WO2010047415A1 - 固体高分子型燃料電池触媒、固体高分子型燃料電池用電極、及び燃料電池 - Google Patents
固体高分子型燃料電池触媒、固体高分子型燃料電池用電極、及び燃料電池 Download PDFInfo
- Publication number
- WO2010047415A1 WO2010047415A1 PCT/JP2009/068542 JP2009068542W WO2010047415A1 WO 2010047415 A1 WO2010047415 A1 WO 2010047415A1 JP 2009068542 W JP2009068542 W JP 2009068542W WO 2010047415 A1 WO2010047415 A1 WO 2010047415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- carbon material
- gas diffusion
- layer
- fuel cell
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 845
- 239000000446 fuel Substances 0.000 title claims abstract description 121
- 239000007787 solid Substances 0.000 title claims abstract description 31
- 229920000642 polymer Polymers 0.000 title claims abstract description 26
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 631
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 148
- 238000001179 sorption measurement Methods 0.000 claims abstract description 68
- 239000007789 gas Substances 0.000 claims description 280
- 238000009792 diffusion process Methods 0.000 claims description 238
- 239000002001 electrolyte material Substances 0.000 claims description 100
- 239000012528 membrane Substances 0.000 claims description 50
- 239000003792 electrolyte Substances 0.000 claims description 41
- 238000004220 aggregation Methods 0.000 claims description 39
- 230000002776 aggregation Effects 0.000 claims description 39
- 238000011156 evaluation Methods 0.000 claims description 35
- 239000005518 polymer electrolyte Substances 0.000 claims description 32
- 238000010521 absorption reaction Methods 0.000 claims description 27
- 239000012752 auxiliary agent Substances 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 230000004931 aggregating effect Effects 0.000 claims description 6
- 239000002482 conductive additive Substances 0.000 claims description 6
- 230000010757 Reduction Activity Effects 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000010248 power generation Methods 0.000 abstract description 25
- 239000010410 layer Substances 0.000 description 493
- 239000012071 phase Substances 0.000 description 130
- 238000012360 testing method Methods 0.000 description 100
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 70
- 239000000976 ink Substances 0.000 description 61
- 238000000034 method Methods 0.000 description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 48
- 239000011248 coating agent Substances 0.000 description 38
- 238000000576 coating method Methods 0.000 description 38
- 239000000463 material Substances 0.000 description 31
- 239000002245 particle Substances 0.000 description 31
- 229910052697 platinum Inorganic materials 0.000 description 29
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 28
- 230000006870 function Effects 0.000 description 27
- 229920000557 Nafion® Polymers 0.000 description 26
- 229910052799 carbon Inorganic materials 0.000 description 26
- 230000000694 effects Effects 0.000 description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 239000006229 carbon black Substances 0.000 description 24
- 239000004809 Teflon Substances 0.000 description 21
- 229920006362 Teflon® Polymers 0.000 description 21
- 239000011148 porous material Substances 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 20
- 239000002904 solvent Substances 0.000 description 20
- 230000006866 deterioration Effects 0.000 description 19
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- 239000007788 liquid Substances 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- 239000011164 primary particle Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 13
- 229910052786 argon Inorganic materials 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000036571 hydration Effects 0.000 description 12
- 238000006703 hydration reaction Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 7
- 238000007731 hot pressing Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910000510 noble metal Inorganic materials 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 238000005087 graphitization Methods 0.000 description 5
- -1 hydrogen cations Chemical class 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000009966 trimming Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 230000003020 moisturizing effect Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- 238000004438 BET method Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 238000010000 carbonizing Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007850 degeneration Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000005429 filling process Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004909 Moisturizer Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000705939 Shortia uniflora Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical class C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000001333 moisturizer Effects 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012052 hydrophilic carrier Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000012078 proton-conducting electrolyte Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
- H01M4/8673—Electrically conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8689—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a polymer electrolyte fuel cell catalyst, a polymer electrolyte fuel cell electrode using the same, and a combustion cell having the same.
- a polymer electrolyte fuel cell catalyst that exhibits high performance even when the catalyst layer cannot be sufficiently humidified due to restrictions in the use environment, or when low humidification operation is temporarily imposed due to fluctuations in operating conditions.
- the present invention relates to an electrode used and a fuel cell having the same.
- Solid polymer fuel cells are being developed as clean power sources using hydrogen as a fuel, electric power sources for electric vehicles, and stationary power sources that use both power generation and heat supply.
- solid polymer fuel cells are characterized by a high energy density compared to secondary batteries such as lithium ion batteries, and power sources for portable computers or mobile communication devices that require high energy density. Is also being developed.
- a typical unit cell of a polymer electrolyte fuel cell is basically composed of an anode (fuel electrode), a cathode (air electrode), and a proton-conducting solid polymer electrolyte membrane disposed between both electrodes.
- the anode and cathode are usually used as a thin film electrode comprising a catalyst in which a noble metal such as platinum is supported on a support carbon material, a pore-forming agent such as a fluororesin powder, and a solid polymer electrolyte.
- a noble metal such as platinum is used for the anode and cathode electrode catalyst of such a polymer electrolyte fuel cell.
- noble metals are expensive, in order to accelerate the practical use and spread of solid polymer fuel cells, it is required to reduce the amount used per unit area of the electrode. To that end, further improvement in catalytic activity is essential. is there.
- Patent Document 1 discloses that a peak intensity (I D ) in a range of 1300 to 1400 cm ⁇ 1 called a D-band obtained from a Raman spectrum by heat treatment or the like, and 1500 to 1600 cm ⁇ called a G-band. It is disclosed that a carbon material having a relative intensity ratio (I D / I G ) with a peak intensity (I G ) in the range of 1 adjusted to 0.9 to 1.2 is used as a catalyst support.
- the specific surface area of the carbon material used as the catalyst carrier is set to 800 m 2 / g or more and 900 m 2 / g or less, so that the power generation performance is high, the high solid state resistance that is excellent in high potential durability and fuel shortage durability is disclosed.
- An electrode structure of a molecular fuel cell is disclosed.
- One source of water for the polymer electrolyte material to be in a sufficiently wet state is water generated at the cathode by power generation.
- the amount of water produced depends on the load condition (current density). That is, when power generation is stopped or during low load operation, the amount of water produced is small, the polymer electrolyte material dries, and proton conductivity tends to decrease.
- the amount of water generated during high-load operation is large, and excess water that cannot be absorbed by the polymer electrolyte material tends to block pores serving as gas diffusion paths.
- a humidifier is generally used as a stable water source that does not depend on load conditions. There are used a method of humidifying a gas to be supplied by passing it through water previously kept at a constant temperature, or a method of supplying water kept at a constant temperature directly to the cell.
- a method of humidifying a gas to be supplied by passing it through water previously kept at a constant temperature or a method of supplying water kept at a constant temperature directly to the cell.
- an electrolyte membrane has been conventionally used by using a hydrophilic component in the gas diffusion layer, the catalyst layer, or the intermediate layer disposed between the gas diffusion layer and the catalyst layer.
- a method for moisturizing the electrolyte material inside the catalyst layer has been proposed.
- Patent Document 4 as a fuel cell exhibiting excellent startability even in a low-temperature atmosphere, a moisture moisturizer is contained in the catalyst layer of the anode, and the moisture moisturizer is subjected to a hydrophilization treatment (hydrophilic treatment treatment). And carbon black).
- Patent Document 5 contains hydrophilic particles supporting hydrophobic particles such as silica particles supporting Teflon (registered trademark) particles in a catalyst layer for the purpose of providing a fuel cell that can cope with a wide range of humidification conditions. Is disclosed.
- Patent Document 7 proposes a fuel cell in which a carrier made of a carbon material partially containing mesoporous carbon particles is used as a catalyst carrier.
- the degree of graphitization and the surface area of the carbon material can be controlled. However, if the degree of graphitization is increased or the specific surface area is reduced, there is no doubt that the resistance to oxidation consumption is improved. However, even if the degree of graphitization and the specific surface area are the same, the resistance to oxidation consumption is high. In order to obtain a carbon material that is low and has a high resistance to oxidation exhaustion, it was necessary to clarify what caused it. Further, when the degree of graphitization is increased or the specific surface area is decreased, not only the dispersibility of the catalyst particles is lowered, but also the moisture retention is lowered, and as a result, the fuel cell performance is lowered.
- Patent Document 3 and Patent Document 5 are hydrophilic, but contain a material that does not have conductivity or proton conductivity in the catalyst layer, so the electron or proton transfer path is interrupted. There is a problem that the internal resistance increases.
- the present inventors have heretofore made a carbon material that is a main component of the catalyst layer, a carbon material carrying a catalyst component (hereinafter referred to as a catalyst carrier carbon material) and a carbon material not carrying a catalyst component (hereinafter referred to as a carbon material).
- the gas diffusion carbon material is contained in the catalyst layer separately, and at least two types of carbon materials having different hydration properties (hydration power) are used for the gas diffusion carbon material.
- a fuel cell having a catalyst layer for a fuel cell has been developed that can maintain the material in a suitable wet state at all times and prevent the gas diffusion path from being blocked by condensed water under high humidification conditions. Thereby, it became possible to express high performance irrespective of humidification conditions.
- the proposal using the activated carbon of Patent Document 6 that can be expected to retain the water of the catalyst carrier is sufficient in terms of the water retention in the vicinity of the catalyst particles. It can be said that.
- the activated carbon itself has a low electronic conductivity, and the hydrophilicity around the catalyst particles is too high, preventing the movement of gas in the vicinity of the catalyst. There was a problem.
- carbon materials other than mesoporous carbon are expected to have a function of enhancing the diffusibility of the reaction gas.
- carbon particles other than mesoporous carbon also have catalyst particles, they are used especially at the cathode during high-load operation.
- the water generated in the catalyst particles tends to hinder gas diffusion, and cannot be a universal catalyst layer under all conditions.
- Patent Document 8 proposes an electrode structure including an anode electrode including first catalyst carrier particles having a low water adsorption degree in the catalyst layer and second catalyst carrier particles having a high water adsorption amount in the water decomposition layer.
- the layer containing the low water adsorption carbon which is the first catalyst carrier particle does not have the battery performance because the water cannot be replenished from the catalyst carrier carbon under the low humidification condition.
- high water adsorption carbon, which is the second catalyst support particle of the water splitting layer assures only that the amount of water adsorption is large, so the performance at low humidification may be high. The durability is low.
- the present invention divides gas, electron, and proton transfer paths in a catalyst that has high resistance to oxidation consumption and that can exhibit high battery performance, and a catalyst layer using the catalyst.
- the electrolyte material in the catalyst layer is always kept in a suitable wet state under low humidification conditions or low load operation, and the gas diffusion path is blocked by condensed water even under high humidification conditions or high load operation.
- An object of the present invention is to provide a fuel cell having a fuel cell catalyst layer that can prevent this, that is, a fuel cell that exhibits high performance regardless of humidification conditions.
- the present inventors have solved the graphitization degree, oxygen concentration, specific surface area of the catalyst-supporting carbon material supporting the catalyst.
- the water vapor adsorption amount, oxidation resistance and consumption, and battery performance tend to match, and a catalyst comprising a catalyst-supported carbon material defined with the water vapor adsorption amount as an index.
- the present invention the catalyst of the present invention, and the polymer electrolyte fuel cell electrode and fuel cell including the catalyst are summarized as follows.
- the present inventors have intensively studied in order to solve the problem of improving the characteristics of the fuel cell, that is, expressing the high cell performance regardless of the humidification condition by the catalyst layer using the present catalyst. That is, paying attention to the water retention capacity in the catalyst layer used in the fuel cell, studying the material properties and higher order structure of the catalyst component, electrolyte material, and carbon material, the catalyst supported on the catalyst carrier is under all conditions.
- the catalyst layer structure was designed to function well.
- the components contained in the catalyst layer are divided into a catalyst carrier carbon material supporting the catalyst component, a gas diffusion carbon material not supporting the catalyst component, and a conductive assistant carbon material not supporting the catalyst component, Furthermore, the catalyst carrier carbon material is divided into a catalyst carrier carbon material A which is a catalyst according to the above (1) and (2) (hereinafter referred to as the present catalyst) and a catalyst carrier carbon material B which is a catalyst other than the catalyst carrier carbon material A. It was succeeded in achieving high functionality by dividing it into at least two types and compounding them in combination.
- the catalyst support carbon material B As a result of diligent examination of the optimum structure as the catalyst support carbon material B, a carbon material having a developed structure is selected and coexisted in the catalyst support carbon material A and the catalyst layer, particularly at high humidification conditions and at high load operation. It has also been found that blockage of the gas diffusion path by water can be effectively suppressed. In addition, for the purpose of supplementing the electron conductivity of the catalyst support carbon material A having a pore structure that easily retains water, the catalyst support carbon material B has an excellent property of electron conductivity, so that the internal resistance increases due to the electron conductivity. I also found out that
- the gas diffusion carbon material aggregate phase is an independent aggregate phase that does not contain an electrolyte substance or a catalyst component, a carbon material having a low water vapor adsorption characteristic is used as the gas diffusion carbon material forming the aggregate phase. Since the water repellency inherent in the surface can be utilized, a gas diffusion path can be effectively secured.
- the gist of the optimum catalyst layer structure including the catalyst of the present invention is as follows.
- the fuel cell using the present catalyst and the catalyst layer containing the present catalyst as an electrode has high durability such as oxidation resistance consumption of the catalyst support, combined with the effect of suppressing desorption of the catalyst metal component from the support, It is possible to improve durability under various environments.
- the carrier itself of the present invention has a high moisturizing ability, so that it is possible to suppress a decrease in proton conductivity due to moisture released from the catalyst in an operation situation in which the amount of water in the catalyst layer is reduced, such as during low humidification operation. This makes it possible to improve the output characteristics under low humidification conditions.
- the catalyst layer structure of the present invention is used to form the gas, electron, and proton transfer paths without being interrupted. Under low humidification conditions or low load conditions, While maintaining the electrolyte material in a suitable wet state at all times, the gas diffusion path is prevented from being blocked by condensed water even under high humidification conditions and high load conditions, and high output performance is exhibited regardless of the humidification conditions and load conditions. A fuel cell can be supplied. Therefore, the fuel cell system having the catalyst and the catalyst layer structure according to the present invention has high durability and high output performance under various operating environments.
- the catalyst for the polymer electrolyte fuel cell according to the present invention has a water vapor adsorption amount of a carbon material used as a catalyst carrier of 25 as well as a water vapor adsorption amount (V 10 ) at a relative humidity of 10% at 25 ° C.
- the amount of water vapor (V 90 ) at 90% relative humidity at 0 ° C. is defined.
- the amount of water vapor adsorbed at 25 ° C. and 10% relative humidity of the carbon material used as the catalyst support is better if only the oxidation resistance is considered, but the dispersibility when supporting the catalyst is the presence of functional groups.
- the lower limit is preferably 0.05 ml / g or more.
- the water vapor adsorption amount (V 90 ) at 25 ° C. and 90% relative humidity which is an index corresponding to the moisturizing ability of the catalyst, has a high value, and at the same time, high oxidation consumption resistance of the catalyst support carbon material.
- V 10 / V 90 the ratio of (V 90) is It was found that the ratio is 0.002 or less, which is suitable for achieving both high durability (oxidation wear resistance) and high moisturizing ability.
- V 10 / V 90 exceeds 0.002, durability will be lowered or moisture retention performance will be lowered. Therefore, it is more preferable that V 10 / V 90 is 0.0018 or less.
- the amount of water vapor adsorbed at 25 ° C. and relative humidity of 10% and 90% as an index in the present invention is shown by converting the amount of water adsorbed per 1 g of carbon material placed in an environment of 25 ° C. into the water vapor volume in the standard state. Index.
- the measurement of the water vapor adsorption amount at 25 ° C. and relative humidity of 10% and 90% of the carbon material can be performed using a commercially available water vapor adsorption amount measuring device.
- the water vapor adsorption amount in the present invention is an adsorption amount when the water vapor is gradually adsorbed on the carbon material by starting the adsorption from a vacuum state where the vapor pressure of the water vapor is zero, and gradually increasing the relative pressure of the water vapor.
- the values of relative humidity 10% and 90% are used.
- the above-mentioned types of carbon materials having the water vapor adsorption amount specified in the present invention can be selected.
- activation treatment such as alkali activation, water vapor activation, carbon dioxide gas activation, zinc chloride activation or the like can be performed.
- the water vapor adsorption amount can also be controlled by performing heat treatment in an active atmosphere, a reducing gas atmosphere, or an atmosphere containing an oxidizing gas.
- the particle diameter of the carbon material used as the catalyst is more preferably 10 nm or more and 5 ⁇ m or less.
- a carbon material larger than this range can be used after being pulverized, and is preferably pulverized. If the particle diameter exceeds 5 ⁇ m, the gas diffusion path and proton conduction path are likely to be interrupted, and the amount of the catalyst component used is particularly limited for economic reasons.
- a catalyst layer having a thickness of about 10 ⁇ m When it is desired to exhibit performance, the distribution of the catalyst-carrying carbon material in the catalyst layer tends to be nonuniform, which may not be preferable.
- the particle diameter is less than 10 nm, the electron conductivity is lowered, which is not preferable.
- the particle size of the carbon material is preferably 15 nm or more and 4.5 ⁇ m or less.
- the method for producing the solid polymer fuel cell catalyst of the present invention is not particularly limited, but a reducing agent is obtained after dissolving a metal chloride such as chloroplatinic acid, a metal nitrate, or a metal complex in a solvent such as water or an organic solvent.
- a metal chloride such as chloroplatinic acid, a metal nitrate, or a metal complex
- a solvent such as water or an organic solvent.
- a catalytically active component containing platinum is supported on a carbon support (liquid phase adsorption) is preferable.
- the reducing agent include alcohols, phenols, citric acids, ketones, aldehydes, carboxylic acids, ethers, and the like.
- the electrolyte membrane When applied to a polymer material such as a Teflon (registered trademark) sheet, the electrolyte membrane is sandwiched between two polymer materials such as a Teflon (registered trademark) sheet so that the catalyst layer and the electrolyte membrane are in contact with each other.
- the catalyst layer can be fixed to the electrolyte membrane by using the method and a hot press is performed by sandwiching the catalyst layer between two gas diffusion layers, thereby producing a membrane / electrode assembly (Mebrane Electrode Assembly, MEA).
- the catalyst-carrying carbon material A has the function of storing water in addition to the function of carrying the catalyst component
- the catalyst-carrying carbon material B has the function of efficiently diffusing gas in addition to the function of carrying the catalyst component, If there is, it is a function of efficiently diffusing gas and simultaneously discharging water generated on the catalyst component, and a function of complementing the electronic conductivity of the catalyst support carbon material if it is a conductive auxiliary carbon material.
- An example of a preferred material is carbon black.
- carbon black a plurality of primary particles are fused to form a secondary structure called a structure. Depending on the type, this structure has been developed, and the primary particles are connected to each other in a space.
- a carbon material having such a structure as the catalyst support carbon material B because the enclosed space serves as a gas diffusion path or a water movement path. That is, as the catalyst support carbon material A, a carbon material having characteristics that easily store water is selected.
- the structure is positively
- the gas diffusion path can be developed in the vicinity of the catalyst support carbon material A by combining the developed catalyst support carbon material B. In particular, the gas diffusion path is driven by water during high load operation and high humidification conditions. It is preferable because it can be prevented from being blocked.
- the catalyst support carbon material B carbon black, graphite, carbon fiber, activated carbon and the like, pulverized products thereof, carbon compounds such as carbon nanofibers and carbon nanotubes, and the like can be used, and two or more of these are mixed and used.
- so-called template carbon which is produced by dissolving a template after carbonizing the carbon source after filling the pores of the porous body with a porous material such as silica as a template, is also preferably used. Is possible.
- An example of the most preferable carbon material is carbon black.
- the primary particle size of the catalyst-carrying carbon material B is more preferably 5 ⁇ m or less and 5 nm or more.
- a carbon material larger than this range can be used after being pulverized, and is preferably pulverized. If the primary particle diameter is more than 5 ⁇ m, there is a high risk of disrupting the gas diffusion path and proton conduction path, and the amount of the catalyst component used is limited particularly for economic reasons.
- a catalyst layer having a thickness of about 10 ⁇ m When it is required to exhibit performance, the distribution of the catalyst-supporting carbon material in the catalyst layer tends to be non-uniform, which is not preferable.
- the primary particle size is less than 5 nm, the electron conductivity may be low, which may be undesirable.
- the preferable content in the catalyst layer of the catalyst support carbon materials A and B in the catalyst layer depends on the type of the catalyst support carbon materials A and B, the type and content of the gas diffusion carbon material, the type of the catalyst component and the support rate. It is affected and cannot be identified. However, if the content in the catalyst layer in which the catalyst support carbon materials A and B are combined is in the range of 5% by mass to 80% by mass, at least the fuel cell functions and the effects of the present invention can be obtained. If a more preferable range is illustrated, it is 10 mass% or more and 60 mass% or less. If it is out of this range, the balance with other components is deteriorated, and an efficient fuel cell may not be obtained.
- the amount of the catalyst component supported on the catalyst-supporting carbon materials A and B is limited, and sufficient performance may not be exhibited.
- it exceeds 80% by mass the amount of the electrolyte material becomes too small and the proton transmission path becomes poor, so that an efficient battery may not be obtained.
- the mass ratio A / (A + B) of the catalyst support carbon material A and the catalyst support carbon material B contained in the catalyst layer of the present invention is preferably in the range of 0.2 to 0.95.
- the mass ratio A / (A + B) of the catalyst support carbon material A and the catalyst support carbon material B is less than 0.2, it is difficult to obtain the combined effect of the catalyst support carbon material A, and the low ratio is low during low load operation. It is not preferable because the moisture content of the electrolyte substance in the catalyst layer tends to decrease under humidified conditions, and the internal resistance due to proton conductivity tends to increase.
- the mass ratio A / (A + B) of the catalyst support carbon material A and the catalyst support carbon material B is more than 0.95, the gas diffusion path is likely to be blocked by water during high load operation or high humidification conditions. Therefore, it is not preferable.
- the carbon material used for the gas diffusion carbon material is capable of forming a gas diffusion path, causing a chemical reaction other than the originally required reaction, or elution of substances constituting the carbon material by contact with condensed water. Such a material is not preferable and needs to be a chemically stable carbon material.
- the particle diameter of the gas diffusion carbon material is preferably 1 ⁇ m or less and 5 nm or more. Carbon materials larger than this range can be used after being pulverized. If the particle diameter is more than 1 ⁇ m, the function of securing the gas diffusion path cannot be expected, and the distribution of the gas diffusion carbon material in the catalyst layer tends to be uneven, which is not preferable. Moreover, when the particle diameter is less than 5 nm, a preferable gas diffusion path may not be obtained. In order to obtain more stable performance, the particle diameter of the gas diffusion carbon material is preferably 6 nm or more and 0.9 ⁇ m or less.
- carbon black is the most common.
- graphite, carbon fiber, activated carbon, etc., pulverized products thereof, carbon nanofiber, carbon nanotube Carbon compounds such as can be used.
- template carbon is produced by dissolving a template after carbonizing the carbon source after filling the pores of the porous material with a porous material such as silica as a template. is there.
- these two or more types can be mixed and used.
- the gas diffusion carbon material is present in the catalyst layer as an agglomerated phase in which the gas diffusion carbon materials are aggregated, because the gas diffusion path is hardly blocked by the electrolyte material and the gas is easily diffused in the catalyst layer. .
- the gas diffusion path formed by the agglomerated phase is not easily broken even when the cell is strongly fastened, and it is easy to maintain the optimum pore diameter controlled at the time of forming the catalyst layer for a long period of time.
- the gas diffusion carbon material It is preferable to use carbon black having a higher structure as the gas diffusion carbon material.
- a plurality of primary particles are fused to form a secondary structure called a structure.
- this structure has been developed, and the primary particles are connected to each other in a space.
- the gas diffusion carbon material joins such spaces so that a space surrounded by a network of primary particles is continuously formed in the catalyst layer as a gas diffusion path.
- a structure that aggregates the gas diffusion carbon materials can be easily formed in the catalyst layer.
- the gas diffusion path formed by agglomerating the gas diffusion carbon material is more difficult to break even when the cell is strongly fastened, and it is easy to maintain the optimum pore diameter controlled at the time of forming the catalyst layer for a longer period of time.
- the gas diffusion carbon material of the present invention When a carbon material in which the ratio X / S BET of DBP oil absorption XmL / 100 g and specific surface area S BET m 2 / g by BET evaluation is 1 or more is used for the gas diffusion carbon material of the present invention, a more preferable gas diffusion path is obtained.
- the equipped catalyst layer can be formed. This is because if the ratio of X / S BET is 1 or more, the space formed in the gaps between the primary particles of carbon black is large and the formation of a gas diffusion path favorable for battery reaction can be expected.
- the ratio of X / S BET is less than 1, the gas diffusion path due to the structure becomes poor, and the gap between the secondary particles of carbon black mainly forms the gas diffusion path, so that a sufficient pore size is obtained.
- the ratio of X / S BET is 1.5 or more. If it is 1.5 or more, the hole diameter of the gas diffusion path formed by the structure is sufficiently large, and flooding is difficult even when a high current is taken out. With such a structure, gas easily diffuses, and the gas diffusion path is not easily blocked by water. Therefore, the catalyst in the catalyst layer can be used effectively, and a high output fuel cell can be obtained even with a small amount of catalyst. be able to.
- the gas diffusion carbon material is more preferably selected from carbon materials having a low hydration power.
- a carbon material that does not support the catalyst component and has a low hydration power that is, a gas diffusion carbon material
- a path through which gas can diffuse into the catalyst layer can be developed. If it exists, hydrogen or a mixed gas mainly composed of hydrogen, and if it is a cathode, oxygen or air easily diffuses into the catalyst layer and can contact many catalyst surfaces. Therefore, the reaction in the catalyst layer is efficiently advanced, and high battery performance can be obtained.
- the gas diffusion carbon material When a carbon material with a low hydration power is selected as the gas diffusion carbon material, a large amount of water is generated in the catalyst layer when the catalyst layer is exposed to high humidification conditions due to fluctuations in operating conditions or when the catalyst layer is operated in a high current density region. When it occurs, it is possible to prevent the gas diffusion path from being blocked by water and to prevent the battery performance from deteriorating.
- a carbon material having a hydration power in a more appropriate range may be used as the gas diffusion carbon material.
- a carbon material having a water vapor adsorption amount of 1 ml / g or more and 20 ml / g or less at 25 ° C. and a relative humidity of 90% is selected as the gas diffusion carbon material.
- the content of the gas diffusion carbon material in the catalyst layer is more preferably in the range of 3% by mass to 30% by mass. If it is less than 3% by mass, the gas diffusion path cannot be sufficiently developed, and the effect of including the gas diffusion carbon material may not be expected. If it exceeds 30% by mass, the proton conduction path is interrupted by the gas diffusion carbon material and becomes poor, and the IR drop becomes large, so that the battery performance may be deteriorated. If it is in the range of 3% by mass or more and 30% by mass or less, the gap of the gas diffusion carbon material forms a network in the catalyst layer, and this becomes a gas diffusion path, so that the catalyst component in the catalyst layer is effectively used. be able to.
- the content is most preferably 5% by mass or more and 25% by mass or less.
- an optimum gas diffusion path can be developed without impairing the proton conduction path and the electron conduction path, so that it is possible to obtain a fuel cell electrode having extremely efficient power generation characteristics.
- Control of the hydration power of various carbon materials contained in the fuel cell can be achieved by selecting the water vapor adsorption amount as an index from the carbon materials generally present.
- the water vapor adsorption amount can be reduced by treating the carbon material surface with an acid, a base, or the like, or exposing the carbon material to an oxidizing atmosphere environment. It can be increased to a suitable range.
- the amount of water vapor adsorption can be increased by heating in KOH or NaOH, or by heat treatment in dilute oxygen, dilute NO, or NO 2 .
- the water vapor adsorption amount can be reduced to a suitable range by firing in an inert atmosphere.
- the amount of water vapor adsorption can be reduced by heat treatment in an atmosphere of argon, nitrogen, helium, vacuum, or the like.
- the fuel cell according to the present invention is effective regardless of the type of electrolyte material used, and is particularly limited as long as the electrolyte material used has a function of conducting protons. is not.
- the electrolyte material used in the electrolyte membrane and the catalyst layer include polymers introduced with phosphoric acid groups, sulfonic acid groups, and the like, for example, polymers containing perfluorosulfonic acid polymer and benzenesulfonic acid. .
- the electrolyte material is not limited to a polymer, and may be used for a fuel cell using an electrolyte membrane such as an inorganic type or an inorganic-organic hybrid type.
- a fuel cell that operates within a range of room temperature to 150 ° C. is preferable.
- the mass ratio of the catalyst support carbon material and the electrolyte material contained in the catalyst layer is preferably 1/10 to 5/1. If the catalyst support carbon material is less than 1/10, the catalyst surface is excessively covered with the electrolyte material, and the area where the reaction gas can come into contact with the catalyst component may be reduced. If the catalyst support carbon material is contained in excess of 5/1, the electrolyte material network may be poor and proton conductivity may be lowered.
- the catalyst cohesive phase firmly fused with the electrolyte material as a medium is used as the continuous phase, thereby enhancing the mechanical strength of the catalyst layer itself and making the electrolyte material network continuous. As a result, the proton conduction resistance that causes the largest increase in internal resistance in the catalyst layer can be reduced.
- the catalyst layer structure can also be confirmed by observing the cross section. By making a cut surface at an arbitrary angle in an arbitrary position of the catalyst layer and observing the cross section, it is confirmed that the carbon material not supporting the catalyst component forms an aggregate (aggregated phase). Is the method.
- the aggregate corresponds to a gas diffusion carbon material aggregate phase.
- At least one gas-diffusing carbon material aggregated phase having no catalyst component having a circle equivalent diameter of 500 nm or more exists in the same field of view. If it is the said structure, it will be suppressed that power generation performance becomes unstable at least under wet conditions, and the stable power generation performance will be obtained.
- the method for forming the cut surface of the catalyst layer is not particularly limited.
- the catalyst layer may be cut with a cutter knife or scissors, or the catalyst layer cooled to a temperature lower than the glass transition temperature of the electrolyte material may be broken.
- a particularly preferable method is a method of forming a cut surface of the catalyst layer in an environment cooled with liquid nitrogen using a cryomicrotome or the like.
- a method of preparing and observing an ultrathin section using a cryomicrotome is also conceivable, but more simply, a catalyst layer is set as a sample on the cryomicrotome, and the surface of the catalyst layer is formed using a trimming knife made of diamond or glass. This is a method of cutting and observing the generated cut surface.
- each layer of the multilayer structure has two aggregated phase structures of the catalyst aggregated phase and the gas diffusion carbon material aggregated phase, and the catalyst aggregated phase is a continuum, and the gas diffusion carbon material aggregated phase
- the power generation characteristics can be drastically improved.
- the content of the conductive assistant carbon material in the inner layer of the catalyst layer is preferably in the range of 3% by mass to 30% by mass. Within this range, even when the catalyst carrier carbon material A itself has poor electronic conductivity, the conductive assistant carbon material can effectively collect current from the catalyst component. If it is less than 3% by mass, the effect of addition may be small, and the current collecting effect may be low. If it is 30% by mass or more, the catalyst component density in the inner layer of the catalyst layer is excessively lowered. In particular, when air is used for the cathode gas, the concentration polarization may increase, which may be undesirable. In particular, it is more preferable that the mass of the conductive additive carbon material is in the range of 0.05 to 0.4 with respect to the mass 1 of the catalyst support carbon material A.
- the present invention has a structure of two agglomerated phases of the catalyst agglomerated phase and the gas diffusion carbon material agglomerated phase of the present invention, wherein the catalyst agglomerated phase is a continuum and the gas diffusion carbon material agglomerated phase is dispersed in the catalyst agglomerated phase. It becomes a structure.
- this method is effective when a gas diffusion carbon material whose surface hydration property is controlled is used.
- the dispersion state (shape or size) of the gas diffusion carbon material aggregated phase can be controlled by changing the method of mixing the liquid A and the liquid B.
- the catalyst carrier carbon material and gas diffusion carbon material which are large aggregates are pulverized and at least 1 ⁇ m.
- the means is not limited as long as the purpose of pulverizing into the following aggregates can be achieved. Examples of general techniques include a method using ultrasonic waves and a method of mechanically pulverizing using a ball mill or glass beads.
- the test product 9 is a mixture of a catalyst carrier carbon material A carrying a catalyst component, a catalyst carrier carbon material B carrying a catalyst component, a gas diffusion carbon material, and a 5% Nafion solution (DE521 manufactured by DuPont) as an electrolyte material. Then, it is diluted with ethanol to prepare a coating ink having a solid content concentration of 2% by mass, and after pulverizing the carbon material with ultrasonic waves, a coating ink in which each component is uniformly mixed is prepared.
- a catalyst layer was prepared by the method described in ⁇ Catalyst Layer Preparation Method>.
- a reflected electron image is captured as electronic information at a resolution of 272 DPI x 272 DPI or higher at a magnification of 10,000 and with a brightness of 256 colors, and the brightness of the captured image is analyzed Using software, the range from the dark side to the 110th layer was displayed in black, and the range from the 111th layer to the bright side to the 256th layer was binarized so as to be white.
- each black point was expanded once to recognize adjacent points. Further, a hole filling process was executed, and blank portions in the range were filled and recognized as being in the same range. Finally, a degeneration process for returning the expanded portion was performed to clarify the target range. Then, the circle equivalent diameter of each black part was calculated from the area of each black part, and all parts less than 300 nm were cut. Of the remaining black portions, the number of black portions in which the carbon material is present in the secondary electron image with the same field of view was 11 pieces. Further, even if the black part with an equivalent circle diameter of 500 nm or less was deleted, the number of black parts in the remaining black part where the carbon material was present was measured with a secondary electron image of the same field of view. . Therefore, it can be confirmed that the catalyst layer of the test product 10 has the preferred structure of the present invention. As shown in Table 4, both the high humidification high load condition and the low humidification low load condition are compared with the test product 9. Excellent characteristics.
- the test products 10 and 13 using j and k corresponding to the present catalyst as the catalyst support carbon material A have both high humidification and high load characteristics, low humidification and low load characteristics, and durability (deterioration rate). Excellent performance.
- the test product 10 satisfying claims 1 and 2 showed extremely excellent characteristics.
- a carbon material having a specific surface area S BET by BET evaluation of less than 1000 m 2 / g or a ratio S micro / S total of the micropore surface area S micro to the total surface area S total of less than 0.5 is used as catalyst support carbon.
- Comparative products 8 to 15 made of material A could not achieve both high humidification and high load characteristics and low humidification and low load characteristics, and the deterioration rate was generally worse than the test products.
- catalyst support carbon material B 17 , 18, 19, and 21 were results in which it was difficult to achieve both high humidification and high load characteristics and low humidification and low load characteristics although the deterioration rate was generally good.
- the content of the gas diffusion carbon material in the catalyst layer is changed to improve the power generation performance.
- the catalyst layer of the test article 10 was used for the anode.
- butyl acetate is added with stirring, so that the solid content concentration of platinum metal and catalyst support carbon material A or B, and in the case of the inner layer, the conductive auxiliary agent carbon material and Nafion is 2% by mass.
- a catalyst aggregation ink in which a platinum catalyst and Nafion (electrolyte) were aggregated was prepared.
- the total amount of the catalyst support carbon material A and the conductive auxiliary agent carbon material is 1 part by mass.
- the catalyst support carbon material B is 1 part by mass
- Nafion is 1.5 parts by mass. The ratio was mixed.
- the mass of the fixed catalyst layer is determined from the difference between the mass of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the mass of the Teflon (registered trademark) sheet peeled off after pressing, and the mass ratio of the composition of the catalyst layer is determined.
- the amount of platinum per unit area was calculated and confirmed to be 0.1 mg / cm 2 .
- test product 34 is the catalyst support carbon material A as shown in Tables 3 and 4, j as the catalyst support carbon material B, as shown in Tables 3 and 4, h as the conductive support carbon material Y, and the gas diffusion carbon as shown in Table 3.
- the material a in Table 3 and the 5% Nafion solution (DuPont DE521) as an electrolyte material were mixed, diluted with ethanol to prepare a coating ink having a solid content concentration of 2% by mass, and the carbon material was pulverized with ultrasonic waves. Thereafter, a coating ink in which each component was uniformly mixed was prepared, and a catalyst layer having no inner layer and outer layer and having no aggregated phase structure was prepared and used for evaluation.
- ⁇ Catalyst Layer Preparation Method> Prepared by the method described in the above, and a catalyst aggregated phase comprising a catalyst carrier carbon material A carrying a catalyst component, a conductive assistant carbon material and an electrolyte material, and a gas diffusion carbon material aggregated phase
- a two-layered catalyst layer of an outer catalyst layer composed of a gas diffusion carbon material aggregation phase and having the structure in which the gas diffusion carbon material aggregation phase was dispersed in the catalyst aggregation phase was prepared and used for evaluation.
- the test products 37 to 42 a catalyst layer lacking any one or plural kinds of carbon materials was produced. The power generation performance when these catalyst layers were cathoded was compared. Note that the catalyst layer of the test product 10 was used for all anodes.
- the reflected electron image is observed as a uniformly bright contrast except where the electrolyte material is estimated to be agglomerated from the secondary electron image, An agglomerated phase (gas diffusion carbon material agglomerated phase) of the carbon material on which no catalyst component was supported was not observed.
- both the inner layer and the outer layer have a dark contrast in the reflected electron image, that is, the catalyst component, which can be determined that the carbon material is clearly present in the secondary electron image. It was observed that the agglomerated phase (gas diffusion carbon material agglomerated phase) of the carbon material in which no is supported was distributed in an island shape.
- a reflected electronic image is captured as electronic information with a resolution of 272 DPI ⁇ 272 DPI or higher at a magnification of 10,000 and a brightness of 256 colors in a part of the inner layer, and the captured image Using the image analysis software, the brightness is binarized so that the range from the darker to the 110th layer is displayed in black and the range from the 111th layer to the brighter to the 256th layer is white.
- each black point was expanded once to recognize adjacent points. Further, a hole filling process was executed, and blank portions in the range were filled and recognized as being in the same range. Finally, a degeneration process for returning the expanded portion was performed to clarify the target range.
- the circle equivalent diameter of each black part was calculated from the area of each black part, and all parts less than 300 nm were cut.
- the number of black portions in which the carbon material is present in the secondary electron image with the same field of view was eight. Further, even if the black portion having an equivalent circle diameter of 500 nm or less was deleted, the number of black portions in the remaining black portion where the carbon material was present was measured in the secondary electron image of the same field of view. .
- the outer layer was analyzed in the same manner, it was found that the number of equivalent circle diameters was 300 nm or more.
- test product 36 using the two-layer structure catalyst layer having the aggregated phase structure in both the inner layer and the outer layer showed the most excellent characteristics, and there was no inner layer and outer layer, and A test product 34 using a catalyst layer having no aggregated phase structure, and a test product 35 using a catalyst layer having an inner layer and an outer layer but each having no aggregated phase structure are higher than the test product 36.
- the characteristics were low in both humidification high load conditions and low humidification low load conditions.
- the catalyst support carbon material A, the conductive additive carbon material, and the gas diffusion are formed in the inner layer.
- the test article 36 containing the carbon material and containing the catalyst support carbon material B and the gas diffusion carbon material in the outer layer exhibits the most excellent characteristics, and is at least one of the inner layer or outer layer carbon materials as compared with the test article 36.
- the test products 37 to 42 lacking the type had characteristics lower than that of the test product 36.
- the inner layer coating ink and the outer layer coating ink are prepared, and these two types of coating inks are used to describe the method described in ⁇ Catalyst Layer Preparation Method>. It was produced with.
- the produced catalyst layers each have an aggregated phase structure in the inner layer and the outer layer, and the power generation performance when these catalyst layers are cathoded was compared. Note that the catalyst layer of the test product 10 was used for all anodes.
- ⁇ Effect of catalyst carrier carbon material B in outer layer of two-phase catalyst (Claims 6 and 7)> As shown in Table 11, the catalyst carrier carbon material A is shown in Table 3, Table 4 j, the conductive auxiliary agent carbon material Y is shown in Table 3 e, the gas diffusion carbon material is shown in Table 3 a, and the inner catalyst layer.
- the catalyst carrier carbon material B of the outer layer is selected by using a two-layered catalyst layer in which the catalyst carrier carbon material B is selected as a to j in Table 3 and a gas diffusion carbon material is a in Table 3 as the outer catalyst layer. A comparison was made when the types of B were different.
- Test products 53 to 56, 36, 63 in which the mass ratio Y / (A + Y) of the conductive assistant carbon material Y to the catalyst carrier carbon material A is fixed to 0.2 and the type of the conductive assistant carbon material Y is changed.
- the carbon materials a, b, c, e, h in which the ratio X / S BET between the DBP oil absorption XmL / 100 g and the specific surface area S BET by BET evaluation is 0.2 or more and 3.0 or less
- the test products 53 to 55, the test product 36, and the test product 65 using the above as the conductive auxiliary carbon material Y exhibited extremely excellent performance in both high humidification high load characteristics, low humidification low load characteristics, and deterioration rate.
- the carbon material d, f, g, i, j in which the ratio X / S BET between the DBP oil absorption amount XmL / 100 g and the specific surface area S BET by BET evaluation is outside the range of 0.2 to 3.0.
- Specimens 56, 63, 64, 66, and 67 in which conductive auxiliary agent carbon material Y is used are in the range of X / S BET of 0.2 or more and 3.0 or less in both high humidification high load conditions and low humidification low load conditions. The results were lower than those in the interior.
- test products 36 and 57 to 62 in which the mass ratio Y / (A + Y) of the conductive auxiliary carbon material Y to the catalyst carrier carbon material A is changed are compared with the type of conductive auxiliary carbon material Y as e in Table 3. Then, the test products 36 and 58 to 61 in which the mass ratio Y / (A + Y) is 0.05 or more and 0.4 or less are tests in which the mass ratio Y / (A + Y) is less than 0.05 or more than 0.4. Properties superior to products 57 and 62 were exhibited.
- the catalyst layer was prepared as described in ⁇ Catalyst Layer Preparation Method> using the coating ink for inner layer and the coating ink for outer layer, following the above-mentioned ⁇ Standard Method for Preparing Ink Coating>. It was produced by the method.
- the produced catalyst layers each have an aggregated phase structure in the inner layer and the outer layer, and the power generation performance when these catalyst layers are cathoded was compared. Note that the catalyst layer of the test product 10 was used for all anodes.
- the mass ratio A / (C / C of the catalyst carrier carbon material A and the catalyst carrier carbon material B is The test products 69 to 71, 36, 82, 83 having A + B) of 0.2 or more and 0.95 or less are the test products 68 having a mass ratio A / (A + B) of less than 0.2, or the mass ratio A / (A + B). As compared with the test product 84 having a ratio of 0.95 or more, all showed excellent performance in both high humidification and high load characteristics, low humidification and low load characteristics, and deterioration rate.
- test products 36 and 72 to 76 in which the content of the gas diffusion carbon material in the inner layer is changed are compared,
- the test products 36 and 73 to 75 in which the content of the gas diffusion carbon material in the inner catalyst layer is in the range of 3% by mass to 30% by mass are high humidification high load characteristics, low humidification low load characteristics, deterioration rate. Both showed excellent performance.
- test products 36, 73, and 74 in which the content of the gas diffusion carbon material in the inner catalyst layer is in the range of 5% by mass or more and 25% by mass or less have high humidification high load characteristics, low humidification low load characteristics, and deterioration. In terms of rate, it showed excellent balanced properties.
- the mass ratio A / (A + B) of the catalyst support carbon material A and the catalyst support carbon material B is 0.70 and the test products 36 and 77 to 81 in which the content of the gas diffusion carbon material in the outer layer is changed are compared.
- the test products 36 and 78 to 80 in which the content of the gas diffusion carbon material in the outer catalyst layer is in the range of 3% by mass to 30% by mass are high humidification high load characteristics, low humidification low load characteristics, deterioration rate. Both showed excellent performance.
- the test products 36, 76, and 79 in which the content of the gas diffusion carbon material in the inner catalyst layer is in the range of 5% by mass to 25% by mass are high humidification high load characteristics, low humidification low load characteristics, deterioration. In terms of rate, it showed excellent balanced properties.
- the present invention can be used for fuel cells for industrial use and consumer use, including automobiles.
- the fuel cell using the present catalyst according to the present invention and the catalyst layer containing the present catalyst as an electrode has high durability such as oxidation resistance consumption of the catalyst support, combined with the effect of suppressing the desorption of the catalyst metal component from the support.
- the durability of the catalyst itself under various environments can be improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
Description
即ち、本発明の触媒およびそれを含む固体高分子型燃料電池電極と燃料電池は、以下を要旨とするものである。
したがって、前記の本発明の触媒を含む最適な触媒層構造の要旨とするところは、以下の通りである。
少なくともカソードの触媒層が、触媒成分、電解質材料、及び炭素材料を含み、
前記炭素材料が、前記触媒成分を担持した触媒担体炭素材料と、前記触媒成分を担持していないガス拡散炭素材料との少なくとも2種を含み、かつ
前記触媒担体炭素材料が、触媒担体炭素材料Aと触媒担体炭素材料Bの少なくとも2種を含み、
前記触媒担体炭素材料Aが、前記(1)または前記(2)に記載の固体高分子型燃料電池用触媒であり、
前記触媒担体炭素材料Bが、そのDBP吸油量X mL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下
であることを特徴とする燃料電池。
少なくともカソードの触媒層が、触媒成分、電解質材料、及び炭素材料を含み、
前記炭素材料が、前記触媒成分を担持した触媒担体炭素材料と、前記触媒成分を担持していないガス拡散炭素材料との少なくとも2種を含み、
前記触媒担体炭素材料が、触媒担体炭素材料Aと触媒担体炭素材料Bの少なくとも2種を含み、
前記触媒担体炭素材料Aが、前記(1)または前記(2)に記載の固体高分子型燃料電池用触媒であり、
前記触媒担体炭素材料Bが、そのDBP吸油量X mL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下であり、
さらに前記カソードの触媒層が、
前記触媒担体炭素材料と、前記電解質材料とからなる成分を凝集してなる触媒凝集相と、
前記ガス拡散炭素材料を凝集してなるガス拡散炭素材料凝集相との2相混合構造からなる
ことを特徴とする燃料電池。
少なくともカソードの触媒層が、触媒成分、電解質材料、及び炭素材料を含み、
前記炭素材料が、前記触媒成分を担持した触媒担体炭素材料と、前記触媒成分を担持していない導電助剤炭素材料と、前記触媒成分を担持していないガス拡散炭素材料との少なくとも3種を含み、
前記触媒担体炭素材料が、少なくとも触媒担体炭素材料Aと触媒担体炭素材料Bの2種を含み、
前記触媒担体炭素材料Aが、前記(1)または前記(2)に記載の固体高分子型燃料電池用触媒であり、
前記触媒担体炭素材料Bが、そのDBP吸油量XmL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下であり、
さらに、前記カソードの触媒層が、前記プロトン伝導性電解質膜に接する側の内層と前記プロトン伝導性電解質膜に接しない側の外層の少なくとも2層を含む構造であり、
前記内層が、
少なくとも前記触媒担体炭素材料Aと、前記導電助剤炭素材料と、前記電解質材料からなる成分を凝集してなる触媒凝集相Aと、少なくとも前記ガス拡散炭素材料からなる成分を凝集してなるガス拡散炭素材料凝集相との少なくとも2相の混合構造からなり、かつ
前記外層が、
少なくとも前記触媒担体炭素材料Bと、前記電解質材料からなる成分を凝集してなる触媒凝集相Bと、少なくとも前記ガス拡散炭素材料からなる成分を凝集してなるガス拡散炭素材料凝集相との少なくとも2相の混合構造からなり、
前記内層及び前記外層がそれぞれの層中において、前記触媒凝集相Aおよび前記触媒凝集相Bが連続体であり、前記ガス拡散炭素材料凝集相が前記触媒凝集相AまたはBの中に分散した構造である
ことを特徴とする燃料電池。
なお、前記内層が、少なくとも前記触媒担体炭素材料Aと、前記導電助剤炭素材料と、前記電解質材料と、前記ガス拡散炭素材料からなる層を含み、
前記外層は、少なくとも前記触媒担体炭素材料Bと、前記電解質材料と、前記ガス拡散炭素材料からなる層を含んでいてもよい。
図2は、本発明の内層触媒層の凝集相構造の模式図を示す。(各階層構造の相対サイズは、実際とは異なる。)
図3は、本発明の外層触媒層の凝集相構造の模式図を示す。(各階層構造の相対サイズは、実際とは異なる。)
本触媒の特徴である耐久性と保湿性を種々の運転環境下で如何なく発揮させるためには、本触媒に適した触媒層構造の構築をするとよい。そのため、本触媒である触媒担体炭素材料Aに加え、触媒担体炭素材料A以外の第二の触媒である触媒担体炭素材料Bを複合させると同時に、反応に供するガスの触媒層中での拡散を高める目的で、触媒を担持しないガス拡散に適した構造の炭素材料(以下、ガス拡散炭素材料と称する)を触媒層中に含有させることにより、種々の運転環境下での出力特性発揮が可能となる。
触媒担体炭素材料Bには、触媒成分を担持する機能の他に、ガスを効率よく拡散させる機能を有する炭素材料を選択する。特に、ガスを効率よく拡散させる機能をより効果的に発現させるために、ストラクチャーが発達した炭素材料が用いられることが好ましい。このためには、触媒担体炭素材料BのDBP吸油量XmL/100gとBET評価による比表面積SBETとの比X/SBETが、0.2以上3.0以下であることが必要である。ここで、BET評価による比表面積SBETとは、窒素ガスの液体窒素温度での等温吸着線の測定からBET法により求めた比表面積値である。好ましい材料の例は、カーボンブラックである。カーボンブラックは、一次粒子が複数個融着し、ストラクチャーと呼ばれる二次構造を形成している。種類によっては、このストラクチャーが発達しており、一次粒子のつながりが空間を抱え込んだ構造になっている。触媒担体炭素材料Bにこのような構造を有している炭素材料を用いると、抱え込んだ空間がガスの拡散経路となったり、水の移動経路となったりするため、好ましい。
つまり、触媒担体炭素材料Aは水を蓄え易い特性を持った炭素材料を選択するが、このような特性を持った炭素材料は、必ずしもストラクチャーが発達していない場合があるため、積極的にストラクチャーの発達した触媒担体炭素材料Bを複合することによって、触媒担体炭素材料Aの近傍にガス拡散経路を発達させることができ、特に高負荷運転時や高加湿条件下でガスの拡散経路が水によって閉塞されることを防ぐことができるため、好ましい。
DBP吸油量とは、単位質量のカーボンブラックにフタル酸ジブチルを接触させたときに、カーボンブラックに吸収されるフタル酸ジブチルの量のことであり、主に一次粒子の間隙に吸収されるので、ストラクチャーが発達しているとDBP吸油量は大きくなり、ストラクチャーがあまり発達していないとDBP吸油量は小さくなる傾向にある。但し、DBPは、一次粒子の間隙以外に一次粒子内部に形成された微細孔にも吸収されるので、DBP吸油量がそのままストラクチャーの程度を表すとは限らない。窒素吸着量で測定されるような比表面積が大きくなると、微細孔に吸収されるDBPが多くなり、全体のDBP吸油量も大きくなる傾向にあるためである。したがって、高ストラクチャーカーボンブラックでは、窒素吸着量の割にはDBP吸油量が大きくなり、逆に低ストラクチャーカーボンブラックでは、窒素吸着量の割にDBP吸油量が小さくなる。
ガス拡散炭素材料に用いられる炭素材料は、ガス拡散経路が形成できるものであり、本来求められる反応以外の化学反応を起したり、凝縮水との接触によって炭素材料を構成する物質が溶出するような材料は好ましくなく、化学的に安定な炭素材料であることが必要である。また、ガス拡散炭素材料の粒子径は1μm以下5nm以上が好ましい。この範囲より大きな炭素材料は粉砕して用いることができる。粒子径が1μm超であると、ガス拡散経路を確保する機能が期待できなくなる他、触媒層中のガス拡散炭素材料の分布が不均一になり易く、好ましくない場合がある。また、粒子径が5nm未満であると、好ましいガス拡散経路が得られない場合がある。さらに安定した性能を得るためには、ガス拡散炭素材料の粒子径は、6nm以上、0.9μm以下とすることが好ましい。
燃料電池に含まれる各種炭素材料の水和力の制御は、一般に存在する炭素材料中から水蒸気吸着量を指標に選択することによって達成できる。あるいは、好適な範囲より少ない水蒸気吸着量を持つ炭素材料である場合においても、炭素材料を酸や塩基等で炭素材料表面を処理したり、酸化雰囲気環境に曝したりすることによって、水蒸気吸着量を好適な範囲にまで増加させることができる。限定するものでは無いが、例えば、加温した濃硝酸中で処理したり、過酸化水素水溶液中に浸漬したり、アンモニア気流中で熱処理したり、加温した水酸化ナトリウム水溶液中に浸漬したり、KOHやNaOHの中で加熱したり、希薄酸素や希薄NO、あるいはNO2中で加熱処理したりすることによって、水蒸気吸着量を増加させることができる。逆に、水蒸気吸着量が多過ぎる場合、不活性雰囲気下で焼成することによって、水蒸気吸着量を好適な範囲にまで低下させることもできる。限定するものではないが、例えば、アルゴン、窒素、ヘリウム、真空等の雰囲気下で加熱処理することによって、水蒸気吸着量を低下させることができる。
本発明に係る燃料電池は、使用される電解質材料の種類によらず効果を発揮するものであって、使用される電解質材料はプロトンを伝導する機能を有していれば、特に限定されるものではない。電解質膜や触媒層中に使用される電解質材料として、リン酸基、スルホン酸基等を導入した高分子、例えば、パーフルオロスルホン酸ポリマーやベンゼンスルホン酸が導入されたポリマー等を挙げることができる。しかし、電解質材料は、高分子に限定するものではなく、無機系、無機−有機ハイブリッド系等の電解質膜を使用した燃料電池に使用しても差し支えない。特に好適な作動温度範囲を例示するならば、常温~150℃の範囲内で作動する燃料電池が好ましい。また、触媒層中に含まれる触媒担体炭素材料と電解質材料との質量比は、1/10~5/1が好ましい。1/10より触媒担体炭素材料が少ないと、触媒表面が電解質材料で過度に覆われてしまい、反応ガスが触媒成分と接触できる面積が小さくなる場合がある。5/1より過剰に触媒担体炭素材料が含有すると、電解質材料のネットワークが貧弱になり、プロトン伝導性が低くなる場合がある。
触媒層は、触媒成分と触媒担体炭素材料Aと触媒担体炭素材料Bと電解質材料とを主成分として凝集して形成した触媒凝集相と、ガス拡散炭素材料を主成分として凝集して形成したガス拡散炭素材料凝集相と、の2つの凝集相構造とするとよい。そして触媒凝集相が連続体であり、ガス拡散炭素材料凝集相が前記触媒凝集相中に分散した構造にすると、単に各成分を平均的に混合した触媒層に比べて飛躍的に電池特性を向上させることができる。図1に、本発明に係る前記触媒層の構造に関し、模式図を示す。図1では、各材料や凝集相を模式的に表現しているために、各階層構造の相対サイズは、実際とは異なる。
触媒層構造は、その断面を観察することによっても確認することができる。触媒層の任意の場所に任意の角度で切断面を作製し、その断面を観察することによって、触媒成分が担持されていない炭素材料が凝集体(凝集相)を形成していることを確認する方法である。前記凝集体が、本発明においてはガス拡散炭素材料凝集相に対応するものである。
また一方、触媒層では、少なくとも2層以上の積層構造(多層触媒層)を採用することができる。電解質膜側に接する側を内層とし、その内層に保水性の高い触媒担体炭素材料Aを、この内層を挟んで電解質膜とは反対側を外層とし、その外層にストラクチャーの発達した触媒担体炭素材料Bを含有する触媒層とするとよい。
前記多層触媒層の触媒担体炭素材料Aを含む内層において、必要に応じて導電助剤炭素材料を複合させることが有効である。触媒担体炭素材料Aは水蒸気吸着量を確保するために炭素材料表面に細孔を有する構造であり、一般に多孔性の炭素材料を凝集させた場合に導電性の高い特定の導電助剤炭素材料を添加することにより、凝集体の導電性を改善することができる。
本発明に係る燃料電池に含まれる触媒層の作製方法は、触媒凝集相の連続相にガス拡散炭素材料凝集相が分散し、かつ、ガス拡散炭素材料表面にできるだけ電解質材料が吸着しないように作製できれば、特に限定はしない。前記触媒層となる材料を含む液に、必要に応じて水や有機溶媒を加えて、インクを作製する。このインクを膜状に乾燥し、触媒層を形成することができる。
触媒成分を担持した触媒担体炭素材料A及び触媒成分を担持した触媒担体炭素材料Bと電解質材料とを、電解質材料に対する良溶媒中で粉砕混合した後に、電解質材料に対する貧溶媒を加え、電解質材料と触媒を担持した触媒担体炭素材料とを凝集させて得られるA液と、触媒成分を担持していないガス拡散炭素材料を、電解質材料に対する貧溶媒中で粉砕して得られるB液を作成し、A液とB液を混合して得られるC液をインクとして、膜状に乾燥して触媒層とする。
例えば、ガス拡散層上にインクを塗布するならば、刷毛塗り、スプレー、ロールコーター、インクジェット、スクリーンプリント等の方法が挙げることができる。あるいは、インクをバーコーター、刷毛塗り、スプレー、ロールコーター、インクジェット、スクリーンプリント等の方法で塗布、乾燥して、ポリテトラフルオロエチレン(PTFE)シートやPTFE板等、高分子材料の表面に一旦別の材料上に触媒層を形成した後、ガス拡散層へホットプレス等の方法で接合し、ガス拡散電極を形成する方法を選択することもできる。
以上のように作製したMEAは、一般的には、その外側にセパレーターを配置して単位セルを構成し、これを必要な出力に合わせてスタックし、燃料電池として用いることができる。
コークス、樹脂を原料とした種々の人造黒鉛、天然黒鉛、カーボンブラック、チャー、いわゆる炭素繊維、カーボンナノチューブ、カーボンナノホーン、フラーレン等の炭素材料を、アルカリ賦活、水蒸気賦活、炭酸ガス賦活、塩化亜鉛賦活等の賦活処理を行ったり、不活性雰囲気や還元性ガス雰囲気、酸化性ガスを含む雰囲気で熱処理を行ったりして、水蒸気吸着量V10、V90、V10/V90の値を表1に示すAからMまでの13種の炭素材料を触媒担体として用意した。蒸留水中に塩化白金酸水溶液とポリビニルピロリドンを入れ、90℃で攪拌しながら、水素化ホウ素ナトリウムを蒸留水に溶かした上で注ぎ、塩化白金酸を還元する。その水溶液に上記触媒担体となる炭素材料をそれぞれ添加し、60分間撹拌した後に、濾過、洗浄を行った。得られた固形物を90℃で真空乾燥した後、粉砕して、水素雰囲気中250℃で1時間熱処理することによって、触媒No.1~13を作製した。尚、触媒の白金担持量は50質量%になるように調製した。
本触媒の持つ高耐久(耐酸化消耗性)と保湿能力を活かして、種々の加湿条件においても、優れた耐久性と発電特性を発揮する本発明の請求項4~8に関する態様に関しての試験品を以下に示す。先ず、請求項4と請求項5に対応する試験品を以下に示すが、本発明は本試験品の態様に限定されるものではない。
本発明の試験品を示すにあたり、触媒担体炭素材料、ガス拡散炭素材料、導電助剤に用いる炭素材料として11種の炭素材料a~kを準備した。表3(炭素材料の種類とその物性)に、各種炭素材料の各種物性を示した。
塩化白金酸水溶液中に、触媒担体炭素材料として表1の炭素材料の中から選択した1種を分散し、50℃に保温し、撹拌しながら過酸化水素水を加え、次いでNa2S2O4水溶液を添加して、触媒前駆体を得た。この触媒前駆体を濾過、水洗、乾燥した後に100%H2気流中、300℃で3時間、還元処理を行い、触媒担体炭素材料に白金金属が50質量%担持された白金触媒を調製した。
触媒担体炭素材料Aおよび触媒担体炭素材料Bとして2種の炭素材料を選択し、上記〈白金金属を担持した触媒担体炭素材料の調製〉の手順で白金金属を担持した調製した2種の白金触媒をそれぞれ容器に取り、これに5%ナフィオン溶液(デュポン製DE521)を加え、軽く撹拌後、超音波で触媒を粉砕した。さらに、撹拌しながら酢酸ブチルを加え、白金金属と触媒担体炭素材料AおよびBとナフィオンを合わせた固形分濃度が2質量%となるようにし、2種の白金触媒とナフィオン(電解質)とが凝集した触媒凝集インクを調製した。各種材料は、特に記述がない限り、触媒担体炭素材料AおよびBの合計1質量部に対して、ナフィオンを1.5質量部で混合した。
次に、触媒凝集インクとガス拡散炭素材料凝集インクを混合し、固形分濃度が2質量%の塗布インクを作成した。
作成した塗布インクは、テフロン(登録商標)シートにそれぞれスプレーした後、アルゴン中80℃で10分間、続いてアルゴン中120℃で60分間乾燥し、触媒層を作製した。触媒層の白金目付け量は、作製したテフロン(登録商標)シート上の触媒層を3cm角の正方形に切り取って質量を測定し、その後、触媒層をスクレーパーで剥ぎ取った後のテフロン(登録商標)シート質量を測定し、先の質量との差分から触媒層質量を算出し、触媒インク中の固形分中の白金が占める割合から計算により求め、白金目付け量が0.10mg/cm2になるように、スプレー量を調整した。
作製した触媒層を用いてMEA(膜電極複合体)を作製した。
ナフィオン膜(デュポン社製N112)は6cm角の正方形に切り取り、テフロン(登録商標)シート上に塗布された触媒層は、カッターナイフで2.5cm角の正方形に切り取った。これらの触媒層をアノード及びカソードとして、ナフィオン膜の中心部にずれが無いように挟み、120℃、100kg/cm2で10分間プレスした。室温まで冷却後、アノード、カソード共にテフロン(登録商標)シートのみを注意深く剥がし、アノード及びカソードの触媒層をナフィオン膜に定着させた。次に、ガス拡散層として市販のカーボンクロス(E−TEK社製LT1200W)を2.5cm角の正方形に切り取り、アノードとカソードにずれが無いように挟み、120℃、50kg/cm2で10分間プレスし、MEAを作成した。なお、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差から定着した触媒層の質量を求め、触媒層の組成の質量比より白金目付け量を算出し、0.1mg/cm2であることを確認した。
〈燃料電池性能評価条件〉
最初に、以下の条件を「高加湿高負荷」の代表的な条件として、性能評価を行った。ガスは、カソードに空気、アノードに純水素を、利用率がそれぞれ35%と70%となるように供給し、それぞれのガス圧は、セル下流に設けられた背圧弁で圧力調整し、0.1MPaに設定した。セル温度は80℃に設定し、供給する空気と純水素は、それぞれ80℃に保温された蒸留水中でバブリングを行い、加湿した。このような条件でセルにガスを供給した後、1000mA/cm2まで負荷を徐々に増加して、1000mA/cm2で負荷を固定し、60分経過後のセル端子間電圧を「高加湿高負荷」性能として記録した。
表3、4に諸物性を示した炭素材料a、e、jを用いて下記の通り触媒層を形成してその性能を比較した。触媒担体炭素材料Aには表4のjに示すように本発明で規定する触媒担体炭素材料を用い、触媒担体炭素材料Bに表3のe、ガス拡散炭素材料に表3のaをそれぞれ選択した触媒層を用い、比較を行った。
これらの触媒層をカソードしたときの発電性能を比較した。なお、アノードには全て試験品10の触媒層を用いた。
観察試料には、性能比較で用いたMEAを性能評価を実施した後にセルから取り出し、ピンセットを用いてガス拡散層を注意深く剥がした。次に、ガス拡散層を剥がしたMEAをカッターナイフで5mm角程度の大きさで切り出し、カソードの触媒層が切削できるように、クライオミクロトームのホルダーにカーボンテープで固定した。作製したホルダーをクライオミクロトームにセットし、ナイフにはダイアモンドトリミングナイフをセットした。このとき、ダイアモンドトリミングナイフをナイフの進行方向に対して10度程度角度をつけ、触媒層が斜めに切削されるようにした。切削温度を−90℃、触媒層の深さ方向に1回当たり50nmの厚みで、少なくとも100回切削し、触媒層の切断面を作製した。これら切断面を作製した触媒層は、ホルダーごと電子顕微鏡ホルダーにセットし、1万倍の倍率で2次電子像と反射電子像を観察した。試験品9の触媒層は、2次電子像から電解質材料が固まりを作っていると推定される場所以外は、反射電子像が一様に明るいコントラストとなって観察され、触媒成分が担持されていない炭素材料の凝集相(ガス拡散炭素材料凝集相)は見られなかった。それに対して、試験品10の触媒層では、2次電子像で明らかに炭素材料が存在すると判別できる箇所の内、反射電子像では暗いコントラストとなっている箇所、つまり触媒成分が担持されていない炭素材料の凝集相(ガス拡散炭素材料凝集相)が、島状に分布している様子が観察できた。より定量的に識別するために、1万倍の倍率で272DPI×272DPI以上の解像度で、かつ256色の階層で明るさで反射電子像を電子情報として取り込み、取り込んだ画像の明るさを画像解析ソフトを用いて、暗い方から110階層目の範囲を黒色で表示し、111階層目から明るい方へ256階層目までの範囲を白色になるように二値化した。
表6に示したとおり、触媒担体炭素材料Aに表1のa~d、f~kの炭素材料を用い、触媒担体炭素材料Bに表1のe、ガス拡散炭素材料に表1のaとして、触媒担体炭素材料Aの種類が異なる各種触媒層を、触媒凝集相とガス拡散炭素材料凝集相との2相構造となるように、〈標準の塗布インク作製方法〉に倣って作製した塗布インクを用いて作製し、これらの触媒層をカソードしたときの発電性能を比較した。なお、アノードには、試験品10の触媒層を用いた。
それに対し、BET評価による比表面積SBETが1000m2/g未満であるか、ミクロ孔表面積Smicroと全表面積Stotalの比Smicro/Stotalが0.5未満である炭素材料を触媒担体炭素材料Aとした比較品8~15は、高加湿高負荷特性、低加湿低負荷特性の両立ができず、劣化率も試験品に比較して総じて悪い結果となった。特に、BET評価による比表面積SBETが1000m2/g未満である触媒担体炭素材料Aに使用した比較品8~10のPt触媒をTEM観察すると、担持されたPt粒子が凝集し巨大化しており、一部には10nmを越す粒子径のものが存在した。試験品10、13のPt触媒のTEM観察では、Pt粒子が粒子径5nmを超えるものは観察できなかった。
表7に示したとおり、触媒担体炭素材料Aに本触媒である表3、4のj、触媒担体炭素材料Bに表3のa~iの各種炭素材料、ガス拡散炭素材料に表3のaを用いて、触媒担体炭素材料Bの種類が異なる各種触媒層を、触媒凝集相とガス拡散炭素材料凝集相との2相構造となるように、〈標準の塗布インク作製方法〉に倣って作製した塗布インクを用いて作製し、これらの触媒層をカソードしたときの発電性能を比較した。なお、アノードには、試験品10の触媒層を用いた。
表8に示したとおり、触媒担体炭素材料Aに本触媒である表3、4のj、触媒担体炭素材料Bに表3のe、ガス拡散炭素材料に表3のaを用いて、触媒担体炭素材料Aと触媒担体炭素材料Bの質量比A/(A+B)を変化させたときの各種触媒層を、触媒凝集相とガス拡散炭素材料凝集相との2相構造となるように、〈標準の塗布インク作製方法〉に倣って作製した塗布インクを用いて作製し、これらの触媒層をカソードしたときの発電性能を比較した。
以下に、触媒層を多層触媒層にした試験品を紹介するが、本発明は以下の試験品に限定されるものではない。
本試験品に用いる炭素材料は、上記の試験品と同様の表3、表4の各種炭素材料を用いて、以下の通り行った。白金触媒は上述の性能評価3~5と同じものを用いた。
触媒担体炭素材料AまたはBとして各々1種類の炭素材料を選択し、〈白金金属を担持した触媒担体炭素材料の調製〉の手順で白金金属を担持した調製した白金触媒を容器に取り、内層触媒層の塗布インクの場合はさらに導電助剤炭素材料を表1から1種類選択し容器に加えた。これに5%ナフィオン溶液(デュポン製DE521)を加え、軽く撹拌後、超音波で触媒を粉砕した。さらに、撹拌しながら酢酸ブチルを加え、白金金属と触媒担体炭素材料A又はB、内層の場合は導電助剤炭素材料、ナフィオンを合わせた固形分濃度が2質量%となるようにし、2種の白金触媒とナフィオン(電解質)とが凝集した触媒凝集インクを調製した。特に記述がない限り、内層の場合は触媒担体炭素材料A及び導電助剤炭素材料の合計を1質量部、外層の場合は触媒担体炭素材料Bを1質量部として、ナフィオンを1.5質量部の割合で混合した。
次に、触媒凝集インクとガス拡散炭素材料凝集インクを混合し、固形分濃度が2質量%の塗布インクを作成した。
最初に、外層用塗布インクをテフロン(登録商標)シートにスプレーした後、アルゴン中80℃で10分間乾燥し、室温まで冷却して外層触媒層を形成した。次に、内層用塗布インクを外層触媒層上にスプレーし、アルゴン中80℃で10分間乾燥し、続いてアルゴン中120℃で60分間乾燥し、内層と外層の2層構造を持った触媒層を作製した。
作製した触媒層を用いてMEA(膜電極複合体)を作製した。
ナフィオン膜(デュポン社製N112)は6cm角の正方形に切り取り、テフロン(登録商標)シート上に塗布された触媒層は、カッターナイフで2.5cm角の正方形に切り取った。これらの触媒層をアノード及びカソードとして、ナフィオン膜の中心部にずれが無いように挟み、120℃、100kg/cm2で10分間プレスした。室温まで冷却後、アノード、カソード共にテフロン(登録商標)シートのみを注意深く剥がし、アノード及びカソードの触媒層をナフィオン膜に定着させた。次に、ガス拡散層として市販のカーボンクロス(E−TEK社製LT1200W)を2.5cm角の正方形に切り取り、アノードとカソードにずれが無いように挟み、120℃、50kg/cm2で10分間プレスし、MEAを作成した。なお、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差から定着した触媒層の質量を求め、触媒層の組成の質量比より白金目付け量を算出し、0.1mg/cm2であることを確認した。
作製したMEAの評価は、上述と同一の条件で、「高加湿高負荷」、「低加湿低負荷」、「劣化率」を測定した。
先ず、表9に示したとおり、触媒担体炭素材料Aに表3、表4のj、導電助剤炭素材料Yに表3のe、ガス拡散炭素材料に表3のa、を内層の触媒層にそれぞれ選択し、触媒担体炭素材料Bに表1、表4のh、ガス拡散炭素材料に表3のa、を外層の触媒層にそれぞれ選択した2層構造触媒層を用い、比較を行った。
これらの触媒層をカソードしたときの発電性能を比較した。なお、アノードには全て試験品10の触媒層を用いた。
観察試料には、性能比較で用いたMEAを性能評価を実施した後にセルから取り出し、ピンセットを用いてガス拡散層を注意深く剥がした。次に、ガス拡散層を剥がしたMEAをカッターナイフで5mm角程度の大きさで切り出し、カソードの触媒層が切削できるように、クライオミクロトームのホルダーにカーボンテープで固定した。作製したホルダーをクライオミクロトームにセットし、ナイフにはダイアモンドトリミングナイフをセットした。このとき、ダイアモンドトリミングナイフをナイフの進行方向に対して10度程度角度をつけ、触媒層が斜めに切削されるようにした。切削温度を−90℃、触媒層の深さ方向に1回当たり50nmの厚みで、少なくとも100回切削し、触媒層の切断面を作製した。これら切断面を作製した触媒層は、ホルダーごと電子顕微鏡ホルダーにセットし、1万倍の倍率で2次電子像と反射電子像を観察した。
表10に示したとおり、触媒担体炭素材料Aに表3のa~k、導電助剤炭素材料Yに表3のe、ガス拡散炭素材料に表3のaを内層の触媒層にそれぞれ選択し、触媒担体炭素材料Bに表3のh、ガス拡散炭素材料に表3のaを外層の触媒層にそれぞれ選択した2層構造触媒層を用いて、内層の触媒担体炭素材料Aの種類が異なったときの比較を行った。
触媒層は、上記の〈標準の塗布インク作製方法〉に倣って、内層用塗布インクと外層用塗布インクを作製し、これら2種類の塗布インクを用いて〈触媒層作製方法〉に記述した方法で作製した。作製した触媒層は、内層及び外層がそれぞれ凝集相構造を持っており、これらの触媒層をカソードしたときの発電性能を比較した。なお、アノードには全て試験品10の触媒層を用いた。
それに対し、本発明の触媒担体炭素材料の規定を満たさない炭素材料a~iを触媒担体炭素材料Aに用いた比較品16~比較品24は、低加湿低負荷特性、劣化率が悪い結果となった。
表11に示したとおり、触媒担体炭素材料Aに表3、表4のj、導電助剤炭素材料Yに表3のe、ガス拡散炭素材料に表3のa、を内層の触媒層にそれぞれ選択し、触媒担体炭素材料Bに表3のa~j、ガス拡散炭素材料に表3のa、を外層の触媒層にそれぞれ選択した2層構造触媒層を用いて、外層の触媒担体炭素材料Bの種類が異なったときの比較を行った。
それに対し、触媒担体炭素材料Bに対する本発明の規定を満たさない炭素い材料d、f、g、i、jを触媒担体炭素材料Bに用いた試験品47、49、50~52では、特に高加湿高負荷の特性が悪い結果となった。
表12に示したとおり、触媒担体炭素材料Aに表3、表4のj、導電助剤炭素材料Yに表3のa~j、ガス拡散炭素材料に表3のa、を内層の触媒層にそれぞれ選択し、触媒担体炭素材料Bに表3のh、ガス拡散炭素材料に表3のa、を外層の触媒層にそれぞれ選択した2層構造触媒層を用いて、内層の導電助剤炭素材料Yの種類が異なったときの比較を行った。また、導電助剤炭素材料Yが表3のeのときに、導電助剤炭素材料Yの触媒担体炭素材料Aに対する質量比Y/(A+Y)を変化させたときの比較も行った。
表13に示したとおり、触媒担体炭素材料Aに表3、表4のj、導電助剤炭素材料Yに表3のe、ガス拡散炭素材料に表3のa、を内層の触媒層にそれぞれ選択し、触媒担体炭素材料Bに表3のh、ガス拡散炭素材料に表3のa、を外層の触媒層にそれぞれ選択した2層構造触媒層を用いて、内層と外層それぞれに含まれる触媒担体炭素材料Aと触媒担体炭素材料Bの質量比A/(A+B)を変化させたときの比較を行った。また、質量比A/(A+B)が0.7のときに内層及び外層に含まれるガス拡散炭素材料のそれぞれの層中での含有質量率を変化させたときの比較も行った。
2 ガス拡散炭素材料
3 触媒凝集相
4 触媒成分を担持した触媒担体炭素材料A
5 触媒成分を担持した触媒担体炭素材料B
6 電解質材料
7 導電助剤炭素材料
Claims (12)
- 炭素材料に酸素還元活性を持つ触媒成分を担持した触媒であって、
前記炭素材料の25℃、相対湿度10%における水蒸気吸着量(V10)が2ml/g以下であり、且つ、前記炭素材料の25℃、相対湿度90%における水蒸気吸着量(V90)が400ml/g以上であることを特徴とする固体高分子型燃料電池用触媒。 - 前記炭素材料の25℃、相対湿度10%における水蒸気吸着量V10と、25℃、相対湿度90%における水蒸気吸着量V90の比V10/V90が0.002以下であることを特徴とする請求項1に記載の固体高分子型燃料電池用触媒。
- 請求項1又は2に記載の触媒を含むことを特徴とする固体高分子型燃料電池電極。
- プロトン伝導性電解質膜を挟んだ一対の触媒層に含む燃料電池であって、
少なくともカソードの触媒層が、触媒成分、電解質材料、及び炭素材料を含み、
前記炭素材料が、前記触媒成分を担持した触媒担体炭素材料と、前記触媒成分を担持していないガス拡散炭素材料との少なくとも2種を含み、かつ
前記触媒担体炭素材料が、触媒担体炭素材料Aと触媒担体炭素材料Bの少なくとも2種を含み、
前記触媒担体炭素材料Aが、請求項1または2に記載の固体高分子型燃料電池用触媒であり、
前記触媒担体炭素材料Bが、そのDBP吸油量X mL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下であることを特徴とする燃料電池。 - プロトン伝導性電解質膜を挟んだ一対の触媒層に含む燃料電池であって、
少なくともカソードの触媒層が、触媒成分、電解質材料、及び炭素材料を含み、
前記炭素材料が、前記触媒成分を担持した触媒担体炭素材料と、前記触媒成分を担持していないガス拡散炭素材料との少なくとも2種を含み、
前記触媒担体炭素材料が、触媒担体炭素材料Aと触媒担体炭素材料Bの少なくとも2種を含み、
前記触媒担体炭素材料Aが、請求項1または2に記載の固体高分子型燃料電池用触媒であり、
前記触媒担体炭素材料Bが、そのDBP吸油量X mL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下であり、
さらに前記カソードの触媒層が、
前記触媒担体炭素材料と、前記電解質材料とからなる成分を凝集してなる触媒凝集相と、
前記ガス拡散炭素材料を凝集してなるガス拡散炭素材料凝集相との2相混合構造からなる
ことを特徴とする燃料電池。 - プロトン伝導性電解質膜を挟んだ一対の触媒層に含む燃料電池であって、
少なくともカソードの触媒層が、触媒成分、電解質材料、及び炭素材料を含み、
前記炭素材料が、前記触媒成分を担持した触媒担体炭素材料と、前記触媒成分を担持していない導電助剤炭素材料と、前記触媒成分を担持していないガス拡散炭素材料との少なくとも3種を含み、
前記触媒担体炭素材料が、少なくとも触媒担体炭素材料Aと触媒担体炭素材料Bの2種を含み、
前記触媒担体炭素材料Aが、請求項1または2に記載の固体高分子型燃料電池用触媒であり、
前記触媒担体炭素材料Bが、そのDBP吸油量XmL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下であり、
さらに、前記カソードの触媒層が、前記プロトン伝導性電解質膜に接する側の内層と前記プロトン伝導性電解質膜に接しない側の外層の少なくとも2層を含む構造であり、
前記内層が、
少なくとも前記触媒担体炭素材料Aと、前記導電助剤炭素材料と、前記電解質材料からなる成分を凝集してなる触媒凝集相Aと、少なくとも前記ガス拡散炭素材料からなる成分を凝集してなるガス拡散炭素材料凝集相との少なくとも2相の混合構造からなり、かつ
前記外層が、
少なくとも前記触媒担体炭素材料Bと、前記電解質材料からなる成分を凝集してなる触媒凝集相Bと、少なくとも前記ガス拡散炭素材料からなる成分を凝集してなるガス拡散炭素材料凝集相との少なくとも2相の混合構造からなり、
前記内層及び前記外層がそれぞれの層中において、前記触媒凝集相Aおよび前記触媒凝集相Bが連続体であり、前記ガス拡散炭素材料凝集相が前記触媒凝集相AまたはBの中に分散した構造である
ことを特徴とする燃料電池。 - 前記触媒担体炭素材料Aが、さらに、そのBET評価による比表面積SBETが1000m2/g以上4000m2/g以下で、tプロット解析による直径2nm以下のミクロ孔表面積Smicroと全表面積Stotalの比Smicro/Stotalが0.5以上であることを特徴とする請求項5または6に記載の燃料電池。
- 前記触媒層中の前記触媒担体炭素材料Aと前記触媒担体炭素材料Bの質量比A/(A+B)が0.2以上0.95以下であることを特徴とする請求項4~7のいずれか1項に記載の燃料電池。
- 前記内層中における前記導電助剤炭素材料Yと前記触媒担体炭素材料Aの質量比Y/(A+Y)が0.05以上0.4以下であることを特徴とする請求項6に記載の燃料電池。
- 前記内層中における前記導電助剤炭素材料が、そのDBP吸油量XmL/100gとBET評価による比表面積SBETとの比X/SBETで0.2以上3.0以下であることを特徴とする請求項6に記載の燃料電池。
- 前記内層中における前記ガス拡散炭素材料の含有率が3質量%以上30質量%以下であることを特徴とする請求項6に記載の燃料電池。
- 前記外層中における前記ガス拡散炭素材料の含有率が3質量%以上30質量%以下であることを特徴とする請求項6に記載の燃料電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980141974.9A CN102197523B (zh) | 2008-10-22 | 2009-10-22 | 固体高分子型燃料电池用催化剂、固体高分子型燃料电池用电极及燃料电池 |
EP09822108.8A EP2341572B1 (en) | 2008-10-22 | 2009-10-22 | Catalyst for solid polymer electrolyte fuel cell, electrode for solid polymer electrolyte fuel cell, and fuel cell |
US12/998,441 US8999606B2 (en) | 2008-10-22 | 2009-10-22 | Solid polymer type fuel cell catalyst, solid polymer type fuel cell electrode, and fuel cell |
KR1020117009052A KR101331389B1 (ko) | 2008-10-22 | 2009-10-22 | 고체 고분자형 연료 전지 촉매, 고체 고분자형 연료 전지용 전극 및 연료 전지 |
CA2739306A CA2739306C (en) | 2008-10-22 | 2009-10-22 | Solid polymer type fuel cell catalyst, solid polymer type fuel cell electrode, and fuel cell |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-272153 | 2008-10-22 | ||
JP2008272153 | 2008-10-22 | ||
JP2008272230 | 2008-10-22 | ||
JP2008-272230 | 2008-10-22 | ||
JP2009014744 | 2009-01-26 | ||
JP2009-014744 | 2009-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047415A1 true WO2010047415A1 (ja) | 2010-04-29 |
Family
ID=42119444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068542 WO2010047415A1 (ja) | 2008-10-22 | 2009-10-22 | 固体高分子型燃料電池触媒、固体高分子型燃料電池用電極、及び燃料電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8999606B2 (ja) |
EP (1) | EP2341572B1 (ja) |
KR (1) | KR101331389B1 (ja) |
CN (1) | CN102197523B (ja) |
CA (1) | CA2739306C (ja) |
WO (1) | WO2010047415A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130244137A1 (en) * | 2010-12-08 | 2013-09-19 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for polymer electrolyte fuel cell and method for producing the same |
KR20170086080A (ko) | 2014-12-26 | 2017-07-25 | 신닛테츠스미킨 카부시키카이샤 | 금속 공기 전지용 전극 |
WO2018123790A1 (ja) * | 2016-12-26 | 2018-07-05 | エヌ・イー ケムキャット株式会社 | 触媒層、ガス拡散電極、膜・触媒層接合体、膜・電極接合体、燃料電池スタック、触媒層形成用組成物 |
US11258076B2 (en) | 2016-12-09 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell, method of producing the same, and fuel cell |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10222482B2 (en) | 2013-01-18 | 2019-03-05 | Seiko Epson Corporation | Position information generation device, timing signal generation device, electronic apparatus, and moving object |
JP6175775B2 (ja) | 2013-01-18 | 2017-08-09 | セイコーエプソン株式会社 | タイミング信号生成装置、電子機器及び移動体 |
US10516171B2 (en) | 2013-01-18 | 2019-12-24 | Kolon Industries, Inc. | Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly for fuel cell and fuel cell system using the same |
DE102014205033A1 (de) * | 2014-03-18 | 2015-09-24 | Volkswagen Ag | Katalysatorschicht für eine Brennstoffzelle und Verfahren zur Herstellung einer solchen |
EP3211696A4 (en) * | 2014-10-24 | 2017-08-30 | Cataler Corporation | Fuel cell electrode catalyst and manufacturing method thereof |
US10320020B2 (en) * | 2014-10-29 | 2019-06-11 | Nissan Motor Co., Ltd. | Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer |
KR101960643B1 (ko) * | 2015-09-09 | 2019-03-20 | 닛산 지도우샤 가부시키가이샤 | 연료 전지용 전극 촉매층 및 그 제조 방법, 그리고 당해 촉매층을 사용하는 막전극 접합체, 연료 전지 및 차량 |
KR102096130B1 (ko) | 2016-05-02 | 2020-04-01 | 주식회사 엘지화학 | 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법 |
FR3053841A1 (fr) * | 2016-07-06 | 2018-01-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Assemblage membrane/electrodes comprenant une anode catalytique a haute capacite |
CN110537275B (zh) * | 2017-03-31 | 2022-12-02 | 日铁化学材料株式会社 | 固体高分子型燃料电池的催化剂载体用碳材料及其制造方法 |
JP6802904B2 (ja) * | 2017-03-31 | 2020-12-23 | 株式会社エンビジョンAescエナジーデバイス | リチウムイオン電池用負極およびリチウムイオン電池 |
EP3599019A1 (en) * | 2018-07-26 | 2020-01-29 | University of Limerick | Improvements relating to water capture |
CN114558604A (zh) * | 2022-03-09 | 2022-05-31 | 昆明理工大学 | 一种杂原子掺杂碳纳米角负载铂的方法、催化剂及其应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071253A (ja) | 2002-08-02 | 2004-03-04 | Toyota Motor Corp | 燃料電池用電極触媒及び燃料電池 |
JP2004342505A (ja) | 2003-05-16 | 2004-12-02 | Cataler Corp | 膜電極接合体 |
JP2005174835A (ja) | 2003-12-12 | 2005-06-30 | Nissan Motor Co Ltd | 電極 |
JP2006059634A (ja) | 2004-08-19 | 2006-03-02 | Toyota Motor Corp | 膜電極複合体 |
JP2006134629A (ja) | 2004-11-04 | 2006-05-25 | Honda Motor Co Ltd | 固体高分子型燃料電池の電極構造体 |
JP2006155921A (ja) | 2004-11-25 | 2006-06-15 | Nippon Steel Corp | 固体高分子形燃料電池用電極 |
JP2006156154A (ja) * | 2004-11-30 | 2006-06-15 | Nippon Steel Corp | 固体高分子型燃料電池用電極 |
JP2006310201A (ja) * | 2005-04-28 | 2006-11-09 | Nissan Motor Co Ltd | 燃料電池用ガス拡散層、および、これを用いた燃料電池 |
JP2006318707A (ja) | 2005-05-11 | 2006-11-24 | Honda Motor Co Ltd | 固体高分子型燃料電池の電極構造体 |
JP2007220414A (ja) * | 2006-02-15 | 2007-08-30 | Toyota Central Res & Dev Lab Inc | 触媒層及び固体高分子型燃料電池 |
JP2007273145A (ja) * | 2006-03-30 | 2007-10-18 | Nippon Steel Corp | 燃料電池用ガス拡散電極及び燃料電池 |
JP2008041253A (ja) | 2006-08-01 | 2008-02-21 | Nissan Motor Co Ltd | 電極触媒およびそれを用いた発電システム |
JP2008210580A (ja) * | 2007-02-23 | 2008-09-11 | Toshiba Corp | 燃料電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001216991A (ja) * | 2000-02-02 | 2001-08-10 | Toyota Motor Corp | 燃料電池性能評価装置およびその評価方法、燃料電池用電極触媒の比表面積評価装置およびその評価方法、並びに燃料電池用電極触媒およびその製造方法 |
CA2563932C (en) | 2004-04-22 | 2013-12-03 | Nippon Steel Corporation | Fuel cell |
CN100466345C (zh) | 2004-04-22 | 2009-03-04 | 新日本制铁株式会社 | 燃料电池和燃料电池用气体扩散电极 |
JP5021292B2 (ja) | 2006-12-26 | 2012-09-05 | 新日本製鐵株式会社 | 燃料電池 |
-
2009
- 2009-10-22 WO PCT/JP2009/068542 patent/WO2010047415A1/ja active Application Filing
- 2009-10-22 US US12/998,441 patent/US8999606B2/en not_active Expired - Fee Related
- 2009-10-22 KR KR1020117009052A patent/KR101331389B1/ko active IP Right Grant
- 2009-10-22 CN CN200980141974.9A patent/CN102197523B/zh not_active Expired - Fee Related
- 2009-10-22 EP EP09822108.8A patent/EP2341572B1/en not_active Not-in-force
- 2009-10-22 CA CA2739306A patent/CA2739306C/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071253A (ja) | 2002-08-02 | 2004-03-04 | Toyota Motor Corp | 燃料電池用電極触媒及び燃料電池 |
JP2004342505A (ja) | 2003-05-16 | 2004-12-02 | Cataler Corp | 膜電極接合体 |
JP2005174835A (ja) | 2003-12-12 | 2005-06-30 | Nissan Motor Co Ltd | 電極 |
JP2006059634A (ja) | 2004-08-19 | 2006-03-02 | Toyota Motor Corp | 膜電極複合体 |
JP2006134629A (ja) | 2004-11-04 | 2006-05-25 | Honda Motor Co Ltd | 固体高分子型燃料電池の電極構造体 |
JP2006155921A (ja) | 2004-11-25 | 2006-06-15 | Nippon Steel Corp | 固体高分子形燃料電池用電極 |
JP2006156154A (ja) * | 2004-11-30 | 2006-06-15 | Nippon Steel Corp | 固体高分子型燃料電池用電極 |
JP2006310201A (ja) * | 2005-04-28 | 2006-11-09 | Nissan Motor Co Ltd | 燃料電池用ガス拡散層、および、これを用いた燃料電池 |
JP2006318707A (ja) | 2005-05-11 | 2006-11-24 | Honda Motor Co Ltd | 固体高分子型燃料電池の電極構造体 |
JP2007220414A (ja) * | 2006-02-15 | 2007-08-30 | Toyota Central Res & Dev Lab Inc | 触媒層及び固体高分子型燃料電池 |
JP2007273145A (ja) * | 2006-03-30 | 2007-10-18 | Nippon Steel Corp | 燃料電池用ガス拡散電極及び燃料電池 |
JP2008041253A (ja) | 2006-08-01 | 2008-02-21 | Nissan Motor Co Ltd | 電極触媒およびそれを用いた発電システム |
JP2008210580A (ja) * | 2007-02-23 | 2008-09-11 | Toshiba Corp | 燃料電池 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130244137A1 (en) * | 2010-12-08 | 2013-09-19 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for polymer electrolyte fuel cell and method for producing the same |
EP2650956A4 (en) * | 2010-12-08 | 2016-06-01 | Tanaka Precious Metal Ind | CATALYST FOR SOLID POLYMER FUEL CELLS AND PROCESS FOR PRODUCTION THEREOF |
US9368805B2 (en) * | 2010-12-08 | 2016-06-14 | Tanaka Kikinzoku Kogyo K.K | Catalyst for polymer electrolyte fuel cell and method for producing the same |
KR20170086080A (ko) | 2014-12-26 | 2017-07-25 | 신닛테츠스미킨 카부시키카이샤 | 금속 공기 전지용 전극 |
US10593959B2 (en) | 2014-12-26 | 2020-03-17 | Nippon Steel Corporation | Electrode for metal-air battery |
US11258076B2 (en) | 2016-12-09 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | Electrode catalyst for fuel cell, method of producing the same, and fuel cell |
WO2018123790A1 (ja) * | 2016-12-26 | 2018-07-05 | エヌ・イー ケムキャット株式会社 | 触媒層、ガス拡散電極、膜・触媒層接合体、膜・電極接合体、燃料電池スタック、触媒層形成用組成物 |
Also Published As
Publication number | Publication date |
---|---|
CN102197523A (zh) | 2011-09-21 |
EP2341572A1 (en) | 2011-07-06 |
US20110195339A1 (en) | 2011-08-11 |
EP2341572B1 (en) | 2017-08-02 |
EP2341572A4 (en) | 2014-09-03 |
CN102197523B (zh) | 2014-04-16 |
KR101331389B1 (ko) | 2013-11-20 |
CA2739306C (en) | 2014-12-02 |
CA2739306A1 (en) | 2010-04-29 |
KR20110057259A (ko) | 2011-05-31 |
US8999606B2 (en) | 2015-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010047415A1 (ja) | 固体高分子型燃料電池触媒、固体高分子型燃料電池用電極、及び燃料電池 | |
JP5458801B2 (ja) | 燃料電池 | |
JP5213499B2 (ja) | 燃料電池 | |
JP6387431B2 (ja) | カーボン担持触媒 | |
CN104094460B (zh) | 燃料电池用电极催化剂层 | |
JP5021292B2 (ja) | 燃料電池 | |
JP6327681B2 (ja) | 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池 | |
WO2015045852A1 (ja) | 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 | |
WO2005104275A1 (ja) | 燃料電池及び燃料電池用ガス拡散電極 | |
CN106030877A (zh) | 固体高分子型燃料电池用的载体碳材料和担载有催化剂金属粒子的碳材料 | |
JP2006253030A (ja) | 液体燃料型固体高分子燃料電池用カソード電極及び液体燃料型固体高分子燃料電池 | |
CN108780900B (zh) | 燃料电池用碳粉末以及使用该燃料电池用碳粉末的催化剂、电极催化剂层、膜电极接合体及燃料电池 | |
JP4960000B2 (ja) | 燃料電池用ガス拡散電極及び燃料電池 | |
US20140141354A1 (en) | Fuel cell electrode, fuel cell membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly | |
JP5397241B2 (ja) | 固体高分子型燃料電池用触媒及びこれを用いた固体高分子型燃料電池用電極 | |
JP5458799B2 (ja) | 燃料電池 | |
JP5375623B2 (ja) | 固体高分子型燃料電池用触媒及びこれを用いた固体高分子型燃料電池用電極 | |
JP2007250214A (ja) | 電極触媒とその製造方法 | |
JP2016126869A (ja) | 固体高分子形燃料電池 | |
KR20120087403A (ko) | 연료전지용 캐소드 전극, 이를 포함하는 막-전극 어셈블리 및 이를 포함하는 연료 전지 시스템 | |
JP2010146762A (ja) | 固体高分子型燃料電池の触媒層 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980141974.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09822108 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2739306 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12998441 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117009052 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2009822108 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009822108 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |