JP4496160B2 - プロトン伝導性無機材料、電解質膜、電極、膜電極複合体及び燃料電池 - Google Patents
プロトン伝導性無機材料、電解質膜、電極、膜電極複合体及び燃料電池 Download PDFInfo
- Publication number
- JP4496160B2 JP4496160B2 JP2005359300A JP2005359300A JP4496160B2 JP 4496160 B2 JP4496160 B2 JP 4496160B2 JP 2005359300 A JP2005359300 A JP 2005359300A JP 2005359300 A JP2005359300 A JP 2005359300A JP 4496160 B2 JP4496160 B2 JP 4496160B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- electrolyte membrane
- inorganic material
- conductive inorganic
- proton conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/643—Cylindrical cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/651—Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/651—Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
- H01M10/652—Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/659—Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1067—Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Inert Electrodes (AREA)
Description
Sn、Hf、Ge、Ga、In、Ce及びNbよりなる群から選択される少なくとも一種類からなる元素Yを含有し、前記酸化物粒子が担持される酸化物担体と
を含有することを特徴とする。
Ti、Zr、Si及びAlよりなる群から選択される少なくとも一種類からなる元素Mを含有し、前記酸化物粒子が担持される酸化物担体と、
前記酸化物粒子及び前記酸化物担体のうち少なくとも一方に含有され、Y、Sc、La、Sm、Gd、Mg、Ca、SrまたはBaからなる元素Zと
を含有することを特徴とする。
高分子材料と
を具備することを特徴とする。
高分子材料と
を具備することを特徴とする。
高分子材料と、
酸化還元触媒と
を具備することを特徴とする。
高分子材料と、
酸化還元触媒と
を具備することを特徴とする。
前記燃料極、前記酸化剤極及び前記電解質膜のうちの少なくともいずれかは、W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、Sn、Hf、Ge、Ga、In、Ce及びNbよりなる群から選択される少なくとも一種類からなる元素Yを含有し、前記酸化物粒子が担持される酸化物担体とを含有するプロトン伝導性無機材料を含むことを特徴とする。
前記燃料極、前記酸化剤極及び前記電解質膜のうちの少なくともいずれかは、W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、Ti、Zr、Si及びAlよりなる群から選択される少なくとも一種類からなる元素Mを含有し、前記酸化物粒子が担持される酸化物担体と、前記酸化物粒子及び前記酸化物担体のうち少なくとも一方に含有され、Y、Sc、La、Sm、Gd、Mg、Ca、SrまたはBaからなる元素Zとを含有するプロトン伝導性無機材料を含むことを特徴とする。
前記燃料極、前記酸化剤極及び前記電解質膜のうちの少なくともいずれかは、W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、Sn、Hf、Ge、Ga、In、Ce及びNbよりなる群から選択される少なくとも一種類からなる元素Yを含有し、前記酸化物粒子が担持される酸化物担体とを含有するプロトン伝導性無機材料を含むことを特徴とする。
前記燃料極、前記酸化剤極及び前記電解質膜のうちの少なくともいずれかは、W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、Ti、Zr、Si及びAlよりなる群から選択される少なくとも一種類からなる元素Mを含有し、前記酸化物粒子が担持される酸化物担体と、前記酸化物粒子及び前記酸化物担体のうち少なくとも一方に含有され、Y、Sc、La、Sm、Gd、Mg、Ca、SrまたはBaからなる元素Zとを含有するプロトン伝導性無機材料を含むことを特徴とする。
第1の実施形態に係るプロトン伝導性無機材料は、W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、Sn、Hf、Ge、Ga、In、Ce及びNbよりなる群から選択される少なくとも一種類からなる元素Yを含有し、前記酸化物粒子が担持される酸化物担体とを含有する。
本発明の第2の実施形態に係るプロトン伝導性無機材料は、W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子(以下、酸化物粒子Bと称す)と、Ti、Zr、Si及びAlよりなる群から選択される少なくとも一種類からなる元素Mを含有し、前記酸化物粒子が担持される酸化物担体(以下、酸化物担体Mと称す)と、前記酸化物粒子B及び前記酸化物担体Mのうち少なくとも一方に含有され、Y、Sc、La、Sm、Gd、Mg、Ca、Sr及びBaよりなる群から選択される一種類からなる元素Zとを含有する。
第3の実施形態に係る電解質膜は、第1の実施形態に係るプロトン伝導性無機材料もしくは第2の実施形態に係るプロトン伝導性無機材料と、高分子材料とを含有する。
本発明の第4の実施形態に係る電極は、酸化還元触媒と、第1の実施形態に係るプロトン伝導性無機材料もしくは第2の実施形態に係るプロトン伝導性無機材料と、結着剤となる高分子材料とを含む触媒層を備える。この電極は、燃料電池の燃料極または酸化剤極として用いられるか、あるいは燃料極と酸化剤極の双方として利用され得る。
本発明の第5の実施形態に係る膜電極複合体は、燃料極と、酸化剤極と、燃料極及び酸化剤極の間に配置される電解質膜とを具備する。燃料極、酸化剤極及び電解質膜のうち少なくともいずれかが、第1の実施形態に係るプロトン伝導性無機材料もしくは第2の実施形態に係るプロトン伝導性無機材料を含有する。具体的には、第3の実施形態に係る電解質膜を備えた膜電極複合体、第4の実施形態に係る電極を燃料極、酸化剤極もしくは燃料極及び酸化剤極の双方に使用した膜電極複合体、第3の実施形態に係る電解質膜を備え、かつ第4の実施形態に係る電極を燃料極、酸化剤極もしくは燃料極及び酸化剤極の双方に使用した膜電極複合体などが挙げられる。
第6の実施形態に係る燃料電池は、第5の実施形態に係る膜電極複合体を備える。
ホウ酸トリメチルB(OCH3)3を0.7g溶解したエタノール溶液300mlに、酸化ガリウムGa2O3を6gを加えた混合溶液を常に撹拌しながら80℃まで加熱し、100ml/時の蒸発速度で水を除去した。この後さらに100℃の乾燥器内で12時間保持して粉末を得た。この粉末をメノウ乳鉢で粉砕して粉末状にした後、アルミナ坩堝内において昇温速度100℃/時で700℃まで加熱し、さらに700℃を4時間保持することにより、プロトン伝導性無機材料として酸化ホウ素担持酸化ガリウムを得た。酸化ガリウムのガリウム元素(Y)に対する酸化ホウ素のホウ素元素(X)の元素比(X/Y)は0.1であった。また、プロトン伝導性無機材料の比表面積は、下記表1に示す値であった。この酸化ホウ素担持酸化ガリウムについてX線回折測定を行ったところ、回折ピークはすべて酸化ガリウムに帰属されるものしか観測されず、酸化ホウ素は非晶質構造を有していることを確認することができた。
塩化バナジウムVCl3を1g溶解した蒸留水300mlに酸化ガリウムGa2O3を6g加えた混合溶液を常に撹拌しながら80℃まで加熱し、100ml/時の蒸発速度で水を除去した。この後さらに100℃の乾燥器内で12時間保持して粉末を得た。この粉末をメノウ乳鉢で粉砕して粉末状にした後、アルミナ坩堝内において昇温速度100℃/時で700℃まで加熱し、さらに700℃を4時間保持することにより、プロトン伝導性無機材料として酸化バナジウム担持酸化ガリウムを得た。酸化ガリウムのガリウム元素(Y)に対する酸化バナジウムのバナジウム元素(X)の元素比X/Yは0.1であった。プロトン伝導性無機材料の比表面積は下記表1に示す値であった。この酸化バナジウム担持酸化ガリウムについてX線回折測定を行ったところ、回折ピークはすべて酸化ガリウムに帰属されるものしか観測されず、酸化バナジウムは非晶質構造を有していることを確認することができた。
塩化クロム6水和物CrCl3・6H2Oを1.7g溶解した蒸留水300mlに酸化ガリウムGa2O3を6g加えた混合溶液を常に撹拌しながら80℃まで加熱し、100ml/時の蒸発速度で水を除去した。この後さらに100℃の乾燥器内で12時間保持して粉末を得た。この粉末をメノウ乳鉢で粉砕して粉末状にした後、アルミナ坩堝内において昇温速度100℃/時で700℃まで加熱し、さらに700℃を4時間保持することにより、プロトン伝導性無機材料として酸化クロム担持酸化ガリウムを得た。酸化ガリウムのガリウム元素(Y)に対する酸化クロムのクロム元素(X)の元素比X/Yは0.1であった。プロトン伝導性無機材料の比表面積は下記表1に示す値であった。この酸化クロム担持酸化ガリウムについてX線回折測定を行ったところ、回折ピークはすべて酸化ガリウムに帰属されるものしか観測されず、酸化クロムは非晶質構造を有していることを確認することができた。
モリブデン酸アンモニウム(NH4)6Mo7O24・4H2Oを1.1g溶解した蒸留水300mlに酸化ガリウムGa2O3を6g加えた混合溶液を常に撹拌しながら80℃まで加熱し、100ml/時の蒸発速度で水を除去した。この後さらに100℃の乾燥器内で12時間保持して粉末を得た。この粉末をメノウ乳鉢で粉砕して粉末状にした後、アルミナ坩堝内において昇温速度100℃/時で700℃まで加熱し、さらに700℃を4時間保持することにより、プロトン伝導性無機材料として酸化モリブデン担持酸化ガリウムを得た。酸化ガリウムのガリウム元素(Y)に対する酸化モリブデンのモリブデン元素(X)の元素比X/Yは0.1であった。プロトン伝導性無機材料の比表面積は下記表1に示す値であった。この酸化モリブデン担持酸化ガリウムについてX線回折測定を行ったところ、回折ピークはすべて酸化ガリウムに帰属されるものしか観測されず、酸化モリブデンは非晶質構造を有していることを確認することができた。
塩化タングステンWCl6を2.5g溶解したエタノール溶液300mlに酸化ガリウムGa2O3を6g加えた混合溶液を常に撹拌しながら80℃まで加熱し、100ml/時の蒸発速度で水を除去した。この後さらに100℃の乾燥器内で12時間保持して粉末を得た。この粉末をメノウ乳鉢で粉砕して粉末状にした後、アルミナ坩堝内において昇温速度100℃/時で700℃まで加熱し、さらに700℃を4時間保持することにより、プロトン伝導性無機材料として酸化タングステン担持酸化ガリウムを得た。酸化ガリウムのガリウム元素(Y)に対する酸化タングステンのタングステン元素(X)の元素比X/Yは0.1であった。プロトン伝導性無機材料の比表面積は下記表1に示す値であった。この酸化タングステン担持酸化ガリウムについてX線回折測定を行ったところ、回折ピークはすべて酸化ガリウムに帰属されるものしか観測されず、酸化タングステンは非晶質構造を有していることを確認することができた。
酸化ガリウム6gを酸化インジウム(In2O3)9gに変更した以外は実施例1と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化ホウ素担持酸化インジウムを得た。この酸化ホウ素担持酸化インジウムを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化インジウム(In2O3)9gに変更した以外は実施例2と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化バナジウム担持酸化インジウムを得た。この酸化バナジウム担持酸化インジウムを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化インジウム(In2O3)9gに変更した以外は実施例3と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化クロム担持酸化インジウムを得た。この酸化クロム担持酸化インジウムを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化インジウム(In2O3)9gに変更した以外は実施例4と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化モリブデン担持酸化インジウムを得た。この酸化モリブデン担持酸化インジウムを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
酸化ガリウム6gを酸化インジウム(In2O3)9gに変更した以外は実施例5と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化タングステン担持酸化インジウムを得た。この酸化タングステン担持酸化インジウムを用い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
酸化ガリウム6gを酸化ゲルマニウム(GeO2)6.5gに変更した以外は実施例1と同様の操作を行い、元素比X/Yが下記表1に示す値の酸化ホウ素担持酸化ゲルマニウムを得た。この酸化ホウ素担持酸化ゲルマニウムを用い、重量比S/Tが0.9で、膜厚149μmの電解質膜を得た。
酸化ガリウム6gを酸化ゲルマニウム(GeO2)6.5gに変更した以外は実施例2と同様の操作を行い、元素比X/Yが下記表1に示す値の酸化バナジウム担持酸化ゲルマニウムを得た。この酸化バナジウム担持酸化ゲルマニウムを用い、重量比S/Tが0.9で、膜厚148μmの電解質膜を得た。
酸化ガリウム6gを酸化ゲルマニウム(GeO2)6.5gに変更した以外は実施例3と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化クロム担持酸化ゲルマニウムを得た。この酸化クロム担持酸化ゲルマニウムを用い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
酸化ガリウム6gを酸化ゲルマニウム(GeO2)6.5gに変更した以外は実施例4と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化モリブデン担持酸化ゲルマニウムを得た。この酸化モリブデン担持酸化ゲルマニウムを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化ゲルマニウム(GeO2)6.5gに変更した以外は実施例5と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化タングステン担持酸化ゲルマニウムを得た。この酸化タングステン担持酸化ゲルマニウムを用い、重量比S/Tが0.9で、膜厚155μmの電解質膜を得た。
酸化ガリウム6gを酸化ニオブ(Nb2O5)8gに変更した以外は実施例1と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化ホウ素担持酸化ニオブを得た。この酸化ホウ素担持酸化ニオブを用い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
酸化ガリウム6gを酸化ニオブ(Nb2O5)8gに変更した以外は実施例2と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化バナジウム担持酸化ニオブを得た。この酸化バナジウム担持酸化ニオブを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
酸化ガリウム6gを酸化ニオブ(Nb2O5)8gに変更した以外は実施例3と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化クロム担持酸化ニオブを得た。この酸化クロム担持酸化ニオブを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化ニオブ(Nb2O5)8gに変更した以外は実施例4と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化モリブデン担持酸化ニオブを得た。これを用い、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
酸化ガリウム6gを酸化ニオブ(Nb2O5)8gに変更した以外は実施例5と同様の操作を行い、下記表1に示す元素比X/Yを有する酸化タングステン担持酸化ニオブを得た。この酸化タングステン担持酸化ニオブを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
酸化ガリウム6gを酸化ハフニウム(HfO2)13gに変更した以外は実施例1と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化ホウ素担持酸化ハフニウムを得た。この酸化ホウ素担持酸化ハフニウムを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化ハフニウム(HfO2)13gに変更した以外は実施例2と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化バナジウム担持酸化ハフニウムを得た。この酸化バナジウム担持酸化ハフニウムを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化ハフニウム(HfO2)13gに変更した以外は実施例3と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化クロム担持酸化ハフニウムを得た。この酸化クロム担持酸化ハフニウムを用い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
酸化ガリウム6gを酸化ハフニウム(HfO2)13gに変更した以外は実施例4と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化モリブデン担持酸化ハフニウムを得た。この酸化モリブデン担持酸化ハフニウムを用い、重量比S/Tが0.9で、膜厚155μmの電解質膜を得た。
酸化ガリウム6gを酸化ハフニウム(HfO2)13gに変更した以外は実施例5と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化タングステン担持酸化ハフニウムを得た。この酸化タングステン担持酸化ハフニウムを用い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
酸化ガリウム6gを酸化セリウム(CeO2)11gに変更した以外は実施例1と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化ホウ素担持酸化セリウムを得た。この酸化ホウ素担持酸化セリウムを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化セリウム(CeO2)11gに変更した以外は実施例2と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化バナジウム担持酸化セリウムを得た。この酸化バナジウム担持酸化セリウムを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
酸化ガリウム6gを酸化セリウム(CeO2)11gに変更した以外は実施例3と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化クロム担持酸化セリウムを得た。この酸化クロム担持酸化セリウムを用い、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
酸化ガリウム6gを酸化セリウム(CeO2)11gに変更した以外は実施例4と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化モリブデン担持酸化セリウムを得た。この酸化モリブデン担持酸化セリウムを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化セリウム(CeO2)11gに変更した以外は実施例5と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化タングステン担持酸化セリウムを得た。この酸化タングステン担持酸化セリウムを用い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
酸化ガリウム6gを酸化スズ(SnO2)9.5gに変更した以外は実施例1と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化ホウ素担持酸化スズを得た。この酸化ホウ素担持酸化スズを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化スズ(SnO2)9.5gに変更した以外は実施例2と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化バナジウム担持酸化スズを得た。この酸化バナジウム担持酸化スズを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化スズ(SnO2)9.5gに変更した以外は実施例3と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化クロム担持酸化スズを得た。この酸化クロム担持酸化スズを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化スズ(SnO2)9.5gに変更した以外は実施例4と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化モリブデン担持酸化スズを得た。この酸化モリブデン担持酸化スズを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化スズ(SnO2)9.5gに変更した以外は実施例5と同様の操作を行い、下記表2に示す元素比X/Yを有する酸化タングステン担持酸化スズを得た。この酸化タングステン担持酸化スズを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
5%PANのDMAc溶液を5%ポリベンズイミダゾール(PBI)のDMAc溶液に変更した以外は実施例17と同様の操作を行い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
5%PANのDMAc溶液を5%ポリスチレン(PS)のトルエン溶液に変更した以外は実施例17と同様の操作を行い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
電解質膜としてDupont社製のナフィオン117膜を用意した。
酸化タングステンWO32gと酸化ケイ素SiO25gの各粉末をメノウ乳鉢で十分に混合し、シリコン元素(Si)に対するタングステン元素(W)の元素比が0.1である酸化タングステンと酸化ケイ素の酸化物混合体を得た。
酸化ガリウム6gを酸化マグネシウム添加ジルコニア(11mol%MgO―89mol%ZrO2)7.8gに変更し、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が51m2/gである酸化モリブデン担持酸化マグネシウム添加ジルコニアを得た。これを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化カルシウム添加ジルコニア(11mol%CaO―89mol%ZrO2)7.9gに変更し、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が53m2/gである酸化モリブデン担持酸化カルシウム添加ジルコニアを得た。これを用い、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化ストロンチウム添加ジルコニア(11mol%SrO―89mol%ZrO2)8.3gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が52m2/gである酸化モリブデン担持酸化ストロンチウム添加ジルコニアを得た。これを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
酸化ガリウム6gを酸化バリウム添加ジルコニア(11mol%BaO―89mol%ZrO2)8.7gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が55m2/gである酸化モリブデン担持酸化バリウム添加ジルコニアを得た。これを用い、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化スカンジウム添加ジルコニア(8mol%Sc2O3―92mol%ZrO2)8.25gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が52m2/gである酸化モリブデン担持酸化スカンジウム添加ジルコニアを得た。これを用い、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
酸化ガリウム6gを酸化イットリウム添加ジルコニア(8mol%Y2O3―92mol%ZrO2)8.7gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が53m2/gである酸化モリブデン担持酸化イットリウム添加ジルコニアを得た。これを用い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
酸化ガリウム6gを酸化ランタン添加ジルコニア(8mol%La2O3―92mol%ZrO2)9.25gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が51m2/gである酸化モリブデン担持酸化ランタン添加ジルコニアを得た。これを使用し、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
酸化ガリウム6gを酸化サマリウム添加セリア(10mol%Sm2O3―90mol%CeO2)13.5gに、700℃での焼成を850℃に変更した以外は実施4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が52m2/gである酸化モリブデン担持酸化サマリウム添加セリアを得た。これを使用し、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
酸化ガリウム6gを酸化ガドリニウム添加セリア(10mol%Gd2O3―90mol%CeO2)13.6gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が54m2/gである酸化モリブデン担持酸化ガドリニウム添加セリアを得た。これを使用し、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
酸化ガリウム6gを酸化ジルコニウム(ZrO2)7.5gに、700℃での焼成を850℃に変更した以外は実施例4と同様の操作を行い、下記表3に示す元素比を有し、比表面積が53m2/gである酸化モリブデン担持ジルコニウムを得た。これを使用し、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
実施例1で得られたプロトン伝導性無機材料、白金・ルテニウム担持触媒、PAN及びDMAcを重量比で0.45/0.45/0.1/5.0の割合で混合したスラリーを調製し、32mm×32mmのカーボンクロス上に塗布してPt−Ruが4mg/cm2の触媒量を有する燃料極を作製した。
実施例47で得られた燃料極及び酸化剤極と、実施例1で得られた電解質膜を使用すること以外は、前述した実施例1で説明したのと同様にして燃料電池を作製した。
実施例1で得られたプロトン伝導性無機材料に白金・ルテニウム触媒を担持し、この触媒担持プロトン伝導性無機材料、カーボン、PAN及びDMAcを重量比で0.45/0.45/0.1/5.0の割合で混合したスラリーを調製し、32mm×32mmのカーボンクロス上に塗布して、Pt−Ruが4mg/cm2の触媒量の燃料極を作製した。
実施例1で説明したのと同様にして作製したプロトン伝導性無機材料粉末1gを5%ポリビニルアルコール(PVA)の水溶液2gに加え、室温で10分間撹拌し、スラリーを調製した。このスラリーを四フッ化エチレンペルフルオロアルコキシビニルエーテル共重合体(PFA)樹脂製シャーレに入れ、溶媒を大気中にて60℃、150℃と段階的に温度を上昇させて乾燥させ、電解質膜とした。重量比S/Tは0.9となり、電解質膜の膜厚は151μmだった。
実施例2で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚が152μmの電解質膜を得た。
実施例3で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚が151μmの電解質膜を得た。
実施例4で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚が155μmの電解質膜を得た。
実施例5で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚が151μmの電解質膜を得た。
実施例6で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚が152μmの電解質膜を得た。
実施例7で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
実施例8で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例9で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例10で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例11で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例12で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例13で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
実施例14で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例15で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
実施例16で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
実施例17で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例18で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
実施例19で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
実施例20で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例21で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例22で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
実施例23で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例24で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
実施例25で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例26で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例27で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
実施例28で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例29で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例30で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
実施例31で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
実施例32で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚155μmの電解質膜を得た。
実施例33で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚153μmの電解質膜を得た。
実施例34で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
実施例35で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例17で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いると共に、5%PVAの水溶液2gを5%PVAの水溶液1.5gと5%ポリアクリル酸(PA)の水溶液0.5gの混合溶液2gに変更した以外は、実施例49と同様の操作を行い、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
実施例17で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いると共に、5%PVAの水溶液2gを5%ポリエチレングリコール(PEG)の水溶液2gに変更した以外は、実施例49と同様の操作を行い、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例17で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いると共に、5%PVAの水溶液2gを5%Nylon6の蟻酸溶液2gに変更した以外は、実施例49と同様の操作を行い、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
酸化タングステンWO32gと酸化ケイ素SiO25gの各粉末をメノウ乳鉢で十分に混合し、シリコン元素に対するタングステン元素の元素比が0.1である酸化タングステンと酸化ケイ素の酸化物混合体を得た。
実施例38で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例39で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例40で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚154μmの電解質膜を得た。
実施例41で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例42で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
実施例43で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚155μmの電解質膜を得た。
実施例44で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚150μmの電解質膜を得た。
実施例45で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚155μmの電解質膜を得た。
実施例46で説明したのと同様にして作製したプロトン伝導性無機材料を用いること以外は実施例49で説明したのと同様にして、重量比S/Tが0.9で、膜厚152μmの電解質膜を得た。
比較例3で説明したのと同様にして作製したプロトン伝導性無機材料粉末を用いること以外は、実施例49で説明したのと同様にし、重量比S/Tが0.9で、膜厚151μmの電解質膜を得た。
実施例49で得られたプロトン伝導性無機材料、白金・ルテニウム担持触媒、PVA及び水を重量比で0.45/0.45/0.1/5.0の割合で混合したスラリーを調製し、32mm×32mmのカーボンクロス上に塗布してPt−Ruが4mg/cm2の触媒量の燃料極を作製した。
実施例96で得られた燃料極及び酸化剤極と、実施例49で得られた電解質膜を使用すること以外は、前述した実施例49で説明したのと同様にして燃料電池を作製した。
実施例49で得られたプロトン伝導性無機材料に白金・ルテニウム触媒を担持し、この触媒担持プロトン伝導性無機材料とカーボン、PVA、水を重量比で0.45/0.45/0.1/5.0の割合で混合したスラリーを調製し、32mm×32mmのカーボンクロス上に塗布して、Pt−Ruが4mg/cm2の触媒量の燃料極を作製した。
Claims (10)
- W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、
Sn、Hf、Ge、Ga、In、Ce及びNbよりなる群から選択される少なくとも一種類からなる元素Yを含有し、前記酸化物粒子が担持される酸化物担体と
を含有することを特徴とするプロトン伝導性無機材料。 - 前記酸化物粒子及び前記酸化物担体のうち少なくとも一方は、Y、Sc、La、Sm、Gd、Mg、Ca、SrまたはBaからなる元素Zを含有することを特徴とする請求項1記載のプロトン伝導性無機材料。
- W、Mo、Cr、B及びVよりなる群から選択される少なくとも一種類からなる元素Xを含有する酸化物粒子と、
Ti、Zr、Si及びAlよりなる群から選択される少なくとも一種類からなる元素Mを含有し、前記酸化物粒子が担持される酸化物担体と、
前記酸化物粒子及び前記酸化物担体のうち少なくとも一方に含有され、Y、Sc、La、Sm、Gd、Mg、Ca、SrまたはBaからなる元素Zと
を含有することを特徴とするプロトン伝導性無機材料。 - 前記元素Zの含有量は、0.01mol%以上40mol%以下であることを特徴とする請求項2または3記載のプロトン伝導性無機材料。
- Hammettの酸度関数H0が、H0<−11.93となる固体超強酸性を有することを特徴とする請求項1〜4いずれか1項記載のプロトン伝導性無機材料。
- 比表面積が10m2/g以上、2000m2/g以下の範囲であり、かつ前記元素Yに対する前記元素Xの比(X/Y)が0.0001以上、20以下の範囲であることを特徴とする請求項1記載のプロトン伝導性無機材料。
- 請求項1〜6いずれか1項記載のプロトン伝導性無機材料と、高分子材料とを含むことを特徴とする電解質膜。
- 請求項1〜6いずれか1項記載のプロトン伝導性無機材料と、酸化還元触媒と、高分子材料とを含有することを特徴とする電極。
- 燃料極と、酸化剤極と、前記燃料極及び前記酸化剤極の間に配置された電解質膜とを具備する膜電極複合体であって、
前記燃料極、前記酸化剤極及び前記電解質膜のうちの少なくともいずれかが、請求項1〜6いずれか1項記載のプロトン伝導性無機材料を含むことを特徴とする膜電極複合体。 - 燃料極と、酸化剤極と、前記燃料極及び前記酸化剤極の間に配置された電解質膜とを具備する燃料電池であって、
前記燃料極、前記酸化剤極及び前記電解質膜のうちの少なくともいずれかが、請求項1〜6いずれか1項記載のプロトン伝導性無機材料を含むことを特徴とする燃料電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005359300A JP4496160B2 (ja) | 2005-12-13 | 2005-12-13 | プロトン伝導性無機材料、電解質膜、電極、膜電極複合体及び燃料電池 |
US11/389,088 US7887940B2 (en) | 2005-12-13 | 2006-03-27 | Electrolyte membrane, electrode, and fuel cell |
CNB2006101625123A CN100541890C (zh) | 2005-12-13 | 2006-11-24 | 电解质膜、电极以及燃料电池 |
KR1020060126150A KR100786423B1 (ko) | 2005-12-13 | 2006-12-12 | 전해질막, 전극 및 연료 전지 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005359300A JP4496160B2 (ja) | 2005-12-13 | 2005-12-13 | プロトン伝導性無機材料、電解質膜、電極、膜電極複合体及び燃料電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007165098A JP2007165098A (ja) | 2007-06-28 |
JP4496160B2 true JP4496160B2 (ja) | 2010-07-07 |
Family
ID=38139760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005359300A Expired - Fee Related JP4496160B2 (ja) | 2005-12-13 | 2005-12-13 | プロトン伝導性無機材料、電解質膜、電極、膜電極複合体及び燃料電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7887940B2 (ja) |
JP (1) | JP4496160B2 (ja) |
KR (1) | KR100786423B1 (ja) |
CN (1) | CN100541890C (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4649379B2 (ja) * | 2006-07-31 | 2011-03-09 | 株式会社東芝 | 燃料電池用電極、膜電極複合体および燃料電池、ならびにそれらの製造法 |
JP2009076359A (ja) * | 2007-09-21 | 2009-04-09 | Toshiba Corp | 燃料電池用担持触媒、ならびにそれを用いた電極および燃料電池 |
JP5283913B2 (ja) * | 2008-01-28 | 2013-09-04 | 株式会社東芝 | 燃料電池に用いられるプロトン伝導性無機材料、およびそれを用いた燃料電池用アノード |
JP5367313B2 (ja) * | 2008-06-30 | 2013-12-11 | 株式会社東芝 | 燃料電池用カソード |
JP6148663B2 (ja) * | 2011-03-29 | 2017-06-14 | カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ | 膜電極接合体(MEAs)を作成する改良プロセス |
CN107991364A (zh) * | 2016-10-27 | 2018-05-04 | 中国科学院烟台海岸带研究所 | 一种固态离子选择性电极及其制备和应用 |
JP6685961B2 (ja) * | 2017-03-23 | 2020-04-22 | 株式会社東芝 | 水電解用の積層電解質膜、膜電極複合体、水電解用セル、スタックおよび水電解装置 |
KR102107903B1 (ko) | 2017-08-17 | 2020-05-07 | 주식회사 엘지화학 | 고분자 전해질막의 후처리 방법 |
KR102714433B1 (ko) * | 2017-12-27 | 2024-10-07 | 현대자동차주식회사 | 내구성이 향상된 연료전지용 막-전극 접합체 및 이를 포함하는 고분자 전해질막 연료전지 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000285933A (ja) * | 1999-03-31 | 2000-10-13 | Toshiba Corp | 燃料電池 |
JP2003151580A (ja) * | 2001-11-15 | 2003-05-23 | Catalysts & Chem Ind Co Ltd | 無機電解質膜および無機電解質膜型燃料電池 |
JP2006032287A (ja) * | 2004-07-21 | 2006-02-02 | Toshiba Corp | プロトン伝導性固体電解質、燃料電池用電極、膜電極複合体及び燃料電池 |
JP2007095585A (ja) * | 2005-09-29 | 2007-04-12 | Toshiba Corp | 燃料電池用電極、膜電極複合体及び燃料電池 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4925580B1 (ja) * | 1968-06-28 | 1974-07-02 | ||
US4822699A (en) * | 1982-12-20 | 1989-04-18 | Engelhard Corporation | Electrocatalyst and fuel cell electrode using the same |
DE69200983T2 (de) * | 1991-03-20 | 1995-06-08 | Mitsubishi Gas Chemical Co | Verfahren zur Herstellung von Wasserstoffsuperoxyd. |
KR100210642B1 (ko) * | 1994-05-31 | 1999-07-15 | 겐지 아이다 | 메타크릴산 제조용촉매 및 이 촉매를 이용한 메타크릴산의 제조방법 |
US5547551A (en) * | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
US6332964B1 (en) * | 1996-12-31 | 2001-12-25 | Praxair Technology, Inc. | Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating |
US6059943A (en) * | 1997-07-30 | 2000-05-09 | Lynntech, Inc. | Composite membrane suitable for use in electrochemical devices |
US6127432A (en) * | 1998-01-29 | 2000-10-03 | Union Carbide Chemicals & Plastics Technology Corporation | Processes for preparing oxygenates and catalysts therefor |
IT1301999B1 (it) * | 1998-08-05 | 2000-07-20 | Enichem Spa | Catalizzatore, processo per la produzione di acqua ossigenata esuo impiego in processi di ossidazione. |
US6638659B1 (en) * | 1999-04-30 | 2003-10-28 | University Of Connecticut | Membrane electrode assemblies using ionic composite membranes |
DE10061959A1 (de) | 2000-12-13 | 2002-06-20 | Creavis Tech & Innovation Gmbh | Kationen-/protonenleitende, mit einer ionischen Flüssigkeit infiltrierte keramische Membran, Verfahren zu deren Herstellung und die Verwendung der Membran |
JP2002216537A (ja) * | 2001-01-16 | 2002-08-02 | Kansai Research Institute | プロトン伝導性固体電解質及びプロトン伝導性固体電解質シート |
US20020180094A1 (en) * | 2001-06-01 | 2002-12-05 | Gough Jeffrey John | Hydrophobic fuel cell component |
US8282811B2 (en) * | 2001-08-29 | 2012-10-09 | Giner Electrochemical Systems, Llc | Method and system for producing high-pressure hydrogen |
KR100437267B1 (ko) | 2001-10-17 | 2004-06-23 | 학교법인 서강대학교 | 연료전지용 고분자 전해질 막 및 이의 제조방법 |
JP2003142124A (ja) | 2001-10-31 | 2003-05-16 | Hitachi Ltd | 電解質膜およびそれを用いた固体高分子型燃料電池 |
US6899744B2 (en) * | 2002-03-05 | 2005-05-31 | Eltron Research, Inc. | Hydrogen transport membranes |
ITPG20020015A1 (it) | 2002-03-22 | 2003-09-22 | Giulio Alberti | Un metodo innovativo per la preparazione di membrane nanopolimeriche a conduzione protonica per usi in celle a combustibile o in reattori ca |
JP2004079244A (ja) * | 2002-08-12 | 2004-03-11 | Toshiba Corp | 燃料電池用触媒及び燃料電池 |
JP3891484B2 (ja) | 2002-09-05 | 2007-03-14 | 株式会社ノリタケカンパニーリミテド | 電解質膜およびその膜を備えた燃料電池 |
JP3950833B2 (ja) | 2002-09-25 | 2007-08-01 | 日本特殊陶業株式会社 | アンモニアセンサ |
JP2004158261A (ja) | 2002-11-05 | 2004-06-03 | Honda Motor Co Ltd | プロトン伝導性材料、膜・電極接合体及び燃料電池 |
JP4041422B2 (ja) * | 2003-03-26 | 2008-01-30 | ニッポン高度紙工業株式会社 | 固体電解質及び該固体電解質を使用した電気化学システム |
JP3997304B2 (ja) | 2003-08-22 | 2007-10-24 | 独立行政法人産業技術総合研究所 | 固体電解質膜及びその製法並びに該固体電解質膜を用いた燃料電池 |
JP4747492B2 (ja) * | 2003-11-25 | 2011-08-17 | 富士ゼロックス株式会社 | 電池及び発電方法 |
WO2005057700A1 (en) | 2003-12-10 | 2005-06-23 | Sungkyunkwan University | Porous and continuous composite membrane and method of preparing the same |
JP2005285413A (ja) | 2004-03-29 | 2005-10-13 | Konica Minolta Holdings Inc | プロトン伝導性膜、プロトン伝導性膜の製造方法、及びプロトン伝導性膜を用いた固体高分子形燃料電池 |
JP2005332800A (ja) | 2004-04-23 | 2005-12-02 | Sekisui Chem Co Ltd | 直接メタノール型燃料電池用プロトン伝導性膜 |
US8349521B2 (en) * | 2004-07-21 | 2013-01-08 | Kabushiki Kaisha Toshiba | Membrane electrode assembly |
US20060078765A1 (en) * | 2004-10-12 | 2006-04-13 | Laixia Yang | Nano-structured ion-conducting inorganic membranes for fuel cell applications |
JP2006134603A (ja) | 2004-11-02 | 2006-05-25 | Bridgestone Corp | 触媒構造体及びそれを用いた固体高分子型燃料電池用膜電極接合体 |
-
2005
- 2005-12-13 JP JP2005359300A patent/JP4496160B2/ja not_active Expired - Fee Related
-
2006
- 2006-03-27 US US11/389,088 patent/US7887940B2/en not_active Expired - Fee Related
- 2006-11-24 CN CNB2006101625123A patent/CN100541890C/zh not_active Expired - Fee Related
- 2006-12-12 KR KR1020060126150A patent/KR100786423B1/ko not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000285933A (ja) * | 1999-03-31 | 2000-10-13 | Toshiba Corp | 燃料電池 |
JP2003151580A (ja) * | 2001-11-15 | 2003-05-23 | Catalysts & Chem Ind Co Ltd | 無機電解質膜および無機電解質膜型燃料電池 |
JP2006032287A (ja) * | 2004-07-21 | 2006-02-02 | Toshiba Corp | プロトン伝導性固体電解質、燃料電池用電極、膜電極複合体及び燃料電池 |
JP2007095585A (ja) * | 2005-09-29 | 2007-04-12 | Toshiba Corp | 燃料電池用電極、膜電極複合体及び燃料電池 |
Also Published As
Publication number | Publication date |
---|---|
CN1983696A (zh) | 2007-06-20 |
JP2007165098A (ja) | 2007-06-28 |
CN100541890C (zh) | 2009-09-16 |
KR100786423B1 (ko) | 2007-12-17 |
US7887940B2 (en) | 2011-02-15 |
US20070134533A1 (en) | 2007-06-14 |
KR20070062925A (ko) | 2007-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4649379B2 (ja) | 燃料電池用電極、膜電極複合体および燃料電池、ならびにそれらの製造法 | |
JP4719015B2 (ja) | 電解質膜、膜電極複合体及び燃料電池 | |
US8318382B2 (en) | Fuel cell electrode containing proton conductive inorganic oxide | |
KR102076675B1 (ko) | 연료에 사용하기 위한 박막 촉매 물질 | |
KR100786423B1 (ko) | 전해질막, 전극 및 연료 전지 | |
KR100639284B1 (ko) | 양성자 전도성 고체 전해질, 양성자 전도성 막, 연료전지용 전극, 막 전극 조립품 및 연료 전지 | |
CN106415905A (zh) | 膜电极组件 | |
JP4625658B2 (ja) | 燃料電池用電極、膜電極複合体及び燃料電池 | |
CN101682044B (zh) | 固体高分子型燃料电池用高分子电解质膜的制造方法、固体高分子型燃料电池用膜电极组装体及固体高分子型燃料电池 | |
Shao et al. | Fuel cells: Materials needs and advances | |
Chen et al. | Surface Chemistry Modulation of BaGd0. 8La0. 2Co2O6− δ As Active Air Electrode for Solid Oxide Cells | |
Birss et al. | Electrochemical energy production using fuel cell technologies | |
JP4496119B2 (ja) | 燃料電池用プロトン伝導性膜、膜電極複合体及び燃料電池 | |
JP5039155B2 (ja) | 燃料電池用プロトン伝導性膜、膜電極複合体及び燃料電池 | |
US9431663B2 (en) | Method for the direct oxidation and/or internal reforming of ethanol, solid oxide fuel cell for direct oxidation and/or internal reforming of ethanol, catalyst and multifunctional electrocatalytic anode for direct oxidation and/or internal | |
JP2010010033A (ja) | プロトン伝導性膜、それを用いた膜電極複合体および燃料電池 | |
KR20240170242A (ko) | 양극 복합체, 이의 제조방법 및 이를 포함하는 전기화학 셀 | |
KR20230082576A (ko) | 연료 전지용 강화 복합막 및 이를 포함하는 연료 전지용 막-전극 어셈블리 | |
CN104203408B (zh) | 用于燃料的薄膜催化材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100316 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100412 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |