[go: up one dir, main page]

WO1998035382A1 - Resin sealed semiconductor device and method for manufacturing the same - Google Patents

Resin sealed semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
WO1998035382A1
WO1998035382A1 PCT/JP1998/000476 JP9800476W WO9835382A1 WO 1998035382 A1 WO1998035382 A1 WO 1998035382A1 JP 9800476 W JP9800476 W JP 9800476W WO 9835382 A1 WO9835382 A1 WO 9835382A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
semiconductor device
sealing
manufacturing
lead
Prior art date
Application number
PCT/JP1998/000476
Other languages
English (en)
French (fr)
Inventor
Seishi Oida
Yukio Yamaguchi
Nobuhiro Suematsu
Original Assignee
Matsushita Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corporation filed Critical Matsushita Electronics Corporation
Priority to KR10-1999-7007100A priority Critical patent/KR100500919B1/ko
Priority to EP98901517A priority patent/EP0977251B1/en
Priority to US09/341,918 priority patent/US6291274B1/en
Priority to JP53413498A priority patent/JP3255646B2/ja
Publication of WO1998035382A1 publication Critical patent/WO1998035382A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a resin-sealed semiconductor device in which a semiconductor chip and a lead frame are sealed with a sealing resin, and a method for manufacturing the same.
  • the present invention relates to a method for exposing a part of the back surface of a lead frame from the sealing resin. Regarding what was done.
  • FIG. 23 (a) is a plan view of a conventional resin-encapsulated semiconductor device
  • FIG. 23 (b) is a cross-sectional view of the conventional resin-encapsulated semiconductor device.
  • the conventional resin-encapsulated semiconductor device is a resin-encapsulated semiconductor device having an external electrode on the back side.
  • a conventional resin-encapsulated semiconductor device includes a lead frame including an inner lead 201, a die pad 202, and a suspension lead 203 that supports the die pad 202.
  • the semiconductor chip 204 is bonded on the die pad 202 with an adhesive, and the electrode pad (not shown) of the semiconductor chip 204 and the inner lead 201 are connected to the thin metal wire 2. 0 5 electrically connected.
  • the die pad 202, the semiconductor chip 204, the inner lead 201, the suspension lead 203, and the thin metal wire 205 are sealed with a sealing resin 6.
  • the sealing resin 206 does not exist on the back side of the inner lead 201, the back side of the inner lead 201 is exposed, and the inner lead 200 including this exposed surface is exposed.
  • the lower part of 1 is the external electrode 207.
  • the back surface of the encapsulation resin 206 is —Lead 201 is on a common surface with the back surface.
  • the die pad 202 is located above the inner lead 201. That is, the die pad 202 is set up with respect to the inner lead 201 by providing the suspension lead 203 in the depressed portion 208. Therefore, when sealing is performed with the sealing resin 206, the sealing resin 206 is also thinly formed on the back surface side of the die pad 202.
  • the encapsulating resin 206 is treated as a transparent body, and the inside of the semiconductor device is shown transparently.
  • the semiconductor chip 204 is shown by a broken line and a thin metal wire is shown. The illustration of 205 is omitted.
  • a stand-off from the back surface of the encapsulating resin 206 required for bonding an external electrode and an electrode of the mounting substrate is required.
  • a ball electrode 209 made of solder is provided for the external electrode 207, and the stand-off height is secured by the ball electrode 209. And was mounted on a mounting board.
  • 25 to 27 are cross-sectional views showing the steps of manufacturing a conventional resin-encapsulated semiconductor device.
  • a lead frame 210 having an inner lead 201 and a die pad 202 is prepared.
  • the die pad 202 is supported by a suspension lead, but illustration of the suspension lead is omitted.
  • a depressed portion is formed on the suspension lead, and the die pad 202 is set up above the surface of the inner lead 201.
  • the lead frame 210 is not provided with a tie bar for stopping the outflow of the sealing resin during resin sealing.
  • the semiconductor chip 204 is bonded onto the die pad 202 of the prepared lead frame with an adhesive. This process is similar to what is called die bonding.
  • the semiconductor chip 204 bonded on the die pad 202 and the inner lead 201 are electrically connected by the thin metal wire 205.
  • This process is a so-called wire-to-bond process.
  • Aluminum wire is used for metal wire 205
  • a thin wire, gold (Au) wire, or the like is appropriately used.
  • the die pad 202, the semiconductor chip 204, the inner lead 201, the suspension lead and the thin metal wire 205 are sealed with the sealing resin 206.
  • the lead frame to which the semiconductor chip 204 is bonded is housed in a sealing mold and is transferred and molded.
  • the back surface of the inner lead 201 is formed by the sealing mold. Resin sealing is performed in contact with the upper mold or the lower mold.
  • the tip end 211 of the inner lead 201 protruding outward from the sealing resin 206 is cut.
  • the tip end surface of the cut-out inner lead 201 and the side surface of the sealing resin 6 are almost on the same plane, and Is the external electrode 207.
  • the encapsulating resin 206 wraps around the back surface of the inner lead 201 and causes resin burrs (protrusion of resin).
  • a water jet process for blowing resin burrs is introduced after the resin sealing process and before the cutting process of the inner lead 201.
  • a ball electrode made of solder is formed on the lower surface of the external electrode 207 to obtain a resin-sealed semiconductor device as shown in FIG. In some cases, a solder plating layer was formed instead of the solder balls.
  • the encapsulation resin 206 not obtain standoff height.
  • a ball electrode 209 made of solder or the like must be provided and mounted on a mounting board, and there has been a problem that efficient mounting cannot be performed.
  • a lead frame to which a semiconductor chip is joined is housed in a sealing die, and an inner surface is fixed to an inner die.
  • One lead is pressed and brought into close contact to seal the resin, but the sealing resin still goes around the back side of the inner lead, and the resin burrs (resin Issue).
  • FIG. 30 is a partial plan view in which the external electrode 207 on the back surface of the semiconductor device shown in the circle of FIG.
  • resin burrs 206 a may be generated on the lower surface of the external electrode 207. That is, in the resin sealing step, the sealing resin 206 wraps around the lower surface side of the external electrode 207 to become a resin burr 206 a, and a part of the external electrode 207 becomes the sealing resin 206. It is buried inside.
  • a lead frame used for a resin-encapsulated semiconductor device that is currently widely used is usually made of a copper (Cu) material or a 42-alloy material, and after a nickel (N i) undercoating on the lead frame, Palladium (Pd) plating and gold (Au) plating are applied.
  • the resin jet was introduced to remove resin burrs. When the resin burrs were blown off with a high-pressure one-jet unit in the inkjet process, only the resin burrs were generated by the water jet.
  • there was also a risk of a large quality problem such as peeling of soft metal plating and adhesion of impurities.
  • An object of the present invention is to suppress the occurrence of resin burrs on the back surface of the lead frame in the resin sealing process, or to secure the stand-off height of the external electrodes from the sealing resin, thereby simplifying the manufacturing process.
  • Resin-encapsulated semiconductor device capable of meeting demands and method of manufacturing Is to provide the law.
  • a resin-sealed semiconductor device formed by using a sealing tape for preventing the resin from wrapping around at the time of resin sealing, and a sealing tape are used.
  • a method for manufacturing a resin-sealed semiconductor device is disclosed.
  • a resin-encapsulated semiconductor device according to the present invention includes a semiconductor chip having an electrode pad, an inner lead, and a connecting member for electrically connecting the electrode pad of the semiconductor chip and the inner lead.
  • the external electrodes of the single lead have a structure protruding from the sealing resin, the stand-off height of the external electrodes can be secured.
  • the structure can be directly connected to the wiring or the like on the mounting board as an external terminal without attaching the pole electrode to the external electrode, and the first object can be achieved.
  • a die pad for supporting the semiconductor chip and a suspension lead for supporting the die pad are further provided, and the die pad is positioned on the suspension lead above the inner lead. A depressed part can be provided.
  • the sealing resin to be present below the die pad, thereby improving the holding force of the sealing resin on the die pad and the semiconductor chip.
  • the die pad is only slightly upset by the depressing amount of the suspension lead, the overall thickness of the resin-encapsulated semiconductor device does not increase, and the thickness of the resin-encapsulated semiconductor device is reduced. Structure can be maintained.
  • the amount of protrusion of the external electrode from the back surface of the encapsulation resin is preferably about 10 to 40 m.
  • the basic method for manufacturing a resin-encapsulated semiconductor device includes a first step of preparing a sealing die, a semiconductor chip, and a peripheral member, and a method comprising: A second step of mounting a sealing tape in close contact with a part of the surface of the peripheral member, and a part of the semiconductor chip and the peripheral member excluding at least a part of the surface with the sealing tape mounted. A third step of sealing the sealing tape in a sealing resin, and a fourth step of removing the sealing tape after the third step. At least a part of the surface of the member is exposed from the sealing resin.
  • the sealing tape is adhered to the portion of the peripheral member in the second step, so that the portion can be surely formed.
  • a structure exposed from the sealing resin is realized.
  • a process such as a water jet, which has been required conventionally, can be eliminated, and the manufacturing process can be simplified.
  • the first object can be achieved.
  • the first step includes a first sub-step of preparing a lead frame having a peripheral lead and a region supporting a semiconductor chip as the peripheral member. A second sub-step of joining the semiconductor chip to a region of the lead frame supporting the semiconductor chip; and a third sub-step of electrically joining the semiconductor chip and the inner lead.
  • the sealing tape can be adhered to the back surface of the inner lead.
  • a resin-sealed semiconductor device in which the semiconductor chip connected to the lead frame is provided in the sealing resin is obtained.
  • the inner lead is securely exposed from the sealing resin, and the inner lead is adjusted from the back of the sealing resin by adjusting the pressing force of the inner lead against the sealing tape.
  • the amount of protrusion, that is, the stand-off height of the inner lead can be adjusted, so that a resin-encapsulated semiconductor device having the same advantages as the first resin-encapsulated semiconductor device can be easily manufactured. Can be formed.
  • a dipad as a region for supporting the semiconductor chip and a die pad are supported.
  • the sealing tape can be brought into close contact with only the back surface of the inner lead of the lead frame.
  • the sealing resin can be present on the rear surface side of the die pad without increasing the overall thickness of the resin-sealed semiconductor device, so that the holding force of the sealing resin on the die pad is improved.
  • a thin resin-sealed semiconductor device can be easily formed.
  • a tip surface of the inner lead and a side surface of the sealing resin are substantially the same.
  • the method may further include a step of cutting off a portion of the inner lead projecting to the side of the sealing resin.
  • a nickel (N i) layer, a palladium (P d) layer, a gold (A u) layer It is preferable to provide a lead frame on which the metal plating of each layer is applied.
  • This method eliminates the need for a process for removing resin burrs, such as a warhead jet after resin sealing, by using a sealing tape while forming a high-quality plating layer by pre-meshing. It is possible to avoid peeling of the plating layer that occurs when it is necessary to remove burrs.
  • a sealing tape having a thickness corresponding to the predetermined value is attached so that the lower surface of the inner lead projects downward from the rear surface of the sealing resin by a predetermined value after resin sealing. be able to.
  • the amount of protrusion of the inner lead can be easily adjusted by the thickness of the sealing tape, so that the holding force of the sealing resin on the inner lead and the stand-off height for making the lower part of the inner lead function as an external terminal can be adjusted. Both can be set to appropriate values.
  • a wiring is provided on an upper surface as the peripheral member, and an external electrode connected to the wiring is provided on a rear surface.
  • a third sub-step for connection In the second step, the sealing tape can be brought into close contact with at least the external electrode.
  • a substrate bonding type resin-sealed semiconductor device having a structure in which the external electrodes are reliably exposed from the sealing resin is formed.
  • the sealing tape in the first step, at least a first sub-step of preparing a heat sink as the peripheral member, and mounting a semiconductor chip on the heat sink
  • the sealing tape can be adhered to the back surface of the heat sink.
  • a resin-encapsulated semiconductor device provided with a heat-dissipating plate having good heat-dissipating characteristics without encapsulating the sealing resin on the back surface of the heat-dissipating plate is formed.
  • a lead frame having a lead and a bed as the peripheral member is further provided.
  • the semiconductor chip is bonded on the bead, and then the bead is mounted on the heat sink.
  • the semiconductor chip can be mounted on the heat sink.
  • a resin-encapsulated semiconductor with a heat sink using a lead frame The device can be easily formed.
  • a lead body having an internal lead and an external lead is prepared as the peripheral member, and in the second step, the lead A sealing tape is attached between the lead and the sealing mold so as to be in close contact with a part of the surface of the internal lead, and in the third step, the sealing tape is attached while the sealing tape is mounted.
  • the fourth step Mounting the semiconductor chip having the electrode pad in the recess of the resin package body, and electrically connecting the electrode pad of the semiconductor chip and the internal lead via a connecting member.
  • the opening is sealed with a sealing member.
  • at least a part of the internal Li one de of the surface can be exposed from the sealing resin.
  • 1 (a) and 1 (b) are a plan view and a cross-sectional view showing a sealing resin of a resin-sealed semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a step of preparing a lead frame in a step of manufacturing the resin-sealed semiconductor device of the first embodiment.
  • FIG. 3 is a cross-sectional view showing a step of joining a semiconductor chip on a die pad in a manufacturing step of the resin-sealed semiconductor device of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a step of forming a thin metal wire in the manufacturing process of the resin-sealed semiconductor device of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a step of laying a sealing tape under a lead frame in a manufacturing step of the resin-sealed semiconductor device of the first embodiment.
  • FIG. 6 is a view showing the resin sealing in the manufacturing process of the resin-sealed semiconductor device of the first embodiment. It is sectional drawing which shows a process.
  • FIG. 7 is a cross-sectional view of the resin-encapsulated semiconductor device after the step of cutting the tip of the inner lead in the manufacturing process of the resin-encapsulated semiconductor device of the first embodiment.
  • FIG. 8 is a partial back view of the resin-encapsulated semiconductor device formed in the manufacturing process of the resin-encapsulated semiconductor device of the first embodiment.
  • FIG. 9 is a cross-sectional view of a resin-sealed semiconductor device of a substrate bonding type according to a second embodiment of the present invention.
  • FIGS. 10 (a) and (b) show a process of mounting a semiconductor chip on a substrate using bonding by thin metal wires and bonding by bumps in the manufacturing process of the resin-encapsulated semiconductor device of the second embodiment, respectively. It is sectional drawing.
  • FIG. 11 is a cross-sectional view showing a resin sealing step in a manufacturing step of the resin-sealed semiconductor device of the second embodiment.
  • FIG. 12 is a cross-sectional view of the resin-sealed body after the sealing tape has been removed in the manufacturing process of the resin-sealed semiconductor device of the second embodiment.
  • FIG. 13 is a cross-sectional view of a resin-sealed semiconductor device provided with a heat sink according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a step of preparing a lead frame in a step of manufacturing the resin-encapsulated semiconductor device of the third embodiment.
  • FIG. 15 is a cross-sectional view showing a step of forming a thin metal wire by bonding a semiconductor chip on a heat sink in a manufacturing process of the resin-sealed semiconductor device of the third embodiment.
  • FIG. 16 is a cross-sectional view showing a step of laying a sealing tape under a heat sink and a lead frame in a manufacturing process of the resin-sealed semiconductor device of the third embodiment.
  • FIG. 17 is a cross-sectional view showing a resin sealing step in a manufacturing step of the resin-sealed semiconductor device of the third embodiment.
  • FIG. 18 is a cross-sectional view of the resin-sealed semiconductor device after removing the sealing tape in the manufacturing process of the resin-sealed semiconductor device of the third embodiment.
  • FIG. 19 is a sectional view of a resin-sealed semiconductor device as a CCD package according to a fourth embodiment of the present invention.
  • FIG. 20 is a view illustrating the resin sealing in the manufacturing process of the resin-sealed semiconductor device according to the fourth embodiment. It is sectional drawing which shows a stop process.
  • FIG. 21 is a cross-sectional view showing a step of removing a sealing tape after resin sealing in a manufacturing step of the resin-sealed semiconductor device of the fourth embodiment.
  • FIG. 22 is a cross-sectional view showing a step of forming metal wires and sealing with sealing glass in a manufacturing process of the resin-sealed semiconductor device of the fourth embodiment.
  • FIGS. 23 (a) and 23 (b) are a plan view and a cross-sectional view of a conventional resin-encapsulated semiconductor device of the type having an external electrode on the back side.
  • FIG. 24 is a cross-sectional view of a conventional resin-encapsulated semiconductor device in which a ball electrode is provided as an external electrode to secure a stand-off height.
  • FIG. 25 is a cross-sectional view showing a step of preparing a lead frame in a conventional process of manufacturing a resin-encapsulated semiconductor device.
  • FIG. 26 is a cross-sectional view showing a step of joining a semiconductor chip on a die pad in a conventional manufacturing process of a resin-encapsulated semiconductor device.
  • FIG. 27 is a cross-sectional view showing a step of forming a thin metal wire in a manufacturing process of a conventional resin-encapsulated semiconductor device.
  • FIG. 28 is a cross-sectional view showing a resin sealing step in a manufacturing process of a conventional resin-sealed semiconductor device.
  • FIG. 29 is a cross-sectional view of the conventional resin-encapsulated semiconductor device after the completion of resin encapsulation in the manufacturing process.
  • FIG. 30 is a rear view of a resin-encapsulated semiconductor device formed by a conventional process of manufacturing a resin-encapsulated semiconductor device.
  • FIG. 1A is a plan view of the resin-encapsulated semiconductor device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along line lb-lb shown in FIG. 1A.
  • the sealing resin 17 is treated as a transparent body
  • the semiconductor chip 15 has the outline shown by the broken line, and the illustration of the thin metal wire 16 is omitted.
  • the resin-encapsulated semiconductor device of the present embodiment is: It has a lead frame including an inner lead 12, a die pad 13 for supporting a semiconductor chip, and a suspension lead 14 for supporting the die pad 13.
  • the semiconductor chip 15 is bonded to the die pad 13 by an adhesive.
  • the electrode pad (not shown) of the semiconductor chip 15 and the inner lead 12 are electrically connected to each other by the thin metal wire 16.
  • the inner lead, the die pad 13, the suspension lead 14, the semiconductor chip 15, and the thin metal wire 16 are sealed in a sealing resin 17.
  • the die pad 13 is set up by the depressed portion 19 of the suspension lead 14 so as to be located above the inner lead 12. Therefore, when the sealing resin 17 is sealed with the sealing resin 17, the sealing resin 17 is also thinly present on the back surface side of the die pad 13.
  • the sealing resin 17 does not exist on the lower surface side of the inner lead 12, and the lower surface of the inner lead 12 is exposed, and the lower surface of the inner lead 12 serves as a connection surface with the mounting board. That is, the lower part of the inner lead 12 is the external electrode 18.
  • the external electrode 18 does not originally have resin burrs which are portions of the resin protruding in the resin sealing step, and the external electrode 18 of the parenthesis slightly protrudes below the back surface of the sealing resin 17. ing.
  • Such a structure of the external electrode 18 having no resin burr and protruding downward can be easily realized by a manufacturing method described later.
  • the resin-encapsulated semiconductor device of the present embodiment there is no outer lead serving as an external electrode terminal beside the inner lead 12, and the lower surface and side surface of the inner lead 12 are not provided. Since the portion including the external electrode 18 is included, the size of the semiconductor device can be reduced. In addition, since there is no resin burr on the lower surface of the inner lead 12, that is, on the lower surface of the external electrode 18, the reliability of bonding with the electrode of the mounting board is improved. In addition, since the external electrodes 18 are formed so as to protrude from the surface of the sealing resin 17, when the resin-encapsulated semiconductor device is mounted on the mounting board, the external electrodes 18 are bonded to the electrodes of the mounting board. This means that the standoff height of the electrode 18 is secured in advance.
  • the external electrode 18 can be used as an external terminal as it is, and it is not necessary to attach a solder ball to the external electrode 18 for mounting on a mounting board as in the conventional case. This is advantageous.
  • the die pad 13 is set up with respect to the inner lead 12 and the sealing resin 17 is also thinly present on the back side of the die pad 13, so that a resin-encapsulated semiconductor device is provided. Reliability is improved.
  • the die pad 13 is provided to support the semiconductor chip 15.
  • the tip of the inner lead is insulated and the semiconductor chip is It is also possible to support or mount a semiconductor chip on a resin tape provided.
  • the die pad 13 is not necessarily required, and the present embodiment can be applied to a die pad lead frame.
  • the thin metal wires 16 are used as means for electrically connecting the electrodes of the semiconductor chip 15 and the inner leads 12, but the bumps are formed by flip chip bonding.
  • the electrodes of the semiconductor chip 15 and the inner leads 12 can also be electrically connected to each other by, for example, the interposition of a eutectic alloy or the direct joining by forming a eutectic alloy.
  • FIGS. 2 to 7 are cross-sectional views illustrating the steps of manufacturing the resin-encapsulated semiconductor device of the present embodiment.
  • a lead frame 20 provided with an inner lead 12 and a die pad 13 for supporting a semiconductor chip is prepared.
  • the die pad 13 is supported by suspension leads, but is not shown because it does not appear in this cross section. Further, a depressed portion is formed on the suspension lead, and the die pad 13 is set up above the surface of the inner lead 12.
  • the prepared lead frame 20 is a lead frame that does not have a tie bar for stopping the flow of the sealing resin during resin sealing.
  • the lead frame 20 in the present embodiment has a nickel (N i) layer as a base plating, a palladium (P d) layer thereon, and a thin film on the uppermost layer with respect to a copper (Cu) material frame.
  • This is a three-layer metal-plated lead frame with each gold (Au) layer plated.
  • materials such as 42 alloy materials can be used, and nickel (Ni), palladium (Pd), and gold (Au)
  • a precious metal plating other than the above may be provided, and furthermore, it is not always necessary to use a three-layer plating.
  • the semiconductor chip 15 is placed on the die pad of the prepared lead frame, and the two are joined to each other with an adhesive.
  • This step is a so-called die bonding step.
  • the member supporting the semiconductor chip is not limited to the lead frame, and a member capable of supporting another semiconductor chip, for example, a TAB tape or a substrate may be used.
  • the semiconductor chip 15 bonded on the die pad 13 and the inner lead 12 are electrically connected by the thin metal wire 16.
  • This process is a so-called wire-to-bond process.
  • the thin metal wire an aluminum thin wire, a gold (Au) wire, or the like can be appropriately selected and used.
  • the electrical connection between the semiconductor chip 15 and the inner lead 12 may be performed not through the thin metal wire 16 but through a bump or the like.
  • a sealing tape 21 is attached to the back surface side of the inner lead 12.
  • the sealing tape 21 serves to function as a mask for preventing the sealing resin from flowing around the back surface of the inner lead 12 when the resin is sealed.
  • the presence of 1 can prevent resin burrs from being formed on the back surface of the inner lead 12.
  • the sealing tape 21 attached to the inner lead 12 etc. is a tape based on a resin mainly composed of polyethylene terephthalate, polyimide, polycarbonate, etc., and is easily peeled off after resin sealing. Any material can be used as long as it is resistant to a high-temperature environment during resin sealing.
  • a tape containing polyethylene terephthalate as a main component was used, and the thickness was 50 [ ⁇ ].
  • the sealing tape 21 is applied so as to be adhered to the entire rear surface of the lead frame in a state of being in close contact with only the inner lead 12 surface of the lead frame. Although it is not in close contact with the rear surface of the die pad 13 that has been set up by the depress part of the suspension lead, it is in close contact with the rear surface of the die pad 13.
  • the sealing tape 21 may be peeled off after the resin sealing step to expose the back surface of the die pad 13 to improve heat radiation characteristics.
  • the semiconductor chip 15 is joined, and the lead frame to which the sealing tape 21 is attached is housed in a mold, and the sealing resin 17 is placed in the mold. And resin sealing is performed.
  • the sealing tape 21 on the back surface side of the inner lead 12 is pressed against the mold surface side to perform resin sealing.
  • the sealing tape 21 stuck to the back surface of the inner lead 12 is removed by peeling off to form an external electrode 18 projecting from the back surface of the sealing resin 17. Then, the front end of the inner lead 12 is cut off so that the front end surface of the inner lead 12 and the side surface of the sealing resin 17 are substantially flush with each other, thereby forming a resin seal as shown in FIG. The type semiconductor device is completed.
  • FIG. 8 is a partial rear view of the resin-encapsulated semiconductor device of the present embodiment, showing a portion of the external electrode 18 in an enlarged manner.
  • the resin sealing step in which the sealing tape 21 is attached to the back surface of the lead frame is performed, so that the back surface and side surface of the inner lead 12, that is, the external electrode The generation of resin burrs on the surface of 18 can be prevented. Further, it is possible to prevent the sealing resin 17 from wrapping around the surface of the external electrode 18 and burying a part of the external electrode 18 in the sealing resin 17 as in the conventional manufacturing method.
  • the sealing tape 21 is pasted on the back surface of the inner lead 12 before the resin sealing step. No resin burrs are generated on the back surface of the inner lead 12. Therefore, as in the conventional method of manufacturing a resin-encapsulated semiconductor device in which the lower surface of the inner lead is exposed, it is necessary to remove resin burrs formed on the inner lead by using a water jet or the like. There is no. In other words, by eliminating the troublesome step of removing the resin burrs, it is possible to simplify the steps in the mass production process of the resin-encapsulated semiconductor device. In addition, nickel (N i), palladium (Pd ), Peeling of the metal plating layer such as gold (Au) can be eliminated. Therefore, pre-meshing of each metal layer before the resin sealing step is possible.
  • the external electrodes 18 formed by the manufacturing method of the present embodiment protrude from the sealing resin 17, the external electrodes 18 are directly connected to the external terminals without attaching solder balls as in the related art. Can be used as
  • the sealing tape 21 is softened and thermally contracted by the heat of the molten sealing resin.
  • Step 1 is greatly formed, and a step is formed between the back surface of the toner lead 12 and the back surface of the sealing resin 17. Therefore, the back surface of the inner lead 12 has a structure protruding from the back surface of the sealing resin 17, and the stand-off height of the external electrode 18, which is the lower portion of the inner lead 12, can be secured. Therefore, this protruding external electrode 18 can be used as it is as an external terminal.
  • the size of the step between the back surface of the toner lead 12 and the back surface of the sealing resin 17 can be controlled by the thickness of the sealing tape 21 applied before the sealing step.
  • the size of the step that is, the protrusion amount of the external electrode 18 is generally about half that, and the maximum is 50 [um]. nm].
  • the amount of the sealing tape 21 entering above the rear surface of the inner lead 12 is determined by the thickness of the sealing tape 21, the external electrode 1
  • the protruding amount of 8 can be self-controlled by the thickness of the sealing tape 21, thereby facilitating manufacturing.
  • the hardness, thickness, and heat-softening property of the material can be determined according to the desired size of the step.
  • the resin-sealed semiconductor device of the present embodiment is substantially a single-sided sealed semiconductor device.
  • the sealing tape 21 is previously attached to the lower surface of the inner lead 12 of the lead frame before the resin sealing step.
  • the stop tape 21 may be set in a sealing mold, and the lead frame 12 may be adhered thereon. In this case, as described later, the supply of the sealing tape to the sealing mold can be performed, and the process can be further streamlined.
  • the method of the present invention is limited to a semiconductor device having a lead frame. Not something.
  • the method of using a sealing tape in the resin sealing step which is a basic concept of the present invention, can be widely applied to the resin sealing step of a semiconductor device having a semiconductor chip mounted thereon and having a resin-sealed member. It can be applied to the resin encapsulation process of semiconductor devices such as, TAB type and substrate type.
  • FIG. 9 is a cross-sectional view illustrating a resin-sealed semiconductor device of a substrate bonding type according to the present embodiment.
  • the resin-encapsulated semiconductor device of the present embodiment is a substrate-bonded resin-encapsulated semiconductor device typified by a ball-grid array (BGA).
  • a substrate 24 made of a ceramic single layer or multilayer, a semiconductor chip 25 mounted on the substrate 24, and a substrate 24 formed on the upper surface of the substrate 24.
  • a thin metal wire 26 for electrically connecting the wiring (not shown) and the electrode pad (not shown) of the semiconductor chip 25.
  • the semiconductor chip 25 the wiring and the fine metal wires 26 are sealed with an insulating sealing resin 27.
  • An external electrode pad 28 (land) is formed on the rear surface of the substrate 24, and the wiring on the upper surface of the substrate 24 is connected to the external electrode pad 28 via a through hole or a via hole. Connected to electrode pad 28 (land).
  • the ball electrode 29 made of a conductive material for bonding to the external substrate is provided on the external electrode pad 28, but the ball electrode 29 is not necessarily provided. There is no. Further, the substrate 24 may be made of a polyimide-based thin film.
  • the sealing resin is transfer-molded in a state where the sealing tape is adhered to the back surface of the substrate 24.
  • the sealing resin 27 on the top of 8 is prevented from getting around. Therefore, there is no formation of resin burrs on the external electrode pad 28, and a connection surface with the mounting substrate can be secured, and the connection reliability when the pole electrode 29 is provided can be improved.
  • 10 to 12 are cross-sectional views for each process showing a method for manufacturing the BGA type resin-sealed semiconductor device of the present embodiment.
  • wiring (not shown) is formed on a substrate 24 made of a single-layer or multilayer glass-epoxy plastic plate or ceramic plate, and a through-hole is formed on the substrate 24. A hole or a via hole is formed, and an external electrode pad 28 is formed on the back surface of the substrate 24. Thereafter, the semiconductor chip 25 is bonded to a predetermined position on the substrate 24 by a die bonding material or the like. The upper wiring and an electrode pad (not shown) on the semiconductor chip are connected via a thin metal wire 26.
  • the semiconductor chip 25 may be mounted on the substrate 24 by a face-down method as shown in FIG. 10 (b).
  • the wiring on the substrate 24 and the electrode pads on the semiconductor chip 25 are generally joined by metal balls 30 typified by bumps.
  • Wiring and electrode pad of semiconductor chip 25 Direct joining may be performed using alloying. The following steps will be described assuming that the bonding structure shown in FIG. 10A is adopted.
  • the sealing mold 31 composed of the lower mold 31a and the upper mold 31b
  • a resin sealing step of sealing the wiring and the fine metal wires 26 is performed.
  • the first sealing tape 32 a is attached to the back side of the substrate 24, that is, the upper surface of the lower die 31 a of the sealing die 31.
  • the pressing force applied to the mold causes the external electrode pads 28 to bite into the sealing tape 32a, and the sealing tape 32a is formed on the back surface of the substrate 24 and the lower surface of the external electrode 28.
  • the second sealing tape 32 b is also adhered to the lower surface of the upper mold 31 b of the sealing mold 31.
  • transfer molding is performed using the sealing resin 27, so that only the area surrounding the semiconductor chip 25 in the area on the upper surface side of the substrate 24 is resin-sealed, and sealing is performed on the back surface of the substrate 24.
  • the stop resin 27 can be prevented from wrapping around. As described above, it is possible to prevent resin burrs from being formed on the external electrode pads 28 on the back surface of the substrate 24.
  • a pressure is applied to the substrate 24 by a sealing mold 31 to perform resin sealing, but the first and second sealing tapes 32 a and 32 are applied. Since pressure is applied in a structure sandwiching the substrate 24 with b, the force applied to the substrate 24 can be buffered, and there is also an advantage that damage and deformation of the substrate 24 during resin sealing can be prevented.
  • the resin sealing body formed by sealing the region surrounding the semiconductor chip 25 on the upper side of the substrate 24 with the sealing resin 27 is removed from the sealing mold 31.
  • a resin sealing body in which the sealing resin does not flow into the external electrode pads 28 on the back surface of the substrate 24 is obtained.
  • the first and second encapsulation tapes 32 a and 32 b are used to make use of the resilience and to perform encapsulation.
  • the deformation of the substrate 24 in the stopper mold can be suppressed, and the adhesion of the sealing resin and foreign matter to the surface of the external electrode pad 28 of the substrate 24 can be prevented.
  • first sealing tape 32a is not necessarily required among the first and second sealing tapes 32a and 32b. Even when only the second sealing tape 32b is provided, the second sealing tape 32b is in contact with the upper surface of the substrate 24, so that the sealing resin is Wrap-around can be prevented.
  • sealing tape 32 a does not necessarily have to be in close contact with the entire back surface of the substrate 24, but may be in contact with at least the lower surface of the external electrode pad 28.
  • FIG. 13 is a sectional view showing the resin-sealed semiconductor device according to the present embodiment.
  • the resin-encapsulated semiconductor device of the present embodiment is a resin-encapsulated semiconductor device having a radiator plate, and includes a semiconductor chip that generates a relatively large amount of heat, for example, includes a high-power transistor. This is a resin-sealed semiconductor device.
  • the semiconductor device includes a bed 33 serving as a support portion of a lead frame, a semiconductor chip 34 bonded to the bed 33 by a die bonding material, and a lead frame.
  • a metal terminal 35, a thin metal wire 36 electrically connecting the metal terminal 35 to the semiconductor chip 34, and a radiator plate 37 for supporting the bed 33 are provided.
  • a portion other than the back surface side of the heat sink 37, that is, including the upper surface and the side surface of the heat sink 37, a part of the bed 33, the semiconductor chip 34, the thin metal wire 36, and the metal terminal 35 Are sealed with an insulating sealing resin 38, and the other part of the metal terminal 35 has a structure protruding from the sealing resin 38 as an external terminal.
  • transfer molding is performed in a state in which a sealing tape is adhered to the back surface of the heat radiating plate 37, so that the heat radiating plate It is possible to prevent the sealing resin 38 from flowing around the back surface of the heat sink 37, thereby preventing the formation of resin burrs on the back surface of the heat sink 37. Therefore, the heat radiating surface (back surface) of the heat radiating plate 37 can be secured, and the heat radiating function of releasing the heat generated from the semiconductor chip of the semiconductor device to the outside can be maintained and improved.
  • FIG. 14 to FIG. 18 are cross-sectional views for each process showing the method of manufacturing the resin-encapsulated semiconductor device having the heat sink of the present embodiment.
  • a lead frame having a bead 33 as a support portion of a semiconductor chip and a metal terminal 35 is prepared, and a semiconductor chip 34 is provided on the upper surface of the bead 33. Are bonded by a die bond material. Then, the semiconductor chip 34 and the metal terminal 35 are connected by a thin metal wire 36.
  • a heat sink 37 is joined to the back surface of the bed 33. Note that the thickness of the bed 33 itself may be increased so that the bed 33 also has a function as a heat sink.
  • a sealing tape 39 is adhered to the back surface of the heat sink 37.
  • the heat sink 37 with the sealing tape 39 adhered thereto may be placed on the sealing mold, or the sealing tape, particularly the lower mold, may be provided with the sealing tape 39.
  • the heat sink 37 may be placed on the lower mold so that the back surface of the heat sink 37 and the sealing tape 39 are in close contact with each other.
  • the sealing tape 39 is peeled off from the back surface of the heat sink 37, and the metal terminals 35 are formed to expose the back surface of the heat sink 37 as shown in FIG.
  • the obtained resin-sealed semiconductor device is obtained.
  • the heat radiating plate 3 7 Prevents the encapsulation resin from wrapping around the back surface and prevents resin burr Can be stopped. That is, since the back surface of the heat radiating plate 37 can be reliably exposed, a resin-encapsulated semiconductor device that does not impair the heat radiating effect of the heat radiating plate 37 can be obtained. Also, since the sealing tape 39 is brought into close contact with the back surface of the heat sink 37 to seal the resin, a part of the sealing tape 39 bites into the side surface of the heat sink 37, and after sealing, the heat sink 37 has a structure slightly protruding from the back surface of the sealing resin portion. Therefore, when the resin-encapsulated semiconductor device is mounted, the entire back surface of the heat radiating plate 37 is securely in contact with the mounting substrate, so that the heat radiating effect can be enhanced.
  • FIG. 19 is a cross-sectional view showing a resin-sealed semiconductor device represented by the CCD package according to the present embodiment.
  • the resin-encapsulated semiconductor device of the present embodiment includes a resin package 41 having an opening at the top and further having a recess 42 in the opening, and a recess of the resin package 41.
  • Solid state imaging device 40 bonded to the bottom surface of die 2 with a die bond material, internal lead 43 provided in the area near concave portion 42 of resin package 41, and resin package 4 connected to internal lead 43.
  • a metal that electrically connects an external lead 46 extending to the outside through 1 and an electrode pad (not shown) on the solid-state imaging device 40 and an internal lead 43 on the resin package 41. 4 and 4 are provided.
  • the opening of the resin package 41 is sealed with a sealing glass 45.
  • the external leads 46 projecting from the resin package 41 are bent downward.
  • the resin package 41 is a package integrally formed by transfer molding of an insulating resin.
  • the resin-sealed semiconductor device of the present embodiment performs transfer molding in a resin-sealing step in a state where a sealing tape is adhered on the internal lead 43 to form the resin package 41. Since it is formed, resin burrs are exposed on the upper surface of the internal lead 43 without forming a resin burr, and connection between the internal lead 43 and the solid-state imaging device 40 by a thin metal wire 44 is performed. Is a highly reliable resin-encapsulated semiconductor device.
  • FIG. 20 to FIG. 22 are cross-sectional views for each process showing the method for manufacturing the resin-sealed semiconductor device according to the present embodiment.
  • FIG. 20 shows a state in which the resin package 41 is formed, and shows a state in which the surfaces of the inner lead 43 and the outer lead 46 are covered with the sealing tape 47.
  • the resin package 41 in which the upper surface of the internal lead 43 is reliably exposed in the opening can be obtained. Since the sealing tape 47 closely adheres to the internal leads 43 in a high temperature state, the surface of the internal leads 43 exposed after the sealing tape 47 is peeled off is covered with a sealing resin. No foreign matter such as Paris is attached.
  • the solid-state imaging device 40 is joined to the bottom surface of the concave portion 42 formed in the resin package 41, and the electrode pad on the solid-state imaging device 40 and the internal lead are formed.
  • the wire 43 is connected to the wire 43.
  • the external leads 46 are formed.
  • the external lead 46 is formed into a desired shape according to the type of the semiconductor device.
  • the resin sealing method using the sealing tape of the present embodiment is particularly suitable for the manufacture of semiconductor devices having a resin package with an open top, for example, optical semiconductor devices typified by CCDs and holograms. It can exert a remarkable effect when molding a resin package provided with a lead.
  • the resin-encapsulated semiconductor device and the method of manufacturing the same of the present invention can be applied to all electronic devices using a semiconductor integrated circuit formed by various transistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

明糸田書 樹脂封止型半導体装置およびその製造方法
[技術分野]
本発明は、 半導体チップ及びリ一ドフレームを封止樹脂で封止した樹脂封止型 半導体装置およびその製造方法に関するものであり、 特にリードフレームの一部 の裏面を封止樹脂から露出させるようにしたものに関する。
[背景技術]
近年、 電子機器の小型化に対応するために、 電子機器に搭載される半導体部品 を高密度に実装することが要求され、 それにともなって、 半導体部品の小型、 薄 型化が進んでいる。
以下、 従来の樹脂封止型半導体装置について説明する。
図 2 3 ( a ) は、 従来の樹脂封止型半導体装置の平面図であり、 図 2 3 ( b ) は、 従来の樹脂封止型半導体装置の断面図である。
図 2 3 ( a ) , ( b ) に示すように、 従来の樹脂封止型半導体装置は、 裏面側 に外部電極を有するタイプの樹脂封止型半導体装置である。
従来の樹脂封止型半導体装置は、 インナ一リード 2 0 1 と、 ダイパッ ド 2 0 2 と、 そのダイパッド 2 0 2を支持する吊りリード 2 0 3とよりなるリードフレー ムとを備えている。 そして、 ダイパッ ド 2 0 2上に半導体チップ 2 0 4が接着剤 により接合されており、 半導体チップ 2 0 4の電極パッ ド (図示せず) とインナ —リード 2 0 1 とは、 金属細線 2 0 5により電気的に接続されている。 そして、 ダイパッ ド 2 0 2 , 半導体チップ 2 0 4, インナーリード 2 0 1, 吊りリード 2 0 3及び金属細線 2 0 5は封止樹脂 6により封止されている。 この構造では、 ィ ンナーリード 2 0 1の裏面側には封止樹脂 2 0 6は存在せず、 ィンナ一リード 2 0 1の裏面側は露出されており、 この露出面を含むインナ一リード 2 0 1の下部 が外部電極 2 0 7となっている。
このような樹脂封止型半導体装置においては、 封止樹脂 2 0 6の裏面とィンナ —リード 2 0 1の裏面とは共通の面上にある。 また、 ダイパッ ド 2 0 2は、 イン ナ一リード 2 0 1に対して上方に位置している。 つまり、 吊りリード 2 0 3にデ ィプレス部 2 0 8に設けることにより、 ダイパッド 2 0 2をインナ一リード 2 0 1に対してアップセットしている。 そのため、 封止樹脂 2 0 6により封止した場 合には、 封止樹脂 2 0 6はダイパッド 2 0 2の裏面側にも薄く形成されている。 なお、 図 2 3 ( a ) は、 封止樹脂 2 0 6を透明体として扱い、 半導体装置の内部 を透過して示しているが、 図中、 半導体チップ 2 0 4は破線で示し、 金属細線 2 0 5は図示を省略している。
また、 従来においては、 プリント基板等の実装基板に樹脂封止型半導体装置を 実装する場合に、 外部電極と実装基板の電極との接合において必要な封止樹脂 2 0 6の裏面からのスタンドオフ高さを確保するために、 図 2 4に示すように、 外 部電極 2 0 7に対して、 半田からなるボール電極 2 0 9を設け、 ボール電極 2 0 9によりスタンドオフ高さを確保して、 実装基板上に実装していた。
次に、 従来の樹脂封止型半導体装置の製造方法について、 図面を参照しながら 説明する。 図 2 5〜図 2 7は、 従来の樹脂封止型半導体装置の製造工程を示す断 面図である。
まず、 図 2 5に示すように、 インナ一リード 2 0 1、 ダイパッ ド 2 0 2を有す るリードフレーム 2 1 0を用意する。 なお、 図中、 ダイパッ ド 2 0 2は吊りリ一 ドによって支持されているものであるが、 吊り リードの図示は省略している。 ま た、 吊りリードにはディプレス部が形成され、 ダイパッド 2 0 2はインナ一リー ド 2 0 1の面よりも上方にアツプセッ トされている。 なお、 このリードフレーム 2 1 0には、 樹脂封止の際、 封止樹脂の流出を止めるタイバーが設けられていな い。
次に、 図 2 6に示すように、 用意したリードフレームのダイパッド 2 0 2の上 に半導体チップ 2 0 4を接着剤により接合する。 この工程は、 いわゆるダイボン ドエ程である。
そして、 図 2 7に示すように、 ダイパッ ド 2 0 2上に接合された半導体チップ 2 0 4とインナーリード 2 0 1とを金属細線 2 0 5により電気的に接続する。 こ の工程は、 いわゆるワイヤ一ボンド工程である。 金属細線 2 0 5には、 アルミ二 ゥム細線、 金 (A u ) 線などが適宜用いられる。
次に、 図 2 8に示すように、 ダイパッ ド 2 0 2 , 半導体チップ 2 0 4, インナ —リード 2 0 1 , 吊りリ一ド及び金属細線 2 0 5を封止樹脂 2 0 6により封止す る。 この場合、 半導体チップ 2 0 4が接合されたリードフレームが封止金型内に 収納されて、 トランスファ一モ一ルドされるが、 特にインナ一リード 2 0 1の裏 面が封止金型の上金型又は下金型に接触した状態で、 樹脂封止が行なわれる。 最後に、 樹脂封止後に封止樹脂 2 0 6から外方に突出しているィンナ一リ一ド 2 0 1の先端部 2 1 1を切断する。 この切断工程により、 図 2 9に示すように、 切断後のィンナ一リード 2 0 1の先端面と封止樹脂 6の側面とがほぼ同じ面上に あるようになり、 ィンナ一リード 2 0 1の下部が外部電極 2 0 7となる。
そして、 従来の樹脂封止型半導体装置の製造工程では、 樹脂封止工程で、 封止 樹脂 2 0 6がインナーリード 2 0 1の裏面側に回り込んで、 樹脂バリ (樹脂のは み出し分) を形成する場合があることから、 通常は、 樹脂封止工程の後、 インナ 一リード 2 0 1の切断工程の前に、 樹脂バリを吹き飛ばすためのウォータージェ ッ 卜工程を導入している。
なお、 必要に応じて、 外部電極 2 0 7の下面上に半田からなるボール電極を形 成し、 図 2 4に示したような樹脂封止型半導体装置とする。 また、 半田ボールの かわりに半田メツキ層を形成する場合もあった。 一解決課題一
しかしながら、 従来の樹脂封止型半導体装置では、 半導体装置の裏面において 、 外部電極 2 0 7の下面と封止樹脂 2 0 6との面がほぼ同じ面上にあるので、 封 止樹脂 2 0 6からのスタンドオフ高さが得られない。 そのために、 半田等からな るボール電極 2 0 9を設けて、 実装基板上に実装しなければならず、 効率的な実 装を行なうことができないという課題があった。
また、 従来の樹脂封止型半導体装置の製造方法の樹脂封止工程においては、 半 導体チップが接合されたリ一ドフレームを封止金型内に収納し、 下金型の面にィ ンナ一リードを押圧して密着させて、 樹脂封止しているが、 それでも封止樹脂が インナーリードの裏面側に回り込んで、 外部電極の表面に樹脂バリ (樹脂のはみ 出し分) が発生するという課題があった。
図 3 0は、 図 2 3 ( a ) の円内に示した半導体装置の裏面における外部電極 2 0 7及びその周囲の部分を拡大した部分平面図である。 図 3 0に示すように、 従 来の樹脂封止工程においては、 外部電極 2 0 7の下面上に樹脂バリ 2 0 6 aが発 生することがある。 すなわち、 樹脂封止工程で、 封止樹脂 2 0 6が外部電極 2 0 7の下面側に回り込んで樹脂バリ 2 0 6 aとなり、 外部電極 2 0 7の一部が封止 樹脂 2 0 6内に埋没した状態となっている。
そこで、 従来は、 外部電極 2 0 7上の樹脂バリ 2 0 6 aを吹き飛ばすためにゥ ォ一夕一ジエツ 卜工程を導入していたが、 このようなウォータージエツ ト工程に は多大の手間を要し、 樹脂封止型半導体装置の量産工程における工程削減等のェ 程の簡略化の要請に反する。 つまり、 樹脂バリの発生は、 そのような工程の簡略 化のための大きな阻害要因となっていた。
また、 現在汎用されている樹脂封止型半導体装置に用いるリードフレームには 、 通常、 銅 (C u ) 材または 4 2ァロイ材を用い、 その上にニッケル (N i ) の 下地メツキの後、 パラジウム (P d ) メツキおよび金 (A u ) メツキが施されて いる。 ところが、 上記従来の工程では、 樹脂バリを除去するために導入されたゥ オータージエツ 卜工程において、 高圧のゥォ一夕一ジエツ 卜で樹脂バリを吹き飛 ばすと、 そのウォータージェットにより、 樹脂バリだけでなく柔らかい金属メッ キも剥がれる, また不純物が付着するという品質上の大きな問題が発生するおそ れもあった。
この問題を回避しょうとすると、 リードフレームへのメツキ工程をウォー夕一 ジエツト工程の後に行うなどの対策を要し、 樹脂封止工程の前にリードフレーム の状態でメツキ処理を行なうなどの金属層のプリメツキ処理 (事前メツキ処理) を行なうことができない。 その結果、 メツキ工程が非効率的となり、 製造工程の 簡略化をさらに阻害する要因となる。 また、 樹脂封止型半導体装置の信頼性の点 でも好ましくない。
本発明の目的は、 樹脂封止工程において、 リードフレームの裏面への樹脂バリ の発生を抑制し、 あるいは外部電極の封止樹脂からのスタンドオフ高さを確保し て、 製造工程の簡略化の要請に対応できる樹脂封止型半導体装置及びその製造方 法を提供することである。
[発明の開示]
上記目的を達成するために、 本発明では、 樹脂封止の際に樹脂の回り込みを防 ぐための封止テープを用いることによって形成される樹脂封止型半導体装置と、 封止テープを用いた樹脂封止型半導体装置の製造方法とを開示している。 本発明の樹脂封止型半導体装置は、 電極パッ ドを有する半導体チップと、 イン ナ一リ一ドと、 上記半導体チップの電極パッ ドと上記ィンナーリ一ドとを電気的 に接続する接続部材と、 上記半導体チップ, インナ一リード及び接続部材を封止 する封止樹脂とを備え、 上記ィンナーリ一ドの裏面の少なくとも一部を含む下部 が外部電極となっており、 該外部電極が上記封止樹脂の裏面よりも下方に突出し ている。
これにより、 ィンナ一リードの外部電極が封止樹脂から突出した構造となって いるので、 外部電極のスタンドオフ高さを確保することができる。 すなわち、 外 部電極にポール電極を付設しなくてもそのまま外部端子として直接実装基板上の 配線等に接続できる構造となり、 上記第 1の目的を達成することができる。 上記樹脂封止型半導体装置において、 上記半導体チップを支持するダイパッ ド と、 上記ダイパッ ドを支持する吊りリードとをさらに設け、 上記吊りリードに、 上記ダイパッ ドを上記ィンナーリードよりも上方に位置させるためのディプレス 部を設けることができる。
これにより、 ダイパッ ドの下方に封止樹脂が存在することになるので、 ダイパ ッド及び半導体チップに対する封止樹脂の保持力が向上する。 しかも、 ダイパッ ドは吊りリ一ドのディプレス量だけわずかにアップセッ トされているにすぎない ので、 樹脂封止型半導体装置全体の厚みが大きくなることはなく、 薄型の樹脂封 止型半導体装置の構造を保持できる。
上記樹脂封止型半導体装置において、 上記外部電極の上記封止樹脂裏面からの 突出量は、 約 1 0〜 4 0 mであることが好ましい。
これにより、 インナ一リードに対する封止樹脂の保持力をそれほど弱めること もなく、 かつ外部電極を外部端子として機能させることもできる。 本発明の基本的な樹脂封止型半導体装置の製造方法は、 封止金型と半導体チッ プと周辺部材とを用意する第 1の工程と、 上記周辺部材と封止金型との間に上記 周辺部材の表面の一部に密着する封止テープを装着する第 2の工程と、 上記封止 テープを装着した状態で上記半導体チップ及び上記周辺部材の少なくとも上記表 面の一部を除く部分を封止樹脂内に封止する第 3の工程と、 上記第 3の工程の後 に上記封止テープを除去する第 4の工程とを備え、 上記第 4の工程の終了後には 、 上記周辺部材の少なくとも上記表面の一部が上記封止樹脂から露出している。 この方法により、 周辺部材のうち封止樹脂から確実に露出させたい部分がある 場合に、 第 2の工程で周辺部材のその部分に封止テープを密着させておくことで 、 その部分が確実に封止樹脂から露出した構造が実現する。 そして、 周辺部材の その部分に樹脂バリが形成されることもないので、 従来必要となっていたウォー タージェット等の工程を不要とすることができるので、 製造工程の簡略化を図る ことができ、 上記第 1の目的を達成することができる。 上記基本的な樹脂封止型半導体装置の製造方法において、 上記第 1の工程に、 上記周辺部材として、 ィンナ一リードと半導体チップを支持する領域とを有する リードフレームを用意する第 1の副工程と、 上記半導体チップを上記リードフレ ームの半導体チップを支持する領域に接合する第 2の副工程と、 上記半導体チッ プと上記ィンナ一リ一ドとを電気的に接合する第 3の副工程とを設け、 上記第 2 の工程では、 上記ィンナ一リ一ドの裏面に上記封止テープを密着させることがで きる。
この方法により、 リードフレームに接続された半導体チップを封止樹脂内に設 けてなる樹脂封止型半導体装置が得られる。 そして、 インナ一リードの裏面が封 止樹脂から確実に露出した構造になるとともに、 ィンナ一リ一ドの封止テープに 対する押圧力を調整することで、 ィンナーリ一ドが封止樹脂の裏面から突出して いる量、 すなわちインナ一リードのスタンドオフ高さを調整できるので、 上記第 1の樹脂封止型半導体装置のような利点を有する樹脂封止型半導体装置を容易に 形成することができる。
上記リードフレームを備えた樹脂封止型半導体装置の製造方法において、 上記 第 1の工程中の第 1の副工程では、 上記半導体チップを支持する領域としてのダ ィパッ ドと、 該ダイパッドを支持する吊りリードとを形成するとともに、 該吊り リ一ドに上記ダイパッ ドを上記ィンナ一リードよりも上方に位置させるためのデ ィプレス部を形成し、 上記第 1の工程中の第 2の副工程では、 上記半導体チップ を上記ダイパッ ド上に接合し、 上記第 1の工程中の第 3の副工程では、 上記ダイ パッ ド上に接合した半導体チップと上記ィンナ一リ一ドとを金属細線により電気 的に接合し、 上記第 2の工程では、 上記封止テープを上記リードフレームのうち インナ一リードの裏面にのみ密着させることができる。
この方法により、 樹脂封止型半導体装置の全体の厚みをそれほど厚くすること なく、 ダイパッ ドの裏面側に封止樹脂を存在させることができるので、 ダイパッ ドに対する封止樹脂の保持力がよくなり、 しかも薄型の樹脂封止型半導体装置を 容易に形成することができる。
上記リードフレームを備えた樹脂封止型半導体装置の製造方法において、 上記 第 4の工程の終了後に、 上記ィンナーリ一ドの先端面と上記封止樹脂の側面とが ほぼ同じ面となるように、 上記ィンナーリ一ドのうち封止樹脂の側方に突出する 部分を切り落とす工程をさらに備えることができる。
この方法により、 側方にインナ一リードの突出部分がなくなるので、 面積的に も小型の樹脂封止型が形成されることになる。
上記リードフレームを備えた樹脂封止型半導体装置の製造方法において、 上記 第 1の工程中の第 1の副工程では、 ニッケル (N i ) 層, パラジウム (P d ) 層 , 金 (A u ) 層の各金属メツキが施されているリードフレームを用意することが 好ましい。
この方法により、 プリメツキによる品質の優れたメツキ層を形成しながら、 封 止テープの使用によって樹脂封止後のウォー夕一ジエツ トなどの樹脂バリを除去 するための工程を不要としているので、 樹脂バリを除去する必要がある場合に生 じるメツキ層の剥がれを回避することができる。
上記リードフレームを備えた樹脂封止型半導体装置の製造方法において、 上記 第 2の工程では、 樹脂封止後に上記ィンナ一リ一ドの下面が上記封止樹脂の裏面 から所定値だけ下方に突出するように、 上記所定値に応じた厚みの封止テープを 装着することができる。
この方法により、 インナーリードの突出量を封止テープの厚みによって容易に 調整できるので、 インナーリードに対する封止樹脂の保持力と、 インナーリード の下部を外部端子として機能させるためのスタンドオフ高さとを共に適正な値に することができる。 上記基本的な樹脂封止型半導体装置の製造方法において、 上記第 1の工程に、 上記周辺部材として、 上面に配線が設けられ、 裏面には上記配線に接続される外 部電極が設けられた基板を用意する第 1の副工程と、 上記基板の上面に半導体チ ップを接合する第 2の副工程と、 上記半導体チップと上記基板の上面の配線とを 接続部材を介して電気的に接続する第 3の副工程とを設け、 上記第 2の工程では 、 上記封止テープを少なくとも上記外部電極に密着させることができる。
この方法により、 外部電極が確実に封止樹脂から露出した構造の基板接合タイ プの樹脂封止型半導体装置が形成される。 上記基本的な樹脂封止型半導体装置の製造方法において、 上記第 1の工程に、 上記周辺部材として、 少なくとも放熱板を用意する第 1 の副工程と、 上記放熱板 の上に半導体チップを搭載する第 2の副工程とを設け、 上記第 2の工程では、 上 記放熱板の裏面に上記封止テープを密着させることができる。
この方法により、 放熱板の裏面への封止樹脂の回り込みのない放熱特性の良好 な放熱板を備えた樹脂封止型半導体装置が形成される。
上記放熱板を備えた樹脂封止型半導体装置の製造方法において、 上記第 1のェ 程の第 1の副工程では、 上記周辺部材として、 さらに、 リードとベッ ドとを有す るリードフレームを用意し、 上記第 1の工程の第 2の副工程では、 上記半導体チ ップを上記べッ ドの上に接合した後、 上記べッ ドを上記放熱板の上に搭載するこ とにより、 半導体チップを放熱板上に搭載することができる。
この方法により、 リードフレームを利用して放熱板を備えた樹脂封止型半導体 装置を容易に形成することができる。 上記基本的な樹脂封止型半導体装置の製造方法において、 上記第 1の工程では 、 上記周辺部材として内部リードと外部リードとを有するリード体を用意し、 上 記第 2の工程では、 上記内部リ一ドと封止金型との間に上記内部リ一ドの表面の 一部に密着する封止テープを装着し、 上記第 3の工程では、 上記封止テープを装 着した状態で上記内部リ一ドの少なくとも上記表面の一部を除く部分を封止樹脂 内に封止して、 開口部と該開口部内にある凹部とを有する樹脂パッケージ体を形 成し、 上記第 4の工程の後に、 電極パッドを有する半導体チップを上記樹脂パッ ケージ体の凹部に搭載する工程と、 上記半導体チップの電極パッ ドと上記内部リ ―ドとを接続部材を介して電気的に接続する工程と、 上記開口部を封止部材によ り封止する工程とをさらに備え、 上記第 4の工程の終了後には、 少なくとも上記 内部リ一ドの上記表面の一部を上記封止樹脂から露出させることができる。 この方法により、 上方を空間にしておく必要のある固体撮像素子等を内蔵した 樹脂封止型半導体装置が容易に形成される。 その際、 内部リードの半導体チップ との接続部を確実に封止樹脂から露出させておくことができる。
[図面の簡単な説明]
図 1 ( a ) , ( b ) は、 本発明の第 1の実施形態に係る樹脂封止型半導体装置 の封止樹脂を透過して示す平面図及び断面図である。
図 2は、 第 1の実施形態の樹脂封止型半導体装置の製造工程におけるリードフ レームを用意する工程を示す断面図である。
図 3は、 第 1の実施形態の樹脂封止型半導体装置の製造工程におけるダイパッ ド上に半導体チップを接合する工程を示す断面図である。
図 4は、 第 1の実施形態の樹脂封止型半導体装置の製造工程における金属細線 を形成する工程を示す断面図である。
図 5は、 第 1の実施形態の樹脂封止型半導体装置の製造工程における封止テー プをリードフレームの下に敷く工程を示す断面図である。
図 6は、 第 1の実施形態の樹脂封止型半導体装置の製造工程における樹脂封止 工程を示す断面図である。
図 7は、 第 1の実施形態の樹脂封止型半導体装置の製造工程におけるィンナ一 リードの先端力ッ ト工程の終了後の樹脂封止型半導体装置の断面図である。 図 8は、 第 1の実施形態の樹脂封止型半導体装置の製造工程によって形成され た樹脂封止型半導体装置の部分裏面図である。
図 9は、 本発明の第 2の実施形態に係る基板接合タイプの樹脂封止型半導体装 置の断面図である。
図 1 0 ( a ) , ( b ) は、 第 2の実施形態の樹脂封止型半導体装置の製造工程 における金属細線による接合、 バンプによる接合を利用した半導体チップの基板 への実装工程をそれぞれ示す断面図である。
図 1 1は、 第 2の実施形態の樹脂封止型半導体装置の製造工程における樹脂封 止工程を示す断面図である。
図 1 2は、 第 2の実施形態の樹脂封止型半導体装置の製造工程における封止テ —プを除去した後の樹脂封止体の断面図である。
図 1 3は、 本発明の第 3の実施形態に係る放熱板を備えた樹脂封止型半導体装 置の断面図である。
図 1 4は、 第 3の実施形態の樹脂封止型半導体装置の製造工程におけるリ一ド フレームを用意する工程を示す断面図である。
図 1 5は、 第 3の実施形態の樹脂封止型半導体装置の製造工程における放熱板 上に半導体チップを接合し、 金属細線を形成する工程を示す断面図である。 図 1 6は、 第 3の実施形態の樹脂封止型半導体装置の製造工程における封止テ —プを放熱板及びリ一ドフレームの下に敷く工程を示す断面図である。
図 1 7は、 第 3の実施形態の樹脂封止型半導体装置の製造工程における樹脂封 止工程を示す断面図である。
図 1 8は、 第 3の実施形態の樹脂封止型半導体装置の製造工程における封止テ —プを除去した後の樹脂封止型半導体装置の断面図である。
図 1 9は、 本発明の第 4の実施形態に係る C C Dパッケージとしての樹脂封止 型半導体装置の断面図である。
図 2 0は、 第 4の実施形態の樹脂封止型半導体装置の製造工程における樹脂封 止工程を示す断面図である。
図 2 1は、 第 4の実施形態の樹脂封止型半導体装置の製造工程における樹脂封 止後の封止テープを除去する工程を示す断面図である。
図 2 2は、 第 4の実施形態の樹脂封止型半導体装置の製造工程における金属細 線の形成と封止ガラスによる封止とを行なう工程を示す断面図である。
図 2 3 ( a ) , ( b ) は、 裏面側に外部電極を有するタイプの従来の樹脂封止 型半導体装置の平面図及び断面図である。
図 2 4は、 外部電極にボール電極を設けてスタンドオフ高さを確保した従来の 樹脂封止型半導体装置の断面図である。
図 2 5は、 従来の樹脂封止型半導体装置の製造工程におけるリードフレームを 用意する工程を示す断面図である。
図 2 6は、 従来の樹脂封止型半導体装置の製造工程におけるダイパッ ド上に半 導体チップを接合する工程を示す断面図である。
図 2 7は、 従来の樹脂封止型半導体装置の製造工程における金属細線を形成す る工程を示す断面図である。
図 2 8は、 従来の樹脂封止型半導体装置の製造工程における樹脂封止工程を示 す断面図である。
図 2 9は、 従来の樹脂封止型半導体装置の製造工程における樹脂封止終了後の 樹脂封止型半導体装置の断面図である。
図 3 0は、 従来の樹脂封止型半導体装置の製造工程によって形成された樹脂封 止型半導体装置の裏面図である。
[最良の実施形態]
(第 1の実施形態)
図 1 ( a ) は、 第 1の実施形態に係る樹脂封止型半導体装置の平面図であり、 図 1 ( b ) は、 図 1 ( a ) に示す l b— l b線における断面図である。 ただし、 図 1 ( a ) においては封止樹脂 1 7を透明体として扱い、 半導体チップ 1 5は破線で 示す輪郭を有するものとしており、 金属細線 1 6の図示は省略している。
図 1 ( a ) 及び (b ) に示すように、 本実施形態の樹脂封止型半導体装置は、 ィンナ一リード 1 2と、 半導体チップを支持するためのダイパッド 1 3と、 その ダイパッ ド 1 3を支持するための吊りリード 1 4とよりなるリードフレームを備 えている。 そして、 ダイパッド 1 3上に半導体チップ 1 5が接着剤により接合さ れており、 半導体チップ 1 5の電極パッ ド (図示せず) とインナ一リード 1 2と は、 金属細線 1 6により互いに電気的に接続されている。 そして、 インナ一リ一 ド, ダイパッ ド 1 3 , 吊りリード 1 4, 半導体チップ 1 5及び金属細線 1 6は、 封止樹脂 1 7内に封止されている。 また、 ダイパッ ド 1 3は、 インナ一リード 1 2に対して上方に位置するように、 吊りリード 1 4のディプレス部 1 9によりァ ップセッ トされている。 そのため、 封止樹脂 1 7により封止された状態では、 封 止樹脂 1 7がダイパッド 1 3の裏面側にも薄く存在している。
ここで、 本実施形態に係る樹脂封止型半導体装置の特徴部分について説明する 。 インナーリード 1 2の下面側には封止樹脂 1 7は存在せず、 インナ一リード 1 2の下面が露出されており、 このインナ一リード 1 2の下面が実装基板との接続 面となる。 すなわち、 ィンナ一リード 1 2の下部が外部電極 1 8となっている。 また、 この外部電極 1 8には本来的に樹脂封止工程における樹脂のはみ出し部分 である樹脂バリが存在せず、 かっこの外部電極 1 8は封止樹脂 1 7の裏面よりも 下方に少し突出している。 このような樹脂バリの存在しないかつ下方に突出した 外部電極 1 8の構造は、 後述する製造方法によって容易に実現できる。
本実施形態の樹脂封止型半導体装置によると、 ィンナ一リード 1 2の側方には 従来のような外部電極端子となるアウターリ一ドが存在せず、 ィンナ一リード 1 2の下面及び側面を含む部分が外部電極 1 8となっているので、 半導体装置の小 型化を図ることができる。 しかも、 インナ一リード 1 2の下面つまり外部電極 1 8の下面には樹脂バリが存在していないので、 実装基板の電極との接合の信頼性 が向上する。 また、 外部電極 1 8が封止樹脂 1 7の面より突出して形成されてい るため、 実装基板に樹脂封止型半導体装置を実装する際の外部電極と実装基板の 電極との接合において、 外部電極 1 8のスタンドオフ高さが予め確保されている ことになる。 したがって、 外部電極 1 8をそのまま外部端子として用いることが でき、 従来のように、 実装基板への実装のために外部電極 1 8に半田ボールを付 設する必要はなく、 製造工数、 製造コスト的に有利となる。 また、 ダイパッ ド 1 3が、 インナ一リード 1 2に対してアップセッ トされ、 封 止樹脂 1 7がダイパッド 1 3の裏面側にも薄く存在しているので、 樹脂封止型半 導体装置としての信頼性が向上する。
なお、 本実施形態では、 半導体チップ 1 5を支持するためにダイパッ ド 1 3を 設けているが、 ダイパッ ド 1 3がなくても、 インナ一リードの先端部を絶縁化し その先端部で半導体チップ支持したり、 樹脂テープを設けてその上に半導体チッ プを搭載することもできる、 すなわち、 ダイパッド 1 3は必ずしも必要でなく、 ダイパッ ドレスのリードフレームに対しても本実施形態を適用することができる また、 本実施形態では、 半導体チップ 1 5の電極とインナ一リード 1 2とを電 気的に接続する手段として、 金属細線 1 6を用いているが、 フリップチップ接合 を利用して、 バンプを介在させたり、 共晶合金の形成による直接接合などにより 半導体チップ 1 5の電極とィンナ一リード 1 2とを電気的に接続することもでき る。
次に、 本実施形態の樹脂封止型半導体装置の製造方法について、 図面を参照し ながら説明する。 図 2〜図 7は、 本実施形態の樹脂封止型半導体装置の製造工程 を示す断面図である。
まず、 図 2に示す工程で、 インナ一リード 1 2と、 半導体チップを支持するた めのダイパッ ド 1 3とが設けられているリードフレーム 2 0を用意する。 図中、 ダイパッド 1 3は吊りリードによって支持されているが、 この断面には現れない ために図示されていない。 また、 吊りリードにはディプレス部が形成され、 ダイ パッ ド 1 3はインナ一リード 1 2の面よりも上方にアツプセッ 卜されているもの である。 さらに、 用意するリードフレーム 2 0は、 樹脂封止の際、 封止樹脂の流 出を止めるタイバ一を設けていないリードフレームである。
また、 本実施形態におけるリードフレーム 2 0は、 銅 (C u ) 素材のフレーム に対して、 下地メツキとしてニッケル (N i ) 層が、 その上にパラジウム (P d ) 層が、 最上層に薄膜の金 (A u ) 層がそれぞれメツキされた 3層の金属メツキ 済みのリードフレームである。 ただし、 銅 (C u ) 素材以外にも 4 2ァロイ材等 の素材を使用でき、 また、 ニッケル (N i ) , パラジウム (P d ) , 金 (A u ) 以外の貴金属メツキが施されていてもよく、 さらに、 かならずしも 3層メツキで なくてもよい。
次に、 図 3に示す工程で、 用意したリードフレームのダイパッ ド上に半導体チ ップ 1 5を載置して、 接着剤により両者を互いに接合する。 この工程は、 いわゆ るダイボンド工程である。 なお、 半導体チップを支持する部材としてはリードフ レームに限定されるものではなく、 他の半導体チップを支持できる部材、 例えば T A Bテープ、 基板を用いてもよい。
そして、 図 4に示す工程で、 ダイパッド 1 3上に接合した半導体チップ 1 5と インナ一リード 1 2とを金属細線 1 6により電気的に接合する。 この工程は、 い わゆるワイヤ一ボンド工程である。 金属細線としては、 アルミニウム細線、 金 ( A u ) 線などを適宜選択して用いることができる。 また、 半導体チップ 1 5とィ ンナ一リード 1 2との電気的な接続は、 金属細線 1 6を介してでなくバンプなど を介して行なってもよい。
次に、 図 5に示す工程で、 リードフレームのダイパッ ド 1 3上に半導体チップ 1 5が接合された状態で、 ィンナ一リード 1 2の裏面側に封止テープ 2 1を貼り 付ける。
この封止テープ 2 1は、 特にィンナ一リード 1 2の裏面側に樹脂封止時に封止 樹脂が回り込まないようにするマスク的な役割を果たさせるためのものであり、 この封止テープ 2 1の存在によって、 ィンナ一リード 1 2の裏面に樹脂バリが形 成されるのを防止することができる。 このインナ一リード 1 2等に貼り付ける封 止テープ 2 1は、 ポリエチレンテレフ夕レート, ポリイミ ド, ポリカーボネート などを主成分とする樹脂をベースとしたテープであり、 樹脂封止後は容易に剥が すことができ、 また樹脂封止時における高温環境に耐性があるものであればよい 。 本実施形態では、 ポリエチレンテレフ夕レートを主成分としたテープを用い、 厚みは 5 0 [ β πι ] とした。
なお、 本実施形態では、 この封止テープ 2 1は、 リードフレームのインナーリ —ド 1 2の面にのみ密着した状態でリ一ドフレームの裏面側全体に亘つて貼り付 けるように行なっており、 吊りリ一ドのディプレス部によりアップセッ 卜された ダイパッ ド 1 3の裏面には密着していないが、 ダイパッ ド 1 3の裏面に密着させ 、 樹脂封止工程の後に封止テープ 2 1を剥がすことでダイパッ ド 1 3の裏面を露 出させ、 放熱特性の向上をねらってもよい。
次に、 図 6に示す工程で、 半導体チップ 1 5が接合され、 封止テープ 2 1が貼 り付けられたリ一ドフレームを金型内に収納し、 金型内に封止樹脂 1 7を流し込 んで樹脂封止を行う。 この際、 インナ一リード 1 2の裏面側に封止樹脂 1 7が回 り込まないように、 金型でリードフレームのインナ一リード 1 2の先端部分 2 2 を下方に押圧して、 樹脂封止する。 また、 インナーリード 1 2の裏面側の封止テ —プ 2 1面を金型面側に押圧して樹脂封止を行う。
最後に、 図 7に示す工程で、 インナ一リード 1 2の裏面に貼付した封止テープ 2 1をピールオフにより除去し、 封止樹脂 1 7の裏面より突出した外部電極 1 8 を形成する。 そして、 インナ一リード 1 2の先端側を、 インナ一リード 1 2の先 端面と封止樹脂 1 7の側面とがほぼ同一面になるように切り離すことにより、 図 7に示すような樹脂封止型半導体装置が完成される。
図 8は、 外部電極 1 8の部分を拡大して示す本実施形態の樹脂封止型半導体装 置の部分裏面図である。 同図に示すように、 本実施形態では、 封止テープ 2 1を リードフレームの裏面に貼付した樹脂封止工程を行なっているので、 ィンナ一リ ード 1 2の裏面や側面、 すなわち外部電極 1 8の表面上における樹脂バリの発生 を防止することができる。 また、 従来の製造方法のごとく、 封止樹脂 1 7が外部 電極 1 8の表面に回り込み、 外部電極 1 8の一部が封止樹脂 1 7内に埋没するこ とを防止することができる。
本実施形態の製造方法では、 樹脂封止工程の前に予めィンナ一リード 1 2の裏 面に封止テープ 2 1を貼付しているので、 封止樹脂 1 7が回り込むことがなく、 外部電極となるィンナ一リード 1 2の裏面には樹脂バリの発生はない。 したがつ て、 インナ一リードの下面を露出させる従来の樹脂封止型半導体装置の製造方法 のごとく、 ィンナ一リ一ド上に形成された樹脂バリをウォータージエツ トなどに よって除去する必要はない。 すなわち、 この樹脂バリを除去するための面倒なェ 程の削除によって、 樹脂封止型半導体装置の量産工程における工程の簡略化が可 能となる。 また、 従来、 ウォー夕一ジェットなどによる樹脂バリ除去工程におい て生じるおそれのあったリードフレームのニッケル (N i ) , パラジウム (P d ) , 金 (A u ) などの金属メツキ層の剥がれは解消できる。 そのため、 樹脂封止 工程前における各金属層のプリメツキが可能となる。
加えて、 本実施形態の製造方法によって形成された外部電極 1 8は、 封止樹脂 1 7より突出しているので、 従来のように半田ボールを付設することなく、 外部 電極 1 8をそのまま外部端子として用いることができる。
なお、 ウォー夕一ジェットによる樹脂バリ除去工程を削除できるかわりに、 封 止テープを貼付する工程が新たに必要となるが、 封止テープ 2 1を貼付する工程 の方が、 ウォー夕一ジェッ ト工程よりもコス卜的に安価であり、 また工程管理も 容易であるため、 確実に工程の簡略化が図れる。 なによりも、 従来必要であった ゥォ一タージェッ ト工程では、 リードフレームの金属メツキが剥がれる, 不純物 が付着するという品質上のトラブルが発生するが、 本実施形態の方法では、 封止 テープの貼付により、 ウォー夕一ジェッ トが不要となって、 メツキ剥がれ等をな くすことができる点は大きな工程上の利点となる。 また、 封止テープの貼付状態 などによって樹脂バリが発生することがあるとしても、 極めて薄い樹脂バリであ るので、 低い水圧でウォータ一ジェッ ト処理して樹脂バリを除去でき、 メツキ剥 がれを防止できることから金属層のプリメツキ工程は可能である。
なお、 図 6に示すように、 樹脂封止工程においては、 溶融している封止樹脂の 熱によって封止テープ 2 1が軟化するとともに熱収縮するので、 インナ一リード 1 2が封止テープ 2 1に大きく食い込み、 ィンナ一リード 1 2の裏面と封止樹脂 1 7の裏面との間には段差が形成される。 したがって、 インナーリード 1 2の裏 面は封止樹脂 1 7の裏面から突出した構造となり、 ィンナ一リ一ド 1 2の下部で ある外部電極 1 8のスタンドオフ高さを確保できる。 そのため、 この突出した外 部電極 1 8をそのまま外部端子として用いることができることになる。
また、 ィンナ一リ一ド 1 2の裏面と封止樹脂 1 7の裏面との間の段差の大きさ は、 封止工程前に貼付した封止テープ 2 1の厚みによりコントロールすることが できる。 本実施形態では、 5 0 [ u m ] の封止テープ 2 1を用いているので、 段 差の大きさつまり外部電極 1 8の突出量は、 一般的にはその半分程度であり最大 5 0 [ n m ] である。 すなわち、 封止テープ 2 1がインナ一リード 1 2の裏面よ りも上方に入り込む量が封止テープ 2 1の厚さ分で定まることから、 外部電極 1 8の突出量を封止テープ 2 1の厚みによりセルフコントロールでき、 製造の容易 化を図ることができる。 この外部電極 1 8の突出量を管理するためには、 量産ェ 程で封止テープ 2 1の厚みを管理するだけでよく、 別工程を設ける必要がないの で、 本実施形態の製造方法は、 工程管理のコスト上きわめて有利な方法である。 なお、 貼付する封止テープ 2 1については、 所望とする段差の大きさに合わせて 、 材質の硬度、 厚み、 および熱による軟化性を決定することができる。
なお、 図 2に示すように、 本実施形態の樹脂封止型半導体装置において、 ダイ パッド 1 3の裏面側に封止樹脂 1 7が存在しているものの、 その厚みはダイパッ ド 1 3のアップセット量に等しく極めて薄い。 したがって、 本実施形態の樹脂封 止型半導体装置は、 実質的には片面封止型の半導体装置である。
なお、 本実施形態では、 樹脂封止工程前に予め封止テープ 2 1をリードフレー ムのィンナーリ一ド 1 2の下面に貼付した例を示したが、 このような貼り付ける 方法ではなく、 封止テープ 2 1を封止金型にセットし、 その上にリードフレ一ム 1 2を密着させてもよい。 この場合は、 後述するように、 封止テープの封止金型 へのリ一ル供給が可能となり、 さらなる工程の合理化となる。
なお、 本実施形態では、 リードフレームの裏面に封止テープを貼付して樹脂封 止を行なう製造方法の例を示したが、 本発明の方法は、 リードフレームを備えて いる半導体装置に限定されるものではない。 本発明の基本的な概念である樹脂封 止工程で封止テープを用いる方法は、 広く半導体チップを搭載し、 樹脂封止され る部材を有する半導体装置の樹脂封止工程に適用できるものであり、 T A Bタイ プ、 基板タイプなどの半導体装置の樹脂封止工程に適用できる。
(第 2の実施形態)
次に、 本発明の第 2の実施形態について説明する。 図 9は、 本実施形態の基板 接合タイプの樹脂封止型半導体装置を示す断面図である。
図 9に示すように、 本実施形態の樹脂封止型半導体装置は、 B G A (ボール - グリッ ド · アレイ) に代表される基板接合タイプの樹脂封止型半導体装置であり 、 ガラスエポキシ系プラスチックやセラミック単層もしくは多層よりなる基板 2 4と、 該基板 2 4上に搭載された半導体チップ 2 5と、 基板 2 4の上面に形成さ れた配線 (図示せず) と半導体チップ 2 5の電極パッ ド (図示せず) とを電気的 に接続する金属細線 2 6とを備えている。 そして、 基板 2 4の上面側において、 半導体チップ 2 5 , 配線及び金属細線 2 6は絶縁性の封止樹脂 2 7により封止さ れている。 また、 基板 2 4の裏面上には外部電極パッ ド 2 8 (ランド) が形成さ れており、 基板 2 4の上面の配線はスル一ホールやビアホールを介して基板 2 4 の裏面上の外部電極パッ ド 2 8 (ランド) に接続されている。
なお、 本実施形態では、 外部電極パッ ド 2 8に外部基板との接合用の導電性材 料からなるボール電極 2 9を付設しているが、 ボール電極 2 9は必ずしも付設さ れている必要はない。 また、 基板 2 4は、 ポリイミ ド系の薄いフィルムにより構 成されていてもよい。
ここで、 本実施形態では、 後述するように、 樹脂封止工程において、 基板 2 4 の裏面に封止テープを貼付した状態で封止樹脂をトランスファモールドするよう にしているので、 外部電極パッド 2 8の上への封止樹脂 2 7が回り込みが阻止さ れる。 したがって、 外部電極パッ ド 2 8上への樹脂バリの形成がなく実装基板と の接続面を確保でき、 ポール電極 2 9を付設した際の接続の信頼性を向上させる ことができる。
次に、 本実施形態の樹脂封止型半導体装置の製造方法について図面を参照しな がら説明する。 図 1 0〜図 1 2は本実施形態の B G Aタイプの樹脂封止型半導体 装置の製造方法を示す工程ごとの断面図である。
まず、 図 1 0 ( a ) に示す工程で、 単層又は多層のガラスエポキシ系プラスチ ック板やセラミック板からなる基板 2 4上に配線 (図示せず) を形成し、 基板 2 4にスルーホールやビアホールを形成し、 基板 2 4の裏面に外部電極パッ ド 2 8 を形成する、 その後、 この基板 2 4の上の所定の位置に半導体チップ 2 5をダイ ボンド材等により接合し、 基板上の配線と半導体チップ上の電極パッ ド (図示せ ず) とを金属細線 2 6を介して接続する。
ただし、 半導体チップ 2 5の基板 2 4への実装は図 1 0 ( b ) に示すようなフ エースダウン方式であってもよい。 その場合には、 基板 2 4上の配線と半導体チ ップ 2 5上の電極パッドとはバンプに代表される金属ボール 3 0により接合され るのが一般的であるが、 基板 2 4上の配線と半導体チップ 2 5の電極パッ ドとが 合金化を利用して直接接合させることもある。 以降の工程については、 図 1 0 ( a ) に示す接合構造を採用したものとして説明する。
次に、 図 1 1に示す工程で、 下金型 3 1 aと上金型 3 1 bとからなる封止金型 3 1を用いて、 基板 2 4の上側の領域で半導体チップ 2 5, 配線及び金属細線 2 6を封止する樹脂封止工程を行なう。 その際、 樹脂封止を行なう前に、 基板 2 4 の裏面側、 すなわち封止金型 3 1の下金型 3 1 aの上面に第 1 の封止テープ 3 2 aを装着し、 基板 2 4の外部電極パッ ド 2 8の下面に封止テープ 3 2 aを密着さ せる。 このとき、 金型に加えられる押圧力によって、 外部電極パッド 2 8が封止 テープ 3 2 aに食い込んだ状態となり、 封止テープ 3 2 aは基板 2 4の裏面と外 部電極 2 8の下面とに密着した状態となっている。 さらに、 封止金型 3 1の上金 型 3 1 bの下面にも第 2の封止テープ 3 2 bを密着させる。 この状態で封止樹脂 2 7を用いてトランスファ一成形することにより、 基板 2 4の上面側の領域で半 導体チップ 2 5を取り囲む領域のみを樹脂封止し、 基板 2 4の裏面への封止樹脂 2 7の回り込みを防止することができる。 そして、 上述のように、 基板 2 4の裏 面の外部電極パッ ド 2 8に樹脂バリが形成されるのを防止することができる。 また、 第 1の封止テープ 3 1 aだけでなく第 2の封止テープ 3 2 bを用いてい るので、 封止樹脂 2 7と上金型 3 1 bとの離型が容易になるという利点をも有す る。
さらに、 このような樹脂封止方法では、 基板 2 4に対して封止金型 3 1で圧力 を印加して樹脂封止するが、 第 1 , 第 2の封止テープ 3 2 a , 3 2 bで基板 2 4 を挟んだ構造で圧力を印加するので、 基板 2 4に加わる力を緩衝でき、 樹脂封止 の際の基板 2 4の破損、 変形を防止することができるという利点もある。
最後に、 図 1 2に示す工程で、 封止樹脂 2 7により基板 2 4の上側の半導体チ ップ 2 5を取り囲む領域を封止してなる樹脂封止体を封止金型 3 1から離型する と、 基板 2 4の裏面の外部電極パッ ド 2 8への封止樹脂の回り込みのない樹脂封 止体が得られる。
その後、 基板 2 4の裏面上の外部電極パッド 2 8にボール電極 2 9 (破線参照 ) を設けることにより、 B G Aタイプの樹脂封止型半導体装置が得られる。 ただ し、 この外部電極パッド 2 8を厚く形成しておくことにより、 ボール電極 2 9を 形成することなく、 外部電極パッ ド 2 8をそのまま外部端子として使用すること も可能である。
以上、 本実施形態の B G Aタイプの樹脂封止型半導体装置の製造方法では、 第 1, 第 2の封止テープ 3 2 a, 3 2 bを用いることにより、 その弾力性を利用し て、 封止金型内での基板 2 4の変形を抑制し、 基板 2 4の外部電極パッ ド 2 8の 面への封止樹脂、 異物の付着を防止できる。
なお、 第 1 , 第 2の封止テープ 3 2 a , 3 2 bのうち第 1の封止テープ 3 2 a は必ずしも必要でない。 第 2の封止テープ 3 2 bのみを設けた場合であっても、 第 2の封止テープ 3 2 bと基板 2 4の上面とが接するので、 封止樹脂の側面や裏 面側への回り込みを阻止することができる。
さらに、 封止テープ 3 2 aを基板 2 4の裏面全体に密着させる必要は必ずしも なく、 少なくとも外部電極パッ ド 2 8の下面に密着していればよい。
(第 3の実施形態)
次に、 本発明の第 3の実施形態について説明する。 図 1 3は、 本実施形態に係 る樹脂封止型半導体装置を示す断面図である。 本実施形態の樹脂封止型半導体装 置は、 放熱板を有する樹脂封止型半導体装置であり、 比較的大量の熱を発生する 例えば大電力用卜ランジス夕等を内蔵した半導体チップを備えた樹脂封止型半導 体装置である。
図 1 3に示すように、 本実施形態の半導体装置は、 リードフレームの支持部で あるベッ ド 3 3と、 ベッ ド 3 3上にダイボンド材により接合された半導体チップ 3 4と、 リードフレームの金属端子 3 5と、 金属端子 3 5と半導体チップ 3 4と を電気的に接続する金属細線 3 6と、 ベッ ド 3 3を支持する放熱板 3 7とを備え ている。 そして、 放熱板 3 7の裏面側以外の部分、 つまり、 放熱板 3 7の上面上 や側面上を含み、 ベッ ド 3 3 , 半導体チップ 3 4, 金属細線 3 6及び金属端子 3 5の一部が絶縁性の封止樹脂 3 8により樹脂封止され、 金属端子 3 5の他部が外 部端子として封止樹脂 3 8から突出した構造を有している。
本実施形態では、 後述するように、 樹脂封止工程において放熱板 3 7の裏面に 封止テープを貼付した状態でトランスファモールドを行なうことにより、 放熱板 3 7の裏面への封止樹脂 3 8の回り込みを阻止して、 放熱板 3 7の裏面における 樹脂バリの形成を防止することができる。 よって、 放熱板 3 7の放熱面 (裏面) を確保し、 半導体装置の半導体チップから発生する熱を外部に放出する放熱機能 を維持、 向上することができる。
次に、 本実施形態の樹脂封止型半導体装置の製造方法について図面を参照しな がら説明する。 図 1 4〜図 1 8は本実施形態の放熱板を有した樹脂封止型半導体 装置の製造方法を示す工程ごとの断面図である。
まず、 図 1 4に示す工程で、 半導体チップの支持部であるベッ ド 3 3と金属端 子 3 5とを有するリードフレームを用意し、 そのべッ ド 3 3の上面に半導体チッ プ 3 4をダイボンド材により接合する。 そして、 半導体チップ 3 4と金属端子 3 5とを金属細線 3 6により接続する。
次に、 図 1 5に示す工程で、 ベッ ド 3 3の裏面に放熱板 3 7を接合する。 なお 、 ベッ ド 3 3自体の厚みを厚くし、 ベッ ド 3 3が放熱板としての機能をも併せて 有するように構成してもよい。
次に、 図 1 6に示す工程で、 放熱板 3 7の裏面に封止テープ 3 9を密着させる 。 この場合、 放熱板 3 7に封止テープ 3 9を密着させたものを封止金型に載置し てもよいし、 封止金型、 特に下金型に封止テープ 3 9を付設しておいて、 放熱板 3 7を下金型上に載置することで、 放熱板 3 7の裏面と封止テープ 3 9とが密着 するようにしてもよい。
次に、 図 1 7に示す工程で、 封止テープ 3 9を放熱板 3 7の裏面に密着させた 状態で、 絶縁性の封止樹脂 3 8により、 ベッ ド 3 3, 半導体チップ 3 4, 金属細 線 3 6及び金属端子 3 5の一部を封止する。 このとき、 放熱板 3 7の裏面および 金属端子 3 5の他部は封止樹脂 3 8から露出した状態となっている。
最後に、 図 1 8に示す工程で、 封止テープ 3 9を放熱板 3 7の裏面より剥がし 、 金属端子 3 5を成形することにより、 同図に示すような放熱板 3 7の裏面が露 出した樹脂封止型半導体装置を得る。
本実施形態の放熱板を有した樹脂封止型半導体装置の製造方法によると、 樹脂 封止工程において、 放熱板 3 7の裏面に密着する封止テープ 3 9を用いることに より、 放熱板 3 7の裏面への封止樹脂の回り込みを阻止し、 樹脂バリの発生を防 止することができる。 すなわち、 放熱板 3 7の裏面を確実に露出させることがで きるため、 放熱板 3 7の放熱効果を損なうことのない樹脂封止型半導体装置が得 られる。 また、 封止テープ 3 9を放熱板 3 7の裏面に密着させて樹脂封止するた め、 封止テープ 3 9の一部が放熱板 3 7の側面部分に食い込み、 封止後は放熱板 3 7が封止樹脂部の裏面から僅かに突出した構造となる。 したがって、 樹脂封止 型半導体装置を実装した際には、 放熱板 3 7の裏面全体が実装基板に確実に接す るため、 放熱効果を高めることができる。
(第 4の実施形態)
次に、 本発明の第 4の実施形態について図面を参照しながら説明する。 図 1 9 は、 本実施形態に係る C C Dパッケージに代表される樹脂封止型半導体装置を示 す断面図である。
図 1 9に示すように、 本実施形態の樹脂封止型半導体装置は、 上方が開口され この開口部の中にさらに凹部 4 2を有する樹脂パッケージ 4 1 と、 樹脂パッケ一 ジ 4 1の凹部 4 2の底面にダイボンド材により接合された固体撮像素子 4 0と、 樹脂パッケージ 4 1の凹部 4 2付近の領域に設けられた内部リード 4 3と、 該内 部リード 4 3につながり樹脂パッケージ 4 1を貫通して外方まで延びる外部リー ド 4 6と、 固体撮像素子 4 0上の電極パッ ド (図示せず) と樹脂パッケージ 4 1 上の内部リード 4 3とを電気的に接続する金属細線 4 4とを備えている。 そして 、 樹脂パッケージ 4 1の開口部は封止ガラス 4 5により封止されている。 また、 樹脂パッケージ 4 1から突出している外部リ一ド 4 6は下方に曲げられている。 なお、 樹脂パッケージ 4 1は絶縁性の樹脂のトランスファー成形により一体で形 成されたパッケージである。
本実施形態の樹脂封止型半導体装置は、 後述するように、 樹脂封止工程で、 内 部リ一ド 4 3上に封止テープを貼付した状態でトランスファモールドを行なって 樹脂パッケージ 4 1を形成しているので、 内部リ一ド 4 3の上面に樹脂バリが形 成されることなく露出しており、 内部リード 4 3と固体撮像素子 4 0との間の金 属細線 4 4による接続の信頼性の高い樹脂封止型半導体装置である。
次に、 本実施形態に係る C C Dパッケージに代表される樹脂封止型半導体装置 の製造方法について図面を参照しながら説明する。 図 2 0〜図 2 2は本実施形態 に係る樹脂封止型半導体装置の製造方法を示す工程ごとの断面図である。
まず、 図 2 0に示す工程で、 内部リード 4 3及び外部リード 4 6を有するリー ド体とを用意し、 樹脂パッケージを成形する前に、 そのリード体の内部リード 4 3となる部分の上に封止テープ 4 7を密着または接着しておき、 内部リード 4 3 の上面に封止樹脂が回り込まないようにする。 そして、 上金型 5 l aと下金型 5 1 bとからなる封止金型内で、 トランスファ一成形により樹脂封止して、 樹脂パ ッケージ 4 1を形成する。 図 2 0は、 樹脂パッケージ 4 1が形成された状態を示 し、 封止テープ 4 7で内部リ一ド 4 3及び外部リ一ド 4 6の表面をカバ一した状 態を示している。
そして、 図 2 1に示す工程で、 封止テープ 4 7を剥がすことにより、 開口部内 で内部リ一ド 4 3の上面が確実に露出されている樹脂パッケージ 4 1が得られる 。 封止テープ 4 7は高温状態においては、 内部リード 4 3に隙間なく密着するこ とから、 封止テープ 4 7を剥離した後露出している内部リード 4 3の表面には封 止樹脂の樹脂パリなどの異物が付着していない。
そして、 図 2 2に示す工程で、 固体撮像素子 4 0を樹脂パッケージ 4 1内に形 成された凹部 4 2の底面上に接合し、 固体撮像素子 4 0上の電極パッ ドと内部リ ード 4 3とを金属細線 4 4により接続する。 そして、 樹脂パッケージ 4 1の開口 部を封止ガラス 4 5により封止した後、 外部リード 4 6を成形する。 外部リード 4 6の成形は、 半導体装置の種類等に応じて所望の形状に行う。
本実施形態の封止テープを用いた樹脂封止工法は、 上方が開口された樹脂パッ ケージを有する半導体デバイス、 例えば C C Dやホログラムに代表される光学系 半導体デバイスの製造に特に適しており、 特にリ一ドが付設された樹脂パッケー ジの成形時に著効を発揮することができる。
本実施形態の他の応用例としては、 L E Dなどパッケージの色彩や透明性を要 求される部品を製造する際には、 成形金型の異物や汚れがパッケージ体に転写さ れないように、 予め封止金型に封止テープを貼ることにより、 効果的な封止がで き、 優れたパッケージを形成することができる。 [産業上の利用可能性]
本発明の樹脂封止型半導体装置及びその製造方法は、 各種トランジスタによつ て形成される半導体集積回路を用いた電子機器全般に適用できる。

Claims

請求の範囲
1 . 電極パッ ドを有する半導体チップと、
インナ一リードと、
上記半導体チップの電極パッドと上記ィンナ一リードとを電気的に接続する接 続部材と、
上記半導体チップ, インナ一リード及び接続部材を封止する封止樹脂とを備え
上記ィンナ一リ一ドの裏面の少なくとも一部を含む下部が外部電極となってお り、 該外部電極が上記封止樹脂の裏面よりも下方に突出していることを特徴とす る樹脂封止型半導体装置。
2 . 請求項 1の樹脂封止型半導体装置において、
上記半導体チップを支持するダイパッドと、
上記ダイパッ ドを支持する吊りリードとをさらに備え、
上記吊りリ一ドは、 上記ダイパッドを上記インナーリードよりも上方に位置さ せるためのディプレス部を有することを特徴とする樹脂封止型半導体装置。
3 . 請求項 1又は 2記載の樹脂封止型半導体装置において、
上記場外部電極の上記封止樹脂の裏面からの突出量は、 1 0〜4 0 mである ことを特徴とする樹脂封止型半導体装置。
4 . 封止金型と半導体チップと周辺部材とを用意する第 1の工程と、 上記周辺部材と封止金型との間に上記周辺部材の表面の一部に密着する封止テ
—プを装着する第 2の工程と、
上記封止テープを装着した状態で上記半導体チップ及び上記周辺部材の少なく とも上記表面の一部を除く部分を封止樹脂内に封止する第 3の工程と、
上記第 3の工程の後に上記封止テープを除去する第 4の工程とを備え、 上記第 4の工程の終了後には、 上記周辺部材の少なくとも上記表面の一部が上 記封止樹脂から露出していることを特徴とする樹脂封止型半導体装置の製造方法
5 . 請求項 4の樹脂封止型半導体装置の製造方法において、
上記第 1 の工程は、
上記周辺部材として、 インナ一リードと半導体チップを支持する領域とを有す るリードフレームを用意する第 1の副工程と、
上記半導体チップを上記リードフレームの半導体チップを支持する領域に接合 する第 2の副工程と、
上記半導体チップと上記ィンナ一リードとを電気的に接合する第 3の副工程と を有しており、
上記第 2の工程では、 上記ィンナ一リ一ドの裏面に上記封止テープを密着させ ることを特徴とする樹脂封止型半導体装置の製造方法。
6 . 請求項 5の樹脂封止型半導体装置の製造方法において、
上記第 1の工程中の第 1の副工程では、 上記半導体チップを支持する領域とし てのダイパッ ドと、 該ダイパッドを支持する吊りリードとを形成するとともに、 該吊りリードに上記ダイパッ ドを上記ィンナ一リードよりも上方に位置させるた めのディプレス部を形成し、
上記第 1の工程中の第 2の副工程では、 上記半導体チップを上記ダイパッ ド上 に接合し、
上記第 1の工程中の第 3の副工程では、 上記ダイパッド上に接合した半導体チ ップと上記ィンナ一リードとを金属細線により電気的に接合し、
上記第 2の工程では、 上記封止テープを上記リードフレームのうちィンナーリ 一ドの裏面にのみ密着させることを特徴とする樹脂封止型半導体装置の製造方法
7 . 請求項 5又は 6の樹脂封止型半導体装置の製造方法において、 上記第 4の工程の終了後に、 上記ィンナーリ一ドの先端面と上記封止樹脂の側 面とがほぼ同じ面となるように、 上記インナ一リ一ドのうち封止樹脂の側方に突 出する部分を切り落とす工程をさらに備えていることを特徴とする樹脂封止型半 導体装置の製造方法。
8 . 請求項 5〜 7のうちいずれか 1つの樹脂封止型半導体装置の製造方法に おいて、
上記第 1の工程中の第 1の副工程では、 ニッケル (N i ) 層, パラジウム (P d ) 層, 金 (A u ) 層の各金属メツキが施されているリードフレームを用意する ことを特徴とする樹脂封止型半導体装置の製造方法。
9 . 請求項 5〜 7のうちいずれか 1つの樹脂封止型半導体装置の製造方法に おいて、
上記第 2の工程では、 樹脂封止後に上記ィンナ一リードの下面が上記封止樹脂 の裏面から所定値だけ下方に突出するように、 上記所定値に応じた厚みの封止テ ープを装着することを特徴とする樹脂封止型半導体装置の製造方法。
1 0 . 請求項 4の樹脂封止型半導体装置の製造方法において、
上記第 1の工程は、
上記周辺部材として、 上面に配線が設けられ、 裏面には上記配線に接続される 外部電極が設けられた基板を用意する第 1 の副工程と、
上記基板の上面に半導体チップを接合する第 2の副工程と、
上記半導体チップと上記基板の上面の配線とを接続部材を介して電気的に接続 する第 3の副工程とを有し、
上記第 2の工程では、 上記封止テープを少なくとも上記外部電極に密着させる ことを特徴とする樹脂封止型半導体装置の製造方法。
1 1 . 請求項 4の樹脂封止型半導体装置の製造方法において、
上記第 1の工程は、
上記周辺部材として、 少なくとも放熱板を用意する第 1の副工程と、 上記放熱板の上に半導体チップを搭載する第 2の副工程とを有し、 上記第 2の工程では、 上記放熱板の裏面に上記封止テープを密着させることを 特徴とする樹脂封止型半導体装置の製造方法。
1 2 . 請求項 4の樹脂封止型半導体装置の製造方法において、
上記第 1の工程は、
上記周辺部材として、 少なくとも放熱板を用意する第 1の副工程と、 上記放熱板の上に半導体チップを搭載する第 2の副工程とを有し、
上記第 2の工程では、 上記放熱板の裏面に上記封止テープを密着させることを 特徴とする樹脂封止型半導体装置の製造方法。
1 3 . 請求項 1 2の樹脂封止型半導体装置の製造方法において、
上記第 1の工程の第 1の副工程では、 上記周辺部材として、 さらに、 リードと べッ ドとを有するリードフレームを用意し、
上記第 1の工程の第 2の副工程では、 上記半導体チップを上記べッ ドの上に接 合した後、 上記ベッドを上記放熱板の上に搭載することにより、 半導体チップを 放熱板上に搭載することを特徴とする樹脂封止型半導体装置の製造方法。
1 4 . 請求項 4の樹脂封止型半導体装置の製造方法において、
上記第 1の工程では、 上記周辺部材として内部リードと外部リードとを有する リ一ド体を用意し、
上記第 2の工程では、 上記内部リ一ドと封止金型との間に上記内部リ一ドの表 面の一部に密着する封止テープを装着し、
上記第 3の工程では、 上記封止テープを装着した状態で上記内部リ一ドの少な くとも上記表面の一部を除く部分を封止樹脂内に封止して、 開口部と該開口部内 にある凹部とを有する樹脂パッケージ体を形成し、
上記第 4の工程の後に、
電極パッドを有する半導体チップを上記樹脂パッケージ体の凹部に搭載するェ 程と、 上記半導体チップの電極パッドと上記内部リ一ドとを接続部材を介して電気的 に接続する工程と、
上記開口部を封止部材により封止する工程とをさらに備え、
上記第 4の工程の終了後には、 少なくとも上記内部リードの上記表面の一部が 上記封止樹脂から露出していることを特徴とする樹脂封止型半導体装置の製造方 法。
PCT/JP1998/000476 1997-02-10 1998-02-04 Resin sealed semiconductor device and method for manufacturing the same WO1998035382A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-1999-7007100A KR100500919B1 (ko) 1997-02-10 1998-02-04 수지봉입형 반도체장치 및 그 제조방법
EP98901517A EP0977251B1 (en) 1997-02-10 1998-02-04 Resin sealed semiconductor device and method for manufacturing the same
US09/341,918 US6291274B1 (en) 1997-02-10 1998-02-04 Resin molded semiconductor device and method for manufacturing the same
JP53413498A JP3255646B2 (ja) 1997-02-10 1998-02-04 樹脂封止型半導体装置の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2648797 1997-02-10
JP9/26487 1997-02-10
JP27411797 1997-10-07
JP9/274117 1997-10-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/341,918 A-371-Of-International US6291274B1 (en) 1997-02-10 1998-02-04 Resin molded semiconductor device and method for manufacturing the same
US09/908,810 Division US20010045640A1 (en) 1997-02-10 2001-07-20 Resin-molded semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO1998035382A1 true WO1998035382A1 (en) 1998-08-13

Family

ID=26364277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000476 WO1998035382A1 (en) 1997-02-10 1998-02-04 Resin sealed semiconductor device and method for manufacturing the same

Country Status (7)

Country Link
US (2) US6291274B1 (ja)
EP (1) EP0977251B1 (ja)
JP (1) JP3255646B2 (ja)
KR (1) KR100500919B1 (ja)
CN (1) CN1122304C (ja)
TW (1) TW385509B (ja)
WO (1) WO1998035382A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297750A (ja) * 1998-04-08 1999-10-29 Matsushita Electron Corp 半導体装置およびその製造方法および半導体装置の実装方法
EP1032037A3 (en) * 1999-02-24 2001-04-25 Matsushita Electronics Corporation Resin-moulded semiconductor device, method for manufacturing the same, and leadframe
JP2002543604A (ja) * 1999-04-29 2002-12-17 “ドリー・ペー”ライセンシング・ベー・ベー カプセル化電子部品の製造方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049135A (en) * 1996-05-28 2000-04-11 Kabushiki Kaisha Toshiba Bed structure underlying electrode pad of semiconductor device and method for manufacturing same
US6692989B2 (en) * 1999-10-20 2004-02-17 Renesas Technology Corporation Plastic molded type semiconductor device and fabrication process thereof
KR100462105B1 (ko) * 1996-12-26 2004-12-17 가부시키가이샤 히타치세이사쿠쇼 수지밀봉형 반도체장치의 제조방법
US6700185B1 (en) 1999-11-10 2004-03-02 Hitachi Chemical Co., Ltd. Adhesive film for semiconductor, lead frame and semiconductor device using the same, and method for manufacturing semiconductor device
JP3664045B2 (ja) 2000-06-01 2005-06-22 セイコーエプソン株式会社 半導体装置の製造方法
US6534707B1 (en) * 2000-10-11 2003-03-18 Visteon Global Technologies, Inc. Method for absorbing active, external and dynamic magnetic fields using a ferrite encapsulated coating
US6489571B1 (en) * 2000-10-31 2002-12-03 Lsi Logic Corporation Molded tape ball grid array package
US7170149B2 (en) * 2001-04-13 2007-01-30 Yamaha Corporation Semiconductor device and package, and method of manufacture therefor
JP4614586B2 (ja) * 2001-06-28 2011-01-19 三洋電機株式会社 混成集積回路装置の製造方法
JP2003017646A (ja) 2001-06-29 2003-01-17 Matsushita Electric Ind Co Ltd 樹脂封止型半導体装置およびその製造方法
JP2003100980A (ja) * 2001-09-27 2003-04-04 Hamamatsu Photonics Kk 半導体装置及びその製造方法
JP3540793B2 (ja) * 2001-12-05 2004-07-07 松下電器産業株式会社 樹脂封止型半導体装置及びその製造方法
TW584950B (en) 2001-12-31 2004-04-21 Megic Corp Chip packaging structure and process thereof
TW517361B (en) 2001-12-31 2003-01-11 Megic Corp Chip package structure and its manufacture process
TW544882B (en) 2001-12-31 2003-08-01 Megic Corp Chip package structure and process thereof
TW503496B (en) 2001-12-31 2002-09-21 Megic Corp Chip packaging structure and manufacturing process of the same
US6673698B1 (en) 2002-01-19 2004-01-06 Megic Corporation Thin film semiconductor package utilizing a glass substrate with composite polymer/metal interconnect layers
JP2003204027A (ja) * 2002-01-09 2003-07-18 Matsushita Electric Ind Co Ltd リードフレーム及びその製造方法、樹脂封止型半導体装置及びその製造方法
US7595017B2 (en) * 2002-01-31 2009-09-29 Stmicroelectronics, Inc. Method for using a pre-formed film in a transfer molding process for an integrated circuit
US7242033B2 (en) * 2002-03-08 2007-07-10 Rohm Co., Ltd. Semiconductor device using LED chip
US6812552B2 (en) 2002-04-29 2004-11-02 Advanced Interconnect Technologies Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US8236612B2 (en) 2002-04-29 2012-08-07 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US7799611B2 (en) * 2002-04-29 2010-09-21 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
JP3851845B2 (ja) * 2002-06-06 2006-11-29 株式会社ルネサステクノロジ 半導体装置
US20040058478A1 (en) * 2002-09-25 2004-03-25 Shafidul Islam Taped lead frames and methods of making and using the same in semiconductor packaging
US20040108580A1 (en) * 2002-12-09 2004-06-10 Advanpack Solutions Pte. Ltd. Leadless semiconductor packaging structure with inverted flip chip and methods of manufacture
CA2936742C (en) * 2002-12-24 2020-05-26 Rinat Neuroscience Corp. Anti-ngf antibodies and methods using same
US6788541B1 (en) * 2003-05-07 2004-09-07 Bear Hsiung LED matrix moldule
KR100550856B1 (ko) * 2003-06-03 2006-02-10 삼성전기주식회사 발광 다이오드(led) 소자의 제조 방법
JP4170950B2 (ja) * 2003-10-10 2008-10-22 松下電器産業株式会社 光学デバイスおよびその製造方法
JP2005252140A (ja) * 2004-03-08 2005-09-15 Olympus Corp 固体撮像装置用パッケージ
CN1956180B (zh) * 2005-03-26 2010-08-04 阎跃军 采用点胶液态树脂封装的电子器件的基片结构
KR100819800B1 (ko) * 2005-04-15 2008-04-07 삼성테크윈 주식회사 반도체 패키지용 리드 프레임
CN101278383B (zh) * 2005-11-02 2011-04-13 松下电器产业株式会社 电子电路装置及其制造方法
US7482683B2 (en) * 2006-05-12 2009-01-27 Stats Chippac Ltd. Integrated circuit encapsulation system with vent
TW200807583A (en) * 2006-07-20 2008-02-01 Chipmos Technologies Inc Chip package and manufacturing method threrof
KR100785744B1 (ko) * 2006-10-23 2007-12-18 크루셜텍 (주) 광 포인팅 장치의 이미지 센서 패키징 방법
CN101601133B (zh) * 2006-10-27 2011-08-10 宇芯(毛里求斯)控股有限公司 部分图案化的引线框以及在半导体封装中制造和使用其的方法
US20080217759A1 (en) * 2007-03-06 2008-09-11 Taiwan Solutions Systems Corp. Chip package substrate and structure thereof
US20080251866A1 (en) * 2007-04-10 2008-10-16 Honeywell International Inc. Low-stress hermetic die attach
US20110067911A1 (en) * 2008-06-12 2011-03-24 Mitsubishi Materials Corporation Method of bonding parts to substrate using solder paste
JP5320863B2 (ja) * 2008-07-02 2013-10-23 オムロン株式会社 電子部品
JP2010135723A (ja) * 2008-10-29 2010-06-17 Panasonic Corp 半導体装置
USD648686S1 (en) 2010-04-30 2011-11-15 Cree, Inc. Light emitting diode (LED) package
US7923739B2 (en) * 2009-06-05 2011-04-12 Cree, Inc. Solid state lighting device
US8598602B2 (en) * 2009-01-12 2013-12-03 Cree, Inc. Light emitting device packages with improved heat transfer
USD648687S1 (en) 2009-06-05 2011-11-15 Cree, Inc. Light emitting device package
US8860043B2 (en) * 2009-06-05 2014-10-14 Cree, Inc. Light emitting device packages, systems and methods
US8686445B1 (en) 2009-06-05 2014-04-01 Cree, Inc. Solid state lighting devices and methods
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
TWI469289B (zh) 2009-12-31 2015-01-11 矽品精密工業股份有限公司 半導體封裝結構及其製法
US8269244B2 (en) 2010-06-28 2012-09-18 Cree, Inc. LED package with efficient, isolated thermal path
US8648359B2 (en) 2010-06-28 2014-02-11 Cree, Inc. Light emitting devices and methods
USD643819S1 (en) 2010-07-16 2011-08-23 Cree, Inc. Package for light emitting diode (LED) lighting
US8610140B2 (en) 2010-12-15 2013-12-17 Cree, Inc. Light emitting diode (LED) packages, systems, devices and related methods
USD679842S1 (en) 2011-01-03 2013-04-09 Cree, Inc. High brightness LED package
TW201251140A (en) 2011-01-31 2012-12-16 Cree Inc High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion
WO2012109225A1 (en) 2011-02-07 2012-08-16 Cree, Inc. Components and methods for light emitting diode (led) lighting
JP5796309B2 (ja) * 2011-03-15 2015-10-21 セイコーエプソン株式会社 電気光学装置及び電子機器
US20120241926A1 (en) * 2011-03-23 2012-09-27 Zigmund Ramirez Camacho Integrated circuit packaging system with leveling standoff and method of manufacture thereof
WO2013046705A1 (ja) * 2011-09-30 2013-04-04 パナソニック株式会社 慣性力センサ
WO2013094101A1 (ja) * 2011-12-22 2013-06-27 パナソニック株式会社 半導体パッケージ、その製造方法及び金型、半導体パッケージの入出力端子
JP6182916B2 (ja) * 2013-03-15 2017-08-23 日亜化学工業株式会社 発光装置の封止部材の取り外し方法
EP2975096B1 (en) 2014-07-17 2021-11-17 3M Innovative Properties Company Pressure sensitive adhesive assembly suitable for bonding to uneven substrates
WO2020070899A1 (ja) * 2018-10-05 2020-04-09 株式会社 東芝 半導体パッケージ
CN115513162B (zh) * 2021-06-07 2025-03-28 江苏长电科技股份有限公司 引脚折弯qfn封装结构及其制作方法
CN115513161B (zh) * 2021-06-07 2025-04-01 江苏长电科技股份有限公司 引脚折弯qfn封装结构及其制作方法
KR102564558B1 (ko) * 2021-11-30 2023-08-08 해성디에스 주식회사 프리 몰드 기판 및 프리 몰드 기판의 제조 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267966A (en) * 1975-12-03 1977-06-06 Toshiba Corp Manufacture of semiconductor unit
JPS57176751A (en) * 1981-04-22 1982-10-30 Toshiba Corp Semiconductor device
JPS6050354B2 (ja) * 1980-11-14 1985-11-08 松下電子工業株式会社 樹脂封止型半導体装置
JPH02122555A (ja) * 1988-10-31 1990-05-10 Mitsui High Tec Inc 半導体装置の製造方法
JPH02133943A (ja) * 1988-07-22 1990-05-23 Contraves Ag 高集積回路及びその製造方法
JPH02134832A (ja) * 1988-11-16 1990-05-23 Seiko Epson Corp 集積回路チップのモールド方法
JPH02209739A (ja) * 1989-02-09 1990-08-21 Mitsui Petrochem Ind Ltd 半導体装置の製造方法
JPH0394459A (ja) * 1989-09-06 1991-04-19 Shinko Electric Ind Co Ltd 半導体装置およびその製造方法
JPH03240260A (ja) * 1990-02-19 1991-10-25 Matsushita Electric Ind Co Ltd 集積回路装置の製造方法
JPH04337657A (ja) * 1991-05-14 1992-11-25 Hitachi Cable Ltd 半導体装置用リードフレーム
JPH0547954A (ja) * 1991-08-20 1993-02-26 Toshiba Corp 樹脂封止型半導体装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050354A (ja) 1983-08-31 1985-03-20 株式会社日立製作所 極低温冷凍装置における冷凍能力制御方法
JPS6086851A (ja) * 1983-10-19 1985-05-16 Nec Corp 樹脂封止型半導体装置
JPS6426420A (en) 1987-07-23 1989-01-27 Nissha Printing Device for injection molding and simultaneous decorating and manufacture of injection-molded and simultaneously decorated product
US5000903A (en) 1989-04-06 1991-03-19 Libbey-Owens-Ford Co. Method of molding plastic products having chemically bonded protective coatings
JPH03131059A (ja) * 1989-10-16 1991-06-04 Mitsubishi Electric Corp 半導体装置
US5218759A (en) * 1991-03-18 1993-06-15 Motorola, Inc. Method of making a transfer molded semiconductor device
FR2684802B1 (fr) * 1991-12-04 2001-06-08 Gemplus Card Internat Procede de moulage de micromodules de circuits integres.
JP3246769B2 (ja) * 1992-07-15 2002-01-15 株式会社日立製作所 半導体装置及びその製造方法
JPH0729927A (ja) * 1993-07-07 1995-01-31 Hitachi Ltd 半導体集積回路装置の製造方法
JPH0745765A (ja) * 1993-07-27 1995-02-14 Fuji Electric Co Ltd 樹脂封止型半導体装置の樹脂封止法
US5441684A (en) * 1993-09-24 1995-08-15 Vlsi Technology, Inc. Method of forming molded plastic packages with integrated heat sinks
US5674343A (en) 1994-04-19 1997-10-07 Nitto Denko Corporation Method for manufacturing a semiconductor
US5846477A (en) 1994-12-08 1998-12-08 Nitto Denko Corporation Production method for encapsulating a semiconductor device
JP3246848B2 (ja) 1995-02-22 2002-01-15 アピックヤマダ株式会社 汎用ゲート位置樹脂モールド装置および樹脂モールド方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267966A (en) * 1975-12-03 1977-06-06 Toshiba Corp Manufacture of semiconductor unit
JPS6050354B2 (ja) * 1980-11-14 1985-11-08 松下電子工業株式会社 樹脂封止型半導体装置
JPS57176751A (en) * 1981-04-22 1982-10-30 Toshiba Corp Semiconductor device
JPH02133943A (ja) * 1988-07-22 1990-05-23 Contraves Ag 高集積回路及びその製造方法
JPH02122555A (ja) * 1988-10-31 1990-05-10 Mitsui High Tec Inc 半導体装置の製造方法
JPH02134832A (ja) * 1988-11-16 1990-05-23 Seiko Epson Corp 集積回路チップのモールド方法
JPH02209739A (ja) * 1989-02-09 1990-08-21 Mitsui Petrochem Ind Ltd 半導体装置の製造方法
JPH0394459A (ja) * 1989-09-06 1991-04-19 Shinko Electric Ind Co Ltd 半導体装置およびその製造方法
JPH03240260A (ja) * 1990-02-19 1991-10-25 Matsushita Electric Ind Co Ltd 集積回路装置の製造方法
JPH04337657A (ja) * 1991-05-14 1992-11-25 Hitachi Cable Ltd 半導体装置用リードフレーム
JPH0547954A (ja) * 1991-08-20 1993-02-26 Toshiba Corp 樹脂封止型半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0977251A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297750A (ja) * 1998-04-08 1999-10-29 Matsushita Electron Corp 半導体装置およびその製造方法および半導体装置の実装方法
EP1032037A3 (en) * 1999-02-24 2001-04-25 Matsushita Electronics Corporation Resin-moulded semiconductor device, method for manufacturing the same, and leadframe
EP1335428A3 (en) * 1999-02-24 2003-10-08 Matsushita Electric Industrial Co., Ltd. Resin-moulded semiconductor device and method for manufacturing the same
EP1335427A3 (en) * 1999-02-24 2003-10-08 Matsushita Electric Industrial Co., Ltd. Resin-moulded semiconductor device
JP2002543604A (ja) * 1999-04-29 2002-12-17 “ドリー・ペー”ライセンシング・ベー・ベー カプセル化電子部品の製造方法

Also Published As

Publication number Publication date
EP0977251B1 (en) 2011-11-16
JP3255646B2 (ja) 2002-02-12
US20010045640A1 (en) 2001-11-29
KR20000070837A (ko) 2000-11-25
US6291274B1 (en) 2001-09-18
EP0977251A4 (en) 2005-09-28
TW385509B (en) 2000-03-21
EP0977251A1 (en) 2000-02-02
KR100500919B1 (ko) 2005-07-14
CN1122304C (zh) 2003-09-24
CN1246963A (zh) 2000-03-08

Similar Documents

Publication Publication Date Title
JP3255646B2 (ja) 樹脂封止型半導体装置の製造方法
JP3562311B2 (ja) リードフレームおよび樹脂封止型半導体装置の製造方法
JP3461720B2 (ja) 樹脂封止型半導体装置
JP3285815B2 (ja) リードフレーム,樹脂封止型半導体装置及びその製造方法
US6861734B2 (en) Resin-molded semiconductor device
JP3405202B2 (ja) リードフレームおよびそれを用いた樹脂封止型半導体装置およびその製造方法
JP2003017524A (ja) 樹脂封止型半導体装置の製造方法
JP3478139B2 (ja) リードフレームの製造方法
JP3458057B2 (ja) 樹脂封止型半導体装置
JPH08139218A (ja) 混成集積回路装置およびその製造方法
JP3443406B2 (ja) 樹脂封止型半導体装置
JP3445930B2 (ja) 樹脂封止型半導体装置
JP3507819B2 (ja) 樹脂封止型半導体装置及びその製造方法
JP3314574B2 (ja) 半導体装置の製造方法
JP2891426B2 (ja) 半導体装置
JP4066050B2 (ja) 樹脂封止型半導体装置及びその製造方法
JP2798630B2 (ja) 樹脂封止型半導体装置
JP2006216993A (ja) 樹脂封止型半導体装置
JP2716355B2 (ja) 半導体装置の製造方法
JP3578759B2 (ja) 樹脂封止型半導体装置
JP3145892B2 (ja) 樹脂封止型半導体装置
JP3541751B2 (ja) リードフレームとそれを用いた樹脂封止型半導体装置およびその製造方法
JP3915338B2 (ja) リードフレームとそれを用いた樹脂封止型半導体装置の製造方法
JPH0883870A (ja) 樹脂封止型半導体装置
JPH09283655A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98802277.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998901517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09341918

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997007100

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998901517

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007100

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997007100

Country of ref document: KR