N (Pt) + N (Ru)) and N (Pt) / (N (Ru) + N (Pt) are only increased if the atoms of Pt and Ru in the alloy particles are uniformly dispersed. ) Indicates a value close to the theoretical value. On the other hand, the farther from the theoretical value, the larger the amount of Pt present at the Pt site, the larger the amount of Ru present at the Ru site, and eventually the dispersion of atoms of Pt and Ru as a whole alloy. Means low uniformity.
- (Ru) + N (Pt)) is close to the theoretical value, and Pt and Ru atoms in the alloy are present more uniformly. Thereby, it is guessed that CO tolerance is improving.
- N (Ru) / (N (Pt) + N (Ru)) at the platinum site is in the range of 0.9 to 1.1 times the theoretical value, and N (Ru) / N at the Ru site.
- (Pt) is preferably in the range of 0.9 to 1.1 times the theoretical value.
- N (Ru) / (N (Pt) + N (Ru)) at the platinum site and N (Pt) / (N (Ru) + N (Pt)) at the Ru site exceed theoretical values. impossible. Therefore, the theoretical upper limit is 1.0 times the theoretical value, and 1.0 times the theoretical value is most preferable. However, in consideration of the EXAFS measurement accuracy, the value may exceed the theoretical value and may be up to 1.1 times. Considering such circumstances, the upper limit values of N (Ru) / (N (Pt) + N (Ru)) at the platinum site and N (Pt) / (N (Ru) + N (Pt)) at the Ru site are All were 1.1 times the theoretical value.
- XAFS is divided into XANES and EXAFS (extend X-ray absorption fine structure) according to its energy region. XAFS in the present invention is EXAFS.
- the average particle diameter of the alloy is in the range of 1 to 5 nm, and the standard deviation of particle diameter is in the range of 2 nm or less.
- the average particle diameter of the alloy is less than 1 nm, the hydrogen oxidation reaction activity per surface active point decreases, and when it exceeds 5 nm, the surface active point decreases. In either case, the catalytic activity is reduced.
- the average particle size of the alloy is preferably in the range of 2 to 5 nm.
- the standard deviation of the particle diameter of the alloy is in the range of 2 nm or less. If it exceeds 2 nm, the performance of the active point tends to vary.
- the lower limit of the standard deviation of particle diameter is suitably 0.5 nm from the viewpoint of achieving both production efficiency and uniform reaction activity.
- the supported amount of platinum and ruthenium alloy in the fuel cell anode catalyst of the present invention is based on 100 parts by mass of the support from the viewpoint that good performance can be obtained when the catalyst of the present invention is used as the anode catalyst.
- it can be in the range of 10 to 120 parts by mass.
- it can be in the range of 90 to 130 parts by mass with respect to 100 parts by mass of the carrier.
- the fuel cell anode catalyst of the present invention includes a catalyst further supporting a metal oxide having an average particle diameter in the range of 1 to 5 nm in addition to the platinum-ruthenium alloy.
- the metal oxide include alumina (aluminum oxide), titanium oxide, tin oxide, zirconia (zirconium oxide), ceria (cerium oxide), and ceria-zirconia.
- the average particle diameter of the metal oxide is in the range of 1 to 5 nm, and the standard deviation of particle diameter is preferably in the range of 0.5 to 2 nm.
- the average particle diameter of the metal oxide is less than 1 nm, the reactivity with Pt is high and alloying cannot be controlled.
- the average particle diameter exceeds 5 nm the surface active sites decrease and the interaction with Pt becomes weak.
- the average particle diameter of the metal oxide is preferably in the range of 2 to 5 nm.
- the standard deviation of the metal oxide particle diameter is in the range of 2 nm or less. If it exceeds 2 nm, the reactivity with Pt or the like cannot be controlled.
- the lower limit of the standard deviation of the metal oxide particle diameter is suitably 0.5 nm from the viewpoint of achieving both production efficiency and uniform reaction activity.
- the supported amount of metal oxide in the fuel cell anode catalyst of the present invention is, for example, from 100 parts by mass of the support from the viewpoint of obtaining good performance when the catalyst of the present invention is used as the anode catalyst. In the range of 0.1 to 10 parts by mass. Preferably, it can be in the range of, for example, 0.1 to 5 parts by mass with respect to 100 parts by mass of the carrier. Further, the ratio of the supported amount of the platinum and ruthenium alloy and the supported mass of the metal oxide does not cover the active sites by the alloy particles and can provide an interaction, for example, platinum and ruthenium. The amount of the metal oxide may be in the range of 0.03 to 0.3 parts by mass with respect to 1 part by mass of the alloy.
- the manufacturing method of the catalyst for anodes for fuel cells of this invention is demonstrated.
- the present invention includes this production method as the present invention.
- the method for producing a fuel cell anode catalyst of the present invention includes the following steps (1) to (4). (1) a step of supporting a platinum compound and a ruthenium compound on a carbon material; (2) A step of placing the carbon material carrying the platinum compound and the ruthenium compound in step (1) in a hydrogen-containing atmosphere, (3) a step of heating the carbon material obtained in step (2) in a helium-containing atmosphere; (4) A step of heating the carbon material obtained in step (3) in a hydrogen-containing atmosphere, including.
- a platinum compound and a ruthenium compound are supported on the carbon material.
- a platinum compound can be supported on a carbon material, and then a ruthenium compound can be supported.
- a ruthenium compound may be supported on the carbon material, and then a platinum compound may be supported.
- the carbon material is as described above.
- a platinum compound dinitrodiamine platinum nitric acid etc. can be mentioned, for example. However, it is not intended to be limited to this compound, and a platinum compound generally used when preparing platinum or a platinum alloy can be used as appropriate.
- the ruthenium compound include RuCl 3 n (H 2 O).
- a ruthenium compound generally used when preparing ruthenium or a ruthenium alloy can be used as appropriate.
- the platinum compound and the ruthenium compound are supported on the carbon material in consideration of the desired molar ratio of platinum and ruthenium, and also the supported amount of platinum and ruthenium.
- support method For example, it can implement by impregnating a carbon material in the aqueous solution containing a platinum compound and a ruthenium compound. An auxiliary agent that promotes impregnation can be appropriately added to the aqueous solution.
- Step (2) is a step of placing a carbon material carrying a platinum compound and a ruthenium compound in a hydrogen-containing atmosphere in step (1).
- the hydrogen-containing atmosphere can be a hydrogen atmosphere, that is, an atmosphere containing only hydrogen, but can also contain an inert gas in hydrogen. Argon etc. can be illustrated as an inert gas.
- the hydrogen content is suitably in the range of 2 to 10%, for example, from the viewpoint of mild reduction.
- the hydrogen-containing atmosphere can be performed in a reaction vessel filled with hydrogen gas or hydrogen-containing gas, or in a reaction vessel in which these gases are circulated.
- the step of placing in a hydrogen-containing atmosphere in step (2) can be performed at a temperature in the range of 0 ° C. to 50 ° C., for example, in the range of 0.1 hour to 10 hours.
- a temperature is less than 0 ° C. and the execution time is less than 0.1 hour, it is difficult to obtain a desired effect, that is, a reduction effect.
- the temperature exceeds 50 ° C. and the execution time exceeds 10 hours, it is difficult to obtain a desired effect, that is, a highly dispersed PtRu catalyst.
- Step (3) is a step of heating the carbon material obtained in step (2) in a helium-containing atmosphere.
- a PtRu alloy or an alloy precursor is generated from a platinum compound and a ruthenium compound supported on a carbon material (at least a part of which is reduced to a metal in step (2)).
- the helium-containing atmosphere can be a helium atmosphere, that is, an atmosphere containing only helium, but helium can also contain other inert gases. Examples of the inert gas include argon and nitrogen. When a mixed gas of helium and inert gas is used, the content of helium is, for example, in the range of 20 to 100%. When cooling after heat treatment, rapid cooling is possible as described later.
- the helium-containing atmosphere can be performed in a reaction vessel filled with helium gas or helium-containing gas, or in a reaction vessel in which these gases are circulated.
- heating is performed in a reaction vessel filled with helium gas or a helium-containing gas (under non-circulation), and at the time of cooling, helium gas or helium is used from the viewpoint of increasing the cooling effect. It can also be carried out by circulating the contained gas.
- the heating step in the helium-containing atmosphere in step (3) can be performed at a temperature in the range of 700 ° C. to 1000 ° C. for a range of 0.05 hours to 5 hours, for example.
- a desired effect that is, an alloying effect (or an alloy precursor generation effect).
- the desired effect that is, the particles become large and the number of surface active points is difficult to obtain.
- the temperature at the end of step (2) (for example, from room temperature (range of 10 to 35 ° C.) to the temperature in the range of 700 ° C. to 1000 ° C.)
- rapid temperature increase at a temperature increase rate of 50 to 100 ° C./min is preferable from the viewpoint of obtaining a desired reduction effect while suppressing particle growth.
- the heating it is preferable to cool at a cooling rate of 10 to 200 ° C./min until a temperature of at least 500 ° C. is reached. More specifically, for example, it is preferable to rapidly cool to at least 750 ° C. at a cooling rate of 100 to 200 ° C./min, and further to cool to at least 500 ° C. at a cooling rate of 10 to 20 ° C./min. After cooling to 500 ° C., it can be allowed to cool to room temperature (in the range of 10 to 35 ° C.) (the cooling rate for cooling is arbitrary). When the heating temperature is 700 ° C. to 750 ° C., it is preferable to cool to at least 500 ° C.
- cooling rate 10 to 20 ° C./min. After cooling to 500 ° C., it can be allowed to cool to room temperature (in the range of 10 to 35 ° C.) in the same manner as described above (the cooling rate for cooling is arbitrary).
- the growth of alloy particles is accelerated at a temperature of 500 ° C. or higher. Therefore, after heating is completed, the time of 500 ° C. or higher is shortened as much as possible to maintain the alloy particles in a fine state. It is important from the point of view. Furthermore, rapid cooling (quenching) to 500 ° C. as described above results in alloy particles in which the dispersed state of Pt and Ru generated by heating in the range of 700 ° C. to 1000 ° C. is kept as much as possible. It is also important from the viewpoint that When the cooling to 500 ° C.
- Step (4) is a step of heating the carbon material obtained in step (3) in a hydrogen-containing atmosphere.
- the hydrogen-containing atmosphere can be a hydrogen atmosphere, that is, an atmosphere containing only hydrogen, but can also contain an inert gas in hydrogen. Argon etc. can be illustrated as an inert gas.
- the hydrogen content is suitably in the range of 5 to 20%, for example, from the viewpoint of gradual reduction.
- the step of placing in a hydrogen-containing atmosphere in step (4) can be performed at a temperature in the range of 70 ° C. to 200 ° C., for example, in the range of 0.2 hours to 20 hours.
- a temperature is less than 70 ° C. and the execution time is less than 0.2 hours, it is difficult to obtain a desired effect, that is, an effect of reducing the surface.
- a desired effect that is, an effect of stably dispersing atoms.
- the method for producing a catalyst for an anode for a fuel cell of the present invention may further include a step of supporting a metal oxide on a carbon material before the step (1).
- this step (1) for example, after impregnating a carbon material with a metal compound constituting a metal oxide, the metal compound can be oxidized, or metal oxide particles can be supported.
- fine particles having a predetermined average particle diameter for example, colloidal particles can be used as the metal oxide particles.
- the metal oxide include tin oxide, ceria (cerium oxide), zirconia (zirconium oxide), ceria-zirconia, and alumina (aluminum oxide).
- the metal oxide or the metal compound is supported on the carbon material in consideration of a desired loading amount.
- the supporting method there is no particular limitation on the supporting method, and for example, it can be carried out by impregnating a carbon material into an aqueous solution containing a metal oxide or a metal compound.
- An auxiliary agent that promotes impregnation or loading can be appropriately added to the aqueous solution.
- the material of the present invention can be manufactured by the above manufacturing method.
- the fuel cell in which the anode catalyst for a fuel cell according to the present invention is used can be, for example, a fuel cell using hydrogen obtained by reforming natural gas.
- methanol fuel cells particularly fuel cells such as direct methanol fuel cells, can also be used as anode catalysts. Since the anode catalyst for fuel cells of the present invention is excellent in CO resistance, it can be used well as an anode catalyst for direct methanol fuel cells.
- the present invention includes an anode for a fuel cell having a layer comprising a composition for an anode containing the catalyst of the present invention and a proton conducting polymer on the substrate surface.
- the proton conductive polymer used in the anode composition has a function as a proton conductive medium for conducting protons generated by an electrochemical reaction to the solid polymer electrolyte in the anode, and the catalyst particles of the present invention described above are used. It has a function as a binder that binds to the conductive porous substrate as an electrode catalyst layer.
- a polymer made of the same material as the solid polymer electrolyte membrane can be used.
- a perfluorosulfonic acid polymer known as Nafion (registered trademark of Dupont) is preferably used.
- this polymer is dissolved in an organic solvent such as an alcohol, it can be advantageously used as a solution when the catalyst particles are bound to the conductive porous substrate, and the catalyst particles have excellent binding properties. Not only has excellent proton conductivity.
- the proton conductive polymer that can be used in the present invention is not limited to the perfluorosulfonic acid polymer.
- the ratio of the mass of the catalyst particles to the mass of the proton conductive polymer (hereinafter sometimes referred to as “catalyst particle / polymer mass ratio”) is, for example, 3/1 to 20 / 1 and preferably in the range of 4/1 to 18/1.
- the catalyst particle / polymer mass ratio is less than 3/1, the resulting catalyst is susceptible to carbon monoxide poisoning.
- it exceeds 20/1 the catalyst particles easily fall off from the electrode catalyst layer, and the proton transportability generated in the electrode catalyst layer tends to be inferior, and as a result, the output density of the obtained fuel cell is lowered.
- the electrode catalyst layer may contain a small amount of other resins in addition to the proton conductive polymer as a binder for the catalyst particles.
- the other resin include a fluorine resin having no proton conductivity, and more specifically, for example, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene. Mention may be made of ethylene fluoride.
- the proportion of the resin in the binder is preferably 30% by weight or less, and particularly preferably 10% by weight or less in the binder.
- examples of the conductive porous substrate include papers made of fibers such as carbon and conductive polymers, nonwoven fabrics, woven fabrics, knitted fabrics, and conductive porous membranes. Carbon paper is usually preferable. Used.
- the present invention further includes a membrane electrode assembly for a fuel cell in which the anode and the cathode of the present invention are laminated with a polymer electrolyte membrane interposed therebetween.
- the cathode is formed by binding and supporting an electrode catalyst together with a binder as an electrode catalyst layer on a conductive porous substrate, and its configuration is not particularly limited.
- the catalyst layer is, for example, a carbon black powder carrying platinum fine particles, a carbon black powder as a conductive auxiliary agent, a binder for bringing them together, and a proton conductivity that becomes a conductor of protons generated by an electrochemical reaction. It contains a polymer and the like as appropriate.
- the cathode electrode is, for example, a paste of carbon black powder carrying platinum fine particles and, if necessary, carbon black as a conductive aid using a suitable binder, and this is described above. After applying to such a conductive porous substrate, heating and drying, it can be obtained by further applying a proton conductive polymer solution thereon, if necessary, and heating and drying.
- a binder for example, an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride resin or a perfluorosulfonic acid polymer solution such as Nafion (registered trademark of DuPont) is used.
- the anode electrode is obtained, for example, by preparing a paste containing fine particles of platinum or a platinum alloy and a proton conductive polymer, applying the paste onto a conductive porous substrate as described above, and heating and drying. be able to.
- the method for manufacturing the anode electrode is not limited to the above-described example.
- each conductive porous substrate constituting the cathode electrode and the anode electrode preferably has a conductive water repellent layer on the side on which the electrode catalyst is supported in order to prevent so-called flooding.
- a cation exchange membrane made of a perfluorosulfonic acid polymer as used in a conventional solid polymer membrane battery for example, Nafion (registered trademark) Is preferably used, but is not limited thereto. Therefore, for example, a porous membrane made of a fluororesin such as polytetrafluoroethylene impregnated with the above Nafion or other ion conductive material, or a porous membrane or nonwoven fabric made of a polyolefin resin such as polyethylene or polypropylene A material carrying Nafion or another ion conductive material may be used.
- a fuel cell membrane electrode assembly can be obtained by laminating and integrating the anode electrode and the cathode electrode as described above with such a solid polymer electrolyte membrane interposed therebetween.
- a structure in which conductive separators, which are structures for supplying and contacting an oxidizer or a reducing agent to each electrode, are arranged on both sides of a membrane electrode assembly is called a cell.
- a structure in which a number of conductive separators are stacked alternately and electrically in series is called a stack.
- the present invention includes a fuel cell including the fuel cell membrane electrode assembly of the present invention.
- the material of the separator and the structure of the passage for the reducing agent or oxidizing agent of the separator are not particularly limited.
- the flow path of the oxidizing agent or reducing agent may be formed on both sides of the separator and laminated on the electrode.
- the separator is formed from, for example, graphite, a resin molded body in which carbon is dispersed, a metal material, or the like.
- a fuel cell according to the present invention includes a membrane electrode assembly anode electrode formed by laminating and integrating the anode electrode and the cathode electrode with the solid polymer electrolyte membrane interposed therebetween, and the anode electrode and the anode electrode.
- a conductive separator having a passage for hydrogen or methanol on the side, and a conductive separator laminated on the cathode electrode and having a passage for air or oxygen on the cathode side.
- hydrogen or methanol as a reducing agent (fuel) is supplied to and contacted with the anode electrode using the passage of the separator, and an oxidant (oxygen) is supplied to the cathode electrode using the passage of the separator. Or air) and contact to obtain an electric current.
- the anode electrode catalyst is not easily subjected to carbon monoxide poisoning, it can be operated stably.
- the operating temperature of the fuel cell according to the present invention is usually 0 ° C. or higher, preferably in the range of 15 to 90 ° C., and most preferably in the range of 30 to 80 ° C. When the operating temperature is too high, the material used may be deteriorated or peeled off.
- Example 1 (1) -1Pt loading method 1. Ultrasonically mix 0.56506 g of TKK carbon E carrier (specific surface area 900 m 2 / g), 8.2675 g of dinitridiamineplatinum nitrate solution and a little distilled water. Distilled water was added until the total amount of distilled water reached 200 mL, and 25 mL of ethanol was added. 2. A reflux tube was attached and the mixture was stirred at 92 ° C or higher for 8 hours. 3. Washed and filtered with about 1L of distilled water.
- (1) -2Ru loading method 1. Mix 0.75745 g of RuCl 3 n (H 2 O) (ratio of Pt and Ru (molar ratio) is 1: 3) and a little distilled water with ultrasound. This was placed in a three-neck flask, distilled water was added until the total amount of water reached 85 mL, and 9 mL of methanol was added. 2. The mixture was refluxed for 6-8 hours with stirring at 65 ° C. Most of the color disappeared but the color did not disappear completely, so the temperature was raised to 70 ° C. and left for 6-8 hours. Since the color still did not disappear, 10 mL of methanol was added and left overnight. Since the color still does not disappear, the temperature was raised to 85 ° C.
- the average particle size of the PtRu particles was 3.42 nm, and the standard deviation of the particle size was 1.38 nm. Further, from the XAFS measurement, the N (Ru) / (N (Pt) + N (Ru)) ratio is 0.63, and the N (Pt) / (N (Ru) + N (Pt)) ratio is 0.37.
- EXAFS extend X-ray absorption fine structure measurement
- the X-ray absorption spectra of the PtLIII absorption edge and the RuK absorption edge were analyzed using the BL-7C beam line and NW / 10A beam line of the Photon Factory of the Institute for Materials Structure Science, High Energy Accelerator Research Organization, respectively.
- Example 2 Instead of using 0.75745 g of RuCl 3 .nH 2 O, 0.378 g was used, and the Pt and Ru ratio (molar ratio) was adjusted to be 2: 3. / C catalyst was obtained. As a result of STEM measurement of the obtained PtRu / C catalyst particles, the average particle size of the PtRu particles was 2.35 nm, and the standard deviation of the particle size was 1.16 nm.
- Example 3 A PtRu / C catalyst was obtained in the same manner as in Example 1 except that porous carbon (specific surface area 1800 m 2 / g) was used instead of using the TKK carbon E support.
- porous carbon specific surface area 1800 m 2 / g
- the average particle size of the PtRu particles was 2.35 nm
- the standard deviation of the particle size was 1.16 nm.
- Comparative Example 1 The catalyst used in Comparative Example 1 is a commercially available Pt 2 Ru 3 / C catalyst. According to the XAFS measurement, the alloying degree is such that the N (Ru) / (N (Pt) + N (Ru)) ratio is 0.54 and the N (Pt) / (N (Ru) + N (Pt)) ratio is 0.00. 31.
- Example 4 Based on the case of using pure hydrogen as a fuel, it was evaluated how much the voltage drops due to carbon monoxide contained in the hydrogen fuel.
- Table 1 and FIG. 1 show measurement results of voltage at a current density of 0.2 A / cm 2 of a fuel cell using the catalysts of Examples 1 and 3 and Comparative Example 1 as anode catalysts. The conditions are as follows. Electrolyte: Nafion® NRE 212 Cathode: Pt / C (0.5 mg / cm 2 ); Gas: O2; Flow rate: 80 mL / min; 70 ° C humidification. Anode: Various PtRu / C (0.5 mg-PtRu / cm 2 ); Gas: Hydrogen containing 0-2000 ppm CO; Flow rate: 80 mL / min; 70 ° C humidification.
- Example 5 (SnO 2 / C carrier) 1. Weighed 89.4 mg of SnCl 2 ⁇ 2H 2 O on a medicine wrapping paper and put it into a three-necked flask. 2. An appropriate amount of ethylene glycol solution was added. 3. Heated to 190 ° C in an oil bath (silicone oil) and allowed to stand to room temperature after 30 min. 4. 1.866 g of carbon powder (E carrier) (specific surface area 900 m 2 / g) was weighed and placed in a 50 ml beaker. 5. EG was added to around 40 ml and sonicated for several minutes. 6. The flask was put in, water was added, and the mixture was stirred overnight at 90 ° C. in an oil bath. 7.
- E carrier carbon powder
- Example 6 Carbon powder (E carrier) 1.866 g Weighed in the same manner as in Example 5 except that the weight (in the case of SnO 2 1 wt%) was changed to 1.134 g (in the case of SnO 2 2.5 wt%), and PtRu / SnO 2 / C catalyst was obtained, and the ratio (molar ratio) of Pt to Ru was 2: 3, and SnO 2 (SnO 2 / (Pt + Ru)) with respect to Pt and Ru was 1/20 (mass ratio).
- the average particle diameter and the standard deviation of the particle diameter of the PtRu particles were the same as those in Example 1.
- Example 7 For the PtRu / SnO 2 / C catalyst prepared in Example 5 and the Pt 2 Ru 3 / C catalyst shown in Comparative Example 1, the electrochemical CO oxidation performance was determined by “in situ FTIR analysis”. The conditions are as follows. The results are shown in FIG. Cell temperature: 25 ° C; 0.1 M HClO 4 1) Flow pure CO at 0.05 V through 0.1 M HClO 4 electrolyte solution for 20 minutes. 2) Ar was circulated to remove CO dissolved in the solution for 35 minutes. 3) A range of 0.00-0.5 V was swept at 0.25 mV / s at 25 ° C. Resolution 8 cm -1 , 25 scans
- Example 8 Based on the case of using pure hydrogen as a fuel, it was evaluated how much the voltage drops due to carbon monoxide contained in the hydrogen fuel.
- FIG. 1 shows the measurement results of voltage at a current density of 0.2 A / cm 2 for fuel cells using the catalysts of Examples 5 and 6 and Comparative Example 1 as anode catalysts. The conditions are as follows. Electrolyte: Nafion® NRE 212 Cathode: Pt / C (0.5 mg / cm 2 ); Gas: O 2 ; Flow rate: 80 mL / min; 70 ° C. humidification Anode: Various Pt 2 Ru 3 / C (0.5 mg-PtRu / cm 2 ); Gas: Hydrogen containing 0-2000 ppm CO; Flow rate: 80 mL / min; 70 ° C humidification
- Example 9 PtRu / TiO 2 / C was obtained in the same manner as in Example 5 except that SnO 2 / C (80 ° C. N 2 Dry) was changed to TiO 2 / C (TiO 2 2.5 wt%). .
- the ratio (molar ratio) of Pt and Ru is 2: 3, and TiO 2 (TiO 2 / (Pt + Ru)) with respect to Pt and Ru is 1/20.
- the average particle size and the standard deviation of the particle size of the PtRu particles were the same as in Example 1.
- Example 10 Performed in the same manner as in Example 5, except that after the heat treatment of the SnO 2 / C support (9), air baking at 300 ° C. for 30 minutes was added. PtRu / SnO 2 / C was obtained. The ratio (molar ratio) between Pt and Ru is 2: 3, and SnO 2 (SnO 2 / (Pt + Ru)) with respect to Pt and Ru is 1/50. As a result of STEM measurement of the obtained PtRu / SnO 2 / C catalyst particles, the average particle diameter of PtRu particles and the standard deviation of particle diameter were the same as those in Example 1.
- Example 11 The same measurement as in Example 8 was performed except that Examples 9 and 10 were used as the anode catalyst. The results are shown in FIG.
- the present invention is useful in the fuel cell field.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Catalysts (AREA)
Abstract
Description
空気極:1/2O2+2H++2e-→H2O
特許文献2:日本特許第3839961号公報
特許文献3:米国特許第6339038号明細書
特許文献4:米国特許第6066410号明細書
特許文献5:米国特許第6007934号明細書
非特許文献1:多田ら、「熱拡散白金ルテニウム合金触媒の組成比が耐一酸化炭素被毒特性へ与える影響」、電気化学会誌、2008年、76,No.11、p.813-
[1]
炭素材料に白金とルテニウムの合金を担持した、燃料電池用アノード用触媒であって、前記合金における、白金とルテニウムのモル比(Pt:Ru)は、1:1~5の範囲であり、X線吸収微細構造により測定された前記合金中の原子サイトのPt原子の配位数及びRu原子の配位数をそれぞれN(Pt)及びN(Ru)と表したとき、白金サイトにおけるN(Ru)/(N(Pt)+N(Ru))が理論値の0.8~1.1倍の範囲であり、RuサイトにおけるN(Pt)/(N(Ru)+N(Pt))が理論値の0.8~1.1倍の範囲であり、前記合金の平均粒子径は1~5nmの範囲であり、粒子経の標準偏差は2nm以下の範囲である、前記触媒。
[2]
平均粒子径が1~5nmの範囲である金属酸化物をさらに担持した[1]に記載の触媒。
[3]
金属酸化物がスズ酸化物である[2]に記載の触媒。
[4]
炭素材料は、平均粒子径が10nm~10mmの範囲である粒子である[1]~[3]のいずれか1項に記載の触媒。
[5]
白金サイトにおけるN(Ru)/(N(Pt)+N(Ru))が理論値の0.9~1.1倍の範囲であり、RuサイトにおけるN(Pt)/(N(Ru)+N(Pt))が理論値の0.9~1.1倍の範囲である[1]~[4]のいずれか1項に記載の触媒。
[6]
燃料電池がメタノール燃料電池である[1]~[5]のいずれか1項に記載の触媒。
[7]
[1]~[5]のいずれか1項に記載の触媒とプロトン伝導性ポリマーを含むアノード用組成物からなる層を基板表面に有する燃料電池用アノード。
[8]
高分子電解質膜を挟んで[7]に記載のアノードとカソードを積層した、燃料電池用膜電極接合体。
[9]
[8]に記載の燃料電池用膜電極接合体を含む燃料電池。
[10]
(1)炭素材料に白金化合物及びルテニウム化合物を担持する工程、
(2)工程(1)で白金化合物及びルテニウム化合物を担持した炭素材料を水素含有雰囲気下に置く工程、
(3)工程(2)で得られた炭素材料をヘリウム含有雰囲気下で加熱する工程、
(4)工程(3)で得られた炭素材料を水素含有雰囲気下で加熱する工程、
を含む、[1]に記載の燃料電池用アノード用触媒の製造方法。
[11]
工程(1)の前に炭素材料に金属酸化物を担持する工程をさらに含む[10]に記載の製造方法。
[12]
工程(1)においては、炭素材料に白金化合物を担持し、次いでルテニウム化合物を担持する[10]または[11]に記載の製造方法。
[13]
工程(2)の水素含有雰囲気下に置く工程は、0℃~50℃の範囲の温度で、0.1時間から10時間の範囲で実施する[10]~[12]のいずれか1項に記載の製造方法。
[14]
工程(3)のヘリウム含有雰囲気下での加熱工程は、700℃~1000℃の範囲の温度で、0.05時間から5時間の範囲で実施する[10]~[13]のいずれか1項に記載の製造方法。
[15]
700℃~1000℃の範囲の温度での加熱後、500℃以下の温度まで、冷却速度10~200℃/分で冷却する、[14]に記載の製造方法。
[16]
750℃から500℃まで冷却速度10~20℃/分で冷却する[15]に記載の製造方法。
[17]
工程(4)の水素含有雰囲気下での加熱工程は、70℃~200℃の範囲の温度で、0.2時間から20時間の範囲で実施する[10]~[14]のいずれか1項に記載の製造方法。
本発明は、炭素材料に白金とルテニウムの合金を担持した、燃料電池用アノード用触媒である。この触媒は、前記合金における、白金とルテニウムのモル比(Pt:Ru)は、1:1~5の範囲であり、X線吸収微細構造により測定された前記合金中の原子サイトのPt原子の配位数及びRu原子の配位数をそれぞれN(Pt)及びN(Ru)と表したとき、白金サイトにおけるN(Ru)/(N(Pt)+N(Ru))が理論値の0.8~1.1倍の範囲であり、RuサイトにおけるN(Pt)/(N(Ru)+N(Pt))が理論値の0.8~1.1倍の範囲であり、前記合金の平均粒子径は1~5nmの範囲であり、粒子経の標準偏差は2nm以下の範囲である。
本発明の燃料電池用アノード用触媒の製造方法について説明する。本発明は、この製造方法も本発明として包含する。本発明の燃料電池用アノード用触媒の製造方法は以下の工程(1)~(4)を含む。
(1)炭素材料に白金化合物及びルテニウム化合物を担持する工程、
(2)工程(1)で白金化合物及びルテニウム化合物を担持した炭素材料を水素含有雰囲気下に置く工程、
(3)工程(2)で得られた炭素材料をヘリウム含有雰囲気下で加熱する工程、
(4)工程(3)で得られた炭素材料を水素含有雰囲気下で加熱する工程、
を含む。
工程(1)では、炭素材料に白金化合物及びルテニウム化合物を担持する。工程(1)においては、例えば、炭素材料に白金化合物を担持し、次いでルテニウム化合物を担持することができる。逆に、炭素材料にルテニウム化合物を担持し、次いで白金化合物を担持することもできる。炭素材料は前述の説明の通りである。白金化合物としては、例えば、ジニトロジアミン白金硝酸等を挙げることができる。但し、この化合物に限定される意図ではなく、一般に白金や白金合金を調製する際に利用される白金化合物を適宜使用することができる。ルテニウム化合物としては、例えば、RuCl3n(H2O)等を挙げることができる。しかし、この化合物に限定される意図ではなく、一般にルテニウムやルテニウム合金を調製する際に利用されるルテニウム化合物を適宜使用することができる。白金化合物及びルテニウム化合物は、所望の白金及びルテニウムのモル比、さらには白金及びルテニウムの担持量を考慮して、炭素材料に担持する。担持方法には特に制限はなく、例えば、白金化合物及びルテニウム化合物を含有する水溶液に炭素材料を含浸することで実施できる。上記水溶液には、含浸を促進する助剤を適宜添加することもできる。
工程(2)は、工程(1)において、白金化合物及びルテニウム化合物を担持した炭素材料を水素含有雰囲気下に置く工程である。この工程では、炭素材料に担持された白金化合物及びルテニウム化合物を還元する。水素含有雰囲気は、水素雰囲気、即ち、水素のみの雰囲気であることもできるが、水素に不活性ガスを含有するものであることもできる。不活性ガスとしてはアルゴン等を例示できる。水素と不活性ガスの混合ガスを用いる場合には、水素の含有量は、例えば、2~10%の範囲であることが、穏やかに還元するという観点から適当である。水素含有雰囲気は、水素ガスまたは水素含有ガスの充填した反応容器内で行うことも、これらのガスを流通させた反応容器内で行うこともできる。
工程(3)は、工程(2)で得られた炭素材料をヘリウム含有雰囲気下で加熱する工程である。この工程では、炭素材料に担持された白金化合物及びルテニウム化合物(その少なくとも一部は、工程(2)において還元されて金属となっている)からPtRu合金または合金の前駆体が生成する。ヘリウム含有雰囲気は、ヘリウム雰囲気、即ち、ヘリウムのみの雰囲気であることもできるが、ヘリウムに他の不活性ガスを含有するものであることもできる。不活性ガスとしてはアルゴン、窒素等を例示できる。ヘリウムと不活性ガスの混合ガスを用いる場合には、ヘリウムの含有量は、例えば、20~100%の範囲であることが、熱処理後に冷却する際に、後述のように急冷が可能であるという観点から適当である。ヘリウム含有雰囲気は、ヘリウムガスまたはヘリウム含有ガスの充填した反応容器内で行うことも、これらのガスを流通させた反応容器内で行うこともできる。また、加熱は、加熱効率を高めるという観点からは、ヘリウムガスまたはヘリウム含有ガスを充填した(非流通下)反応容器内で行い、冷却の際は、冷却効果を高める観点から、ヘリウムガスまたはヘリウム含有ガスを流通させて行うこともできる。
工程(4)は、工程(3)で得られた炭素材料を水素含有雰囲気下で加熱する工程である。
この工程では、工程(3)で生成したPtとRuが分散した状態を有する合金を維持しつつ、完全には還元されていない白金化合物及びルテニウム化合物またはそれらから誘導された合金の前駆体が還元されて合金化する。水素含有雰囲気は、水素雰囲気、即ち、水素のみの雰囲気であることもできるが、水素に不活性ガスを含有するものであることもできる。不活性ガスとしてはアルゴン等を例示できる。水素と不活性ガスの混合ガスを用いる場合には、水素の含有量は、例えば、5~20%の範囲であることが、緩やかに還元するという観点から適当である。
本発明は、上記本発明の触媒とプロトン伝導性ポリマーを含むアノード用組成物からなる層を基板表面に有する燃料電池用アノードを包含する。
さらに本発明は、高分子電解質膜を挟んで上記本発明のアノードとカソードを積層した、燃料電池用膜電極接合体を包含する。
さらに本発明は、上記本発明の燃料電池用膜電極接合体を含む燃料電池を包含する。
(1)-1Ptの担持方法
1. TKKカーボンE担体(比表面積900m2/g)0.56506gとジニトリジアミン白金硝酸溶液8.2675gと蒸留水少々を超音波で混ぜる。蒸留水が全部で200mLになるまで蒸留水を追加し、エタノール25mLを加えた。
2. 還流管をつけて92℃以上で8時間攪拌した。
3. 蒸留水1L程度で洗浄ろ過した。
1. RuCl3n(H2O)を0.75745g(PtとRuの比率(モル比)は1:3である)と蒸留水少々を超音波でよく混ぜる。これを3口フラスコに入れ、水の量が全部で85mLになるまで蒸留水を追加し、メタノール9mLを加えた。
2. 65℃で攪拌しながら6-8時間還流還元した。おおかた色が消えたが色が完全に消えないので温度を70℃に上げて6~8時間放置した。まだ色が消えないのでメタノールを10mL加え一晩おいた。まだ色が消えないので85℃に上げて6~8時間放置した。
3. 蒸留水2リットルを適当な温度に加熱して、これで触媒をろ過・洗浄した。
4. 80℃で一晩乾燥させた。
5. 触媒を細かく砕いて粉末にした。
6. 触媒0.1gを石英のボートにのせた。
1. ボートを100V用管状炉に設置した。
2. Heを60mL/分で流し、30分間放置した。
3. H2(5%)+Arを60mL/分で流し、初めの10分は温度が上昇しその後下がった。次いで、1時間放置した。
4. Heを60mL/分で流し、60分間放置した。
1. Heを60mL/分で流し、AC100Vをスライダックで115Vに上げる。
2. 管状炉を115Vで通電した。約11分で890℃程度に到達した(加熱速度約80℃/分)。
3. 890℃に到達した瞬間電源を切った。余熱で900℃程度に到達し、温度が急速に下がり始め、約1分で750℃になった(冷却速度150℃/分)。
4. 600℃くらいになったら管状炉の蓋を開け、750℃から500℃まで約17分であった(冷却速度約15℃/分)。
1. 室温で、H2(5%)+Arを60mL/分で流し、4℃/分で昇温し150℃にした。
2. 150℃で、2時間保持した。
3. 室温まで冷却した。
4. ガスをN2に変え60mL/分で流した。
RuCl3・nH2Oを0.75745g使用する代わりに0.378g使用して、PtとRuの比率(モル比)が2:3となるように調整したこと以外は、実施例1と同様にしてPtRu/C触媒を得た。
得られたPtRu/C触媒粒子をSTEM測定した結果、PtRu粒子の平均粒子経は2.35nmであり、粒子経の標準偏差は1.16nmであった。
TKKカーボンE担体を使用する代わりに、多孔質炭素(比表面積1800m2/g)を使用した以外は、実施例1と同様にしてPtRu/C触媒を得た。得られたPtRu/C触媒粒子をSTEM測定した結果、PtRu粒子の平均粒子経は2.35nmであり、粒子経の標準偏差は1.16nmであった。
比較例1で使用した触媒は市販のPt2Ru3/C触媒である。その合金度は、XAFS測定より、N(Ru)/(N(Pt)+N(Ru))比が0.54、及びN(Pt)/(N(Ru)+N(Pt))比が0.31であった。
燃料として純水素を使用した場合を基準にして、水素燃料に含まれる一酸化炭素によって電圧がどの程度降下するか評価した。表1及び図1にアノード触媒として実施例1、3及び比較例1の触媒をそれぞれ用いた燃料電池の電流密度0.2A/cm2における電圧の測定結果を示す。
条件は以下の通りである。
電解質: Nafion(登録商標) NRE 212
カソード:Pt/C (0.5 mg/cm2);ガス:O2;流速:80 mL/分;70℃加湿.
アノード:各種PtRu/C (0.5 mg-PtRu/cm2);
ガス:0-2000 ppm COを含む水素;流速:80 mL/分;70℃加湿.
(SnO2/C担体)
1. 薬包紙にSnCl2・2H2O 89.4mg 秤量、三口フラスコに投入した。
2. エチレングリコール溶液を適量投入した。
3. オイルバス(シリコンオイル)で190℃まで加熱し、30min後に室温まで静置した。
4. カーボン粉末(E担体)(比表面積900m2/g)1.866gを秤量し50mlビーカーに入れた。
5. 40ml付近までEGを入れ、数分間超音波震盪した。
6. フラスコに投入し、水を加えてオイルバス90℃で一夜攪拌した。
7. エチレングリコール除去の為、吸引ビン3倍分熱湯で吸引ろ過洗浄した。
8. 数時間乾燥した。
9. 熱処理を行った。N2 60ml/分流通下で30min昇温し、80℃で10時間乾燥した。
1.上記で得られたSnO2/C(80℃ N2 Dry)を0.5651g秤量した。
2.純水100mlで攪拌し、2分超音波分散した後、フラスコへ投入した。
3.Pt(NO2)(NH2) (0.4579wt%) 8.31gを秤量した。
4.純水100mlで攪拌、2分超音波分散した後、フラスコへ投入した。
5.常温にて1~2時間攪拌した。
6.エタノール30mlをラスコへ投入した。
7.オイルバス、95℃で一夜加熱した。その後、減圧ろ過工程へ移送した。
8.減圧ろ過した後、常温乾燥した(5時間~一晩)。
9.N2 60ml/分を室温(25℃)にて30分~1時間流した。(air抜きのためである)
10.昇温した。30分で80℃に上げ、10時間キープ後、自然冷却した。
11.焼成終了後、ガラス管の栓を開けて静置30分。(N2は止めない。急に空気に触れると発火する恐れがある。)
12.N2を止めてさらに30分静置した。
13.前工程で得られた試料1.27gを秤量した。
14.RuCl3(99.9%)0.926gを秤量した。
15.純水100mlで2分超音波分散した後、フラスコへ投入した。
16.常温、100rpmにて1~2時間攪拌した。
17.Me-OH 10mlを添加し、オイルバス(70℃)一夜加熱した。
その後、還元工程(2)、熱処理工程(3)は実施例1と同様に行って、PtRu/SnO2/C触媒を得た。PtとRuの比率(モル比)は2:3であり、PtとRuに対するSnO2(SnO2/(Pt+Ru))は、1/50(質量比)である。得られたPtRu/SnO2/C触媒粒子をSTEM測定した結果、PtRu粒子の平均粒子経および粒子径の標準偏差は実施例1の場合と同等であった。
カーボン粉末(E担体)1.866g秤量((SnO2 1wt%の場合)を,1.134g(SnO2 2.5wt%の場合)とした以外は、実施例5と同様に行って、PtRu/SnO2/C触媒を得た。PtとRuの比率(モル比)は2:3であり、PtとRuに対するSnO2(SnO2/(Pt+Ru))は、1/20(質量比)である。得られたPtRu/SnO2/C触媒粒子をSTEM測定した結果、PtRu粒子の平均粒子経および粒子径の標準偏差は実施例1の場合と同等であった。
実施例5で調製したPtRu/SnO2/C触媒及び比較例1に示したPt2Ru3/C触媒について、電気化学CO酸化性能を、「その場FTIR解析」により求めた。条件は以下の通りである。結果は図2に示す。
セル温度.: 25℃; 0.1 M HClO4
1) 純COを0.05 Vで、0.1 M HClO4電解質溶液に、20分流通させる。
2) Arを流通し、溶液中に溶解したCOを35分除去した。
3) 25℃で0.00 - 0.5 Vの範囲を0.25 mV/sで掃引した。解像度 8 cm-1, 25 scans
燃料として純水素を使用した場合を基準にして、水素燃料に含まれる一酸化炭素によって電圧がどの程度降下するか評価した。図1にアノード触媒として実施例5、6及び比較例1の触媒をそれぞれ用いた燃料電池の電流密度0.2A/cm2における電圧の測定結果を示す。
条件は以下の通りである。
電解質:Nafion(登録商標)NRE 212
カソード:Pt/C(0.5 mg/cm2);ガス:O2;流速:80 mL/分;70℃加湿
アノード:各種Pt2Ru3/C(0.5 mg-PtRu/cm2);
ガス:0-2000 ppm COを含む水素;流速:80 mL/分;70℃加湿
SnO2/C(80℃ N2 Dry)をTiO2/C (TiO2 2.5wt%)とした以外は、実施例5の白金担持工程を同様に行って、PtRu/TiO2/Cを得た。PtとRuの比率(モル比)は2:3であり、PtとRuに対するTiO2 (TiO2/(Pt+Ru))は、1/20である。得られたPtRu/TiO2/C触媒粒子をSTEM測定した結果、PtRu粒子の平均粒子経および粒子経の標準偏差は実施例1と同等であった。
SnO2/C担体(9)の熱処理のあとに、300℃で空気焼成を30分行うことを追加した以外は、実施例5と同様に行って。PtRu/SnO2/Cを得た。PtとRuの比率(モル比)は2:3であり、PtとRuに対するSnO2 (SnO2/(Pt+Ru))は、1/50である。得られたPtRu/SnO2/C触媒粒子をSTEM測定した結果、PtRu粒子の平均粒子経および粒子経の標準偏差は実施例1と同等であった。
アノード触媒として実施例9および10を用いる以外は、実施例8と同様な測定を行った。図3に結果を示す。
Claims (17)
- 炭素材料に白金とルテニウムの合金を担持した、燃料電池用アノード用触媒であって、前記合金における、白金とルテニウムのモル比(Pt:Ru)は、1:1~5の範囲であり、X線吸収微細構造により測定された前記合金中の原子サイトのPt原子の配位数及びRu原子の配位数をそれぞれN(Pt)及びN(Ru)と表したとき、白金サイトにおけるN(Ru)/(N(Pt)+N(Ru))が理論値の0.8~1.1倍の範囲であり、RuサイトにおけるN(Pt)/(N(Ru)+N(Pt))が理論値の0.8~1.1倍の範囲であり、前記合金の平均粒子径は1~5nmの範囲であり、粒子経の標準偏差は2nm以下の範囲である、前記触媒。
- 平均粒子径が1~5nmの範囲である金属酸化物をさらに担持した請求項1に記載の触媒。
- 金属酸化物がスズ酸化物である請求項2に記載の触媒。
- 炭素材料は、平均粒子径が10nm~10mmの範囲である粒子である請求項1~3のいずれか1項に記載の触媒。
- 白金サイトにおけるN(Ru)/(N(Pt)+N(Ru))が理論値の0.9~1.1倍の範囲であり、RuサイトにおけるN(Pt)/(N(Ru)+N(Pt))が理論値の0.9~1.1倍の範囲である請求項1~4のいずれか1項に記載の触媒。
- 燃料電池がメタノール燃料電池である請求項1~5のいずれか1項に記載の触媒。
- 請求項1~5のいずれか1項に記載の触媒とプロトン伝導性ポリマーを含むアノード用組成物からなる層を基板表面に有する燃料電池用アノード。
- 高分子電解質膜を挟んで請求項7に記載のアノードとカソードを積層した、燃料電池用膜電極接合体。
- 請求項8に記載の燃料電池用膜電極接合体を含む燃料電池。
- (1)炭素材料に白金化合物及びルテニウム化合物を担持する工程、
(2)工程(1)で白金化合物及びルテニウム化合物を担持した炭素材料を水素含有雰囲気下に置く工程、
(3)工程(2)で得られた炭素材料をヘリウム含有雰囲気下で加熱する工程、
(4)工程(3)で得られた炭素材料を水素含有雰囲気下で加熱する工程、
を含む、請求項1に記載の燃料電池用アノード用触媒の製造方法。 - 工程(1)の前に炭素材料に金属酸化物を担持する工程をさらに含む請求項10に記載の製造方法。
- 工程(1)においては、炭素材料に白金化合物を担持し、次いでルテニウム化合物を担持する請求項10または11に記載の製造方法。
- 工程(2)の水素含有雰囲気下に置く工程は、0℃~50℃の範囲の温度で、0.1時間から10時間の範囲で実施する請求項10~12のいずれか1項に記載の製造方法。
- 工程(3)のヘリウム含有雰囲気下での加熱工程は、700℃~1000℃の範囲の温度で、0.05時間から5時間の範囲で実施する請求項10~13のいずれか1項に記載の製造方法。
- 700℃~1000℃の範囲の温度での加熱後、500℃以下の温度まで、冷却速度10~200℃/分で冷却する、請求項14に記載の製造方法。
- 750℃から500℃まで冷却速度10~20℃/分で冷却する請求項15に記載の製造方法。
- 工程(4)の水素含有雰囲気下での加熱工程は、70℃~200℃の範囲の温度で、0.2時間から20時間の範囲で実施する請求項10~14のいずれか1項に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507416A JP5967548B2 (ja) | 2011-03-25 | 2012-03-21 | 燃料電池用アノード用触媒及びその製造方法 |
EP12764072.0A EP2690692B1 (en) | 2011-03-25 | 2012-03-21 | Fuel cell anode catalyst and manufacturing method therefor |
US14/007,325 US20140017594A1 (en) | 2011-03-25 | 2012-03-21 | Fuel cell anode catalyst and manufacturing method therefor |
US15/378,807 US20170098834A1 (en) | 2011-03-25 | 2016-12-14 | Fuel cell anode catalyst and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-068296 | 2011-03-25 | ||
JP2011068296 | 2011-03-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/007,325 A-371-Of-International US20140017594A1 (en) | 2011-03-25 | 2012-03-21 | Fuel cell anode catalyst and manufacturing method therefor |
US15/378,807 Division US20170098834A1 (en) | 2011-03-25 | 2016-12-14 | Fuel cell anode catalyst and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012133017A2 true WO2012133017A2 (ja) | 2012-10-04 |
WO2012133017A3 WO2012133017A3 (ja) | 2012-11-29 |
Family
ID=46932020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057109 WO2012133017A2 (ja) | 2011-03-25 | 2012-03-21 | 燃料電池用アノード用触媒及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20140017594A1 (ja) |
EP (1) | EP2690692B1 (ja) |
JP (1) | JP5967548B2 (ja) |
WO (1) | WO2012133017A2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2995821B1 (en) | 2014-07-30 | 2018-11-07 | R-Flow Co., Ltd. | Piezo fan |
DE102018116373A1 (de) | 2018-07-06 | 2020-01-09 | Schaeffler Technologies AG & Co. KG | Katalysatoranordnung für ein Elektrolyseursystem oder ein Brennstoffzellensystem, Elektrolyseursystem, Brennstoffzellensystem, Verwendung einer Katalysatoranordnung und Verfahren zur Herstellung einer Katalysatoranordnung |
WO2020246491A1 (ja) * | 2019-06-03 | 2020-12-10 | 東洋炭素株式会社 | 白金担持触媒、燃料電池用カソード、燃料電池、および白金担持触媒の製造方法 |
CN114420952A (zh) * | 2021-12-17 | 2022-04-29 | 湘潭大学 | 一种提高甲醇电催化氧化性能的PtRu纳米线制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999066576A1 (fr) | 1998-06-16 | 1999-12-23 | Tanaka Kikinzoku Kogyo K.K. | Catalyseur pour pile a combustible du type a electrolyte solide polymere et procede de production d'un catalyseur pour une telle pile |
US6007934A (en) | 1997-05-21 | 1999-12-28 | Degussa Aktiengesellschaft | Co-tolerant anode catalyst for PEM fuel cells and a process for its preparation |
US6066410A (en) | 1997-12-19 | 2000-05-23 | Degussa Aktiengesellschaft | Anode catalyst for fuel cells with polymer electrolyte membranes |
JP3839961B2 (ja) | 1998-06-16 | 2006-11-01 | 田中貴金属工業株式会社 | 高分子固体電解質型燃料電池用触媒の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01227361A (ja) * | 1988-03-07 | 1989-09-11 | Fuji Electric Co Ltd | 燃料電池用アノード電極の製造方法 |
US6686308B2 (en) * | 2001-12-03 | 2004-02-03 | 3M Innovative Properties Company | Supported nanoparticle catalyst |
JP2005177661A (ja) * | 2003-12-22 | 2005-07-07 | Hitachi Maxell Ltd | PtRu合金触媒の製造方法 |
US20060014637A1 (en) * | 2004-07-16 | 2006-01-19 | Lixin Cao | Metal alloy for electrochemical oxidation reactions and method of production thereof |
US7713910B2 (en) * | 2004-10-29 | 2010-05-11 | Umicore Ag & Co Kg | Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith |
KR100670267B1 (ko) * | 2005-01-06 | 2007-01-16 | 삼성에스디아이 주식회사 | 연료전지용 백금/루테늄 합금촉매 |
US8252485B2 (en) * | 2007-03-13 | 2012-08-28 | Cabot Corporation | Electrocatalyst compositions and processes for making and using same |
US20100081036A1 (en) * | 2008-09-26 | 2010-04-01 | Samsung Electronics Co., Ltd. | Alcohol oxidation catalyst, method of manufacturing the same, and fuel cell using the alcohol oxidation catalyst |
JP2010140767A (ja) * | 2008-12-11 | 2010-06-24 | Toyota Motor Corp | 燃料電池のエージング方法 |
US8993198B2 (en) * | 2009-08-10 | 2015-03-31 | Korea University Research And Business Foundation | Process of preparing PT/support or PT alloy/support catalyst, thus-prepared catalyst and fuel cell comprising the same |
JP2011044334A (ja) * | 2009-08-21 | 2011-03-03 | Hitachi Ltd | 燃料電池用Pt系触媒、その製造方法、燃料電池用膜電極接合体および燃料電池 |
JP5471252B2 (ja) * | 2009-09-30 | 2014-04-16 | 国立大学法人北海道大学 | 合金化度と分散性を制御したPtRu/C触媒及びその製造方法 |
-
2012
- 2012-03-21 EP EP12764072.0A patent/EP2690692B1/en not_active Not-in-force
- 2012-03-21 JP JP2013507416A patent/JP5967548B2/ja not_active Expired - Fee Related
- 2012-03-21 US US14/007,325 patent/US20140017594A1/en not_active Abandoned
- 2012-03-21 WO PCT/JP2012/057109 patent/WO2012133017A2/ja active Application Filing
-
2016
- 2016-12-14 US US15/378,807 patent/US20170098834A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6007934A (en) | 1997-05-21 | 1999-12-28 | Degussa Aktiengesellschaft | Co-tolerant anode catalyst for PEM fuel cells and a process for its preparation |
US6066410A (en) | 1997-12-19 | 2000-05-23 | Degussa Aktiengesellschaft | Anode catalyst for fuel cells with polymer electrolyte membranes |
WO1999066576A1 (fr) | 1998-06-16 | 1999-12-23 | Tanaka Kikinzoku Kogyo K.K. | Catalyseur pour pile a combustible du type a electrolyte solide polymere et procede de production d'un catalyseur pour une telle pile |
US6339038B1 (en) | 1998-06-16 | 2002-01-15 | Tanaka Kikinzoku Kogyo K. K. | Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof |
JP3839961B2 (ja) | 1998-06-16 | 2006-11-01 | 田中貴金属工業株式会社 | 高分子固体電解質型燃料電池用触媒の製造方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2690692A4 |
TADA ET AL.: "The Effect of the Composition Ratio of Thermal Diffusion Platinum-Ruthenium Alloy Catalysts on Carbon Monoxide Poisoning Tolerance Characteristics", J. ELECTROCHEM. SOC. JAPAN, vol. 76, no. 11, 2008, pages 813 |
Also Published As
Publication number | Publication date |
---|---|
EP2690692A4 (en) | 2014-12-24 |
EP2690692B1 (en) | 2018-05-23 |
EP2690692A2 (en) | 2014-01-29 |
US20170098834A1 (en) | 2017-04-06 |
JP5967548B2 (ja) | 2016-08-10 |
US20140017594A1 (en) | 2014-01-16 |
WO2012133017A3 (ja) | 2012-11-29 |
JPWO2012133017A1 (ja) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pinheiro et al. | Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon | |
EP2477264B1 (en) | Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode including the active particles for lithium air battery, and lithium air battery including the electrode | |
JP6232505B2 (ja) | 燃料電池用電極触媒及びその製造方法 | |
KR100696463B1 (ko) | 고농도 탄소 담지 촉매, 그 제조방법, 상기 촉매를 이용한촉매전극 및 이를 이용한 연료전지 | |
EP2270907B1 (en) | Catalyst for fuel cell, fuel cell system and associated methods | |
JP2006147563A (ja) | 金属触媒とその製造方法,電極の製造方法,および燃料電池 | |
CN103227333A (zh) | 复合物、含其的催化剂、含其的燃料电池和锂空气电池 | |
CN1801514A (zh) | 用于燃料电池的Pt/Ru合金催化剂 | |
US11450861B2 (en) | Anode catalyst layer for fuel cell and fuel cell using same | |
JP5967548B2 (ja) | 燃料電池用アノード用触媒及びその製造方法 | |
US11621428B2 (en) | Anode catalyst layer for fuel cell and fuel cell using same | |
KR100668356B1 (ko) | 산소환원전극 및 이를 구비한 연료전지 | |
JP2006210135A (ja) | 触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに電気化学デバイス | |
WO2020059502A1 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
US11901567B2 (en) | Anode catalyst layer for fuel cell and fuel cell using same | |
JP2009070733A (ja) | 単室型燃料電池及び修飾酸化マンガンの製造方法 | |
Uddin et al. | Platinum group metal-free catalysts for fuel cells: status and prospects | |
JP2006278217A (ja) | 燃料電池及び膜電極接合体 | |
WO2023037953A1 (ja) | 導電性チタン酸化物、金属担持導電性チタン酸化物、膜電極接合体、固体高分子形燃料電池、導電性チタン酸化物の製造方法、及び金属担持導電性チタン酸化物の製造方法 | |
WO2023167199A1 (ja) | 電極触媒及びその製造方法並びに燃料電池 | |
Zhou et al. | Tailoring three-phase microenvironment for high-performance oxygen reduction reaction in PEMFCs | |
Maillard et al. | New and Future Developments in Catalysis: Chapter 17. Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764072 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2013507416 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14007325 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012764072 Country of ref document: EP |