CN107078327B - 膜 - Google Patents
膜 Download PDFInfo
- Publication number
- CN107078327B CN107078327B CN201580041972.8A CN201580041972A CN107078327B CN 107078327 B CN107078327 B CN 107078327B CN 201580041972 A CN201580041972 A CN 201580041972A CN 107078327 B CN107078327 B CN 107078327B
- Authority
- CN
- China
- Prior art keywords
- electrolyte membrane
- membrane
- nanofibers
- porous
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1214—Chemically bonded layers, e.g. cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/19—Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/20—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
- C08J5/2262—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2268—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds, and by reactions not involving this type of bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/106—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/1062—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/39—Electrospinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/46—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/14—Membrane materials having negatively charged functional groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/26—Electrical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Metallurgy (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Inert Electrodes (AREA)
- Nonwoven Fabrics (AREA)
Abstract
公开了一种电解质膜,其包含:(i)纳米纤维的多孔团簇,其中该纳米纤维由非离子传导性杂环类聚合物组成,该杂环类聚合物包含碱性官能团,并且可溶于有机溶剂;和(ii)离子传导性聚合物,其是部分或完全氟化的磺酸聚合物;其中该多孔团簇基本上完全浸渍有离子传导性聚合物,和其中该电解质膜中的该多孔团簇的厚度分布在电解质膜的至少80%厚度。这样的膜可用于质子交换膜燃料电池或电解槽中。
Description
发明领域
本发明涉及一种电解质膜和它在电化学装置中的用途,特别是它 在质子交换膜燃料电池中的用途。
发明背景
燃料电池是一种电化学电池,其包含被电解质隔开的两个电极。 将燃料例如氢气,醇如甲醇或乙醇,或者甲酸供给到阳极,并且将氧 化剂例如氧气或空气供给到阴极。在电极处发生电化学反应,并且将 燃料和氧化剂的化学能转化成电能和热。使用电催化剂来促进阳极处 燃料的电化学氧化和阴极处氧气的电化学还原。
燃料电池通常根据所用电解质的性质来分类。通常电解质是固体 聚合物膜,其中该膜是电子绝缘的,但是是离子传导性的。在质子交 换膜燃料电池(PEMFC)中,该膜是质子传导性的,并且在阳极处产生 的质子跨过膜传输到阴极,在那里它们与氧合并来形成水。
PEMFC的主要部件是膜电极组件(MEA),其基本上由五层构成。 中心层是聚合物离子传导性膜。在离子传导性膜的任一侧上存在着电 催化剂层,其含有设计用于具体的电解反应的电催化剂。最后,与每 个电催化剂层相邻的是气体扩散层,其是多孔的和导电的,并且允许 反应物达到电催化剂层和传导电化学反应产生的电流。
PEMFC中所用的常规的离子传导性膜通常由磺化的全氟化的聚 合物材料(经常统称为全氟化的磺酸(PFSA)离聚物)形成。作为PFSA 型离聚物的替代,可以使用基于部分氟化的或非氟化的烃磺化的或膦 酸化的聚合物的离子传导性膜。PEMFC中的最新发展要求膜更薄 (<50μm)和离子交换能力(IEC)更高或当量(EW)更低,这是由于所获得 的优点(改进的离子传导性、改进的水传输等),和因此为了提供增加 抵抗过早失效所需的机械性能,在膜内嵌入增强物,典型地是发泡聚 四氟乙烯(ePTFE)。
虽然与相同厚度的未增强的膜相比,这样增强的膜经常具有较低 的质子传导率,但是机械性能的改进使得能够使用较低电阻的较薄的 膜。
还已经提出了其他类型的增强剂,如WO2011/149732中公开的。
发明内容
虽然增强的膜例如上文所述的那些允许使用较薄的膜,同时保持 机械强度,但是仍然存在着不足。具体地,在实际操作中可以看到局 限,其中湿度条件会在短时间内从相当高的水平(例如在冷条件启动) 到相当干燥的水平(在最大额定功率密度操作)发生相当显著的变化, 其中膜会降解到比可接受更高的水平。在设计来模拟和加速这种操作 的加速应力测试中,湿/干循环加速应力测试引起膜的溶胀/消胀,以 使得可以更快速地观察到这些膜降解效应。
本发明的一个目标是提供一种改进的电解质膜,其适用于 PEMFC和PEM电解槽。
本发明提供一种电解质膜,其包含:
(i)纳米纤维的多孔团簇(mat),其中该纳米纤维由非离子传导性杂 环类聚合物组成,该杂环类聚合物包含碱性官能团,并且可溶于有机 溶剂;和
(ii)离子传导性聚合物,其是部分或完全氟化的磺酸聚合物;
其中该多孔团簇基本上完全浸渍有离子传导性聚合物,和其中该 电解质膜中的该多孔团簇的厚度分布在该电解质膜的至少80%厚度。
附图说明
图1:本发明的电解质膜的示意图。
图2:实施例的电纺聚苯并咪唑(PBI)纳米纤维团簇和纤维尺寸分 布的SEM图像。
图3:使用溶剂鞘对于PBI纤维尺寸分布的影响。
图4:实施例1的膜的横截面SEM。
图5:在85℃,13%RH,对MEA 1和MEA 3的OCV固定分 测试(hold test)。
图6:在OCV,对MEA 1、MEA 2和MEA 3的湿-干循环。
图7:MEA 4、MEA 5和MEA 6的电池组耐久性测试过程中的 表现。
具体实施方式
现在将阐述本发明优选的和/或任选的特征。本发明的任何方面可 以与本发明的任何其他方面相组合,除非上下文另有要求。任何方面 的任何优选的或任选的特征可以单独地或组合地与本发明的任何方面 相结合,除非上下文另有要求。
本发明提供一种电解质膜,其包含纳米纤维的多孔团簇,该多孔 团簇基本上完全浸渍有离子传导性聚合物。
该多孔团簇为电解质膜提供机械增强。
该多孔团簇由包含碱性官能团的非离子传导性杂环类聚合物的缠 绕的纳米纤维形成。该杂环类聚合物可溶于有机溶,和特别是该聚合 物可溶于N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二甲基乙酰 胺(DMAc)或二甲基亚砜(DMSO),适宜地是DMAc或DMSO,优选DMAc。
该纳米纤维适宜的平均直径是100-400nm,适宜地是100-300nm, 优选150-250nm。
该纳米纤维的长度对本发明不重要,但是每个纳米纤维应当足够 长(例如几厘米)来与一种或多种其他纳米纤维或与其自身进行缠绕。
该纳米纤维适宜地是纺成的纳米纤维,即该纳米纤维使用纺丝技 术形成。适宜的纺丝技术的例子包括但不限于电纺和强制纺丝。
杂环聚合物,优选碱性杂环聚合物,包括聚苯并咪唑、聚(吡啶)、 聚(嘧啶)、聚苯并噻唑、聚噁二唑、聚喹啉、聚喹喔啉、聚噻二唑、 聚三唑、聚噁唑和聚噻唑及其衍生物。适宜地,该聚合物是官能化的 聚唑或两性离子聚唑,例如聚苯并咪唑、聚三唑、聚噻唑和聚二噻唑 和它们的衍生物;最适宜地是聚苯并咪唑。
适宜地,该纳米纤维由单个杂环类聚合物形成,并且不是两种或 更多种杂环类聚合物的共混物。
该杂环类聚合物也可以是交联的;即,一个聚合物链键合到另一 聚合物链。交联可以改进电解质膜的机械稳定性。
该杂环类聚合物还可以具有固有的自由基清除性能。这样的性能 在电解质膜中将是有益的,并且提供了对于化学品降解机理例如来自 于过氧自由基物质的损坏的保护。这因此也将用于提供更耐久的膜。 使用具有这样的性能的杂环类聚合物也将消除在电解质膜中添加另外 的具有自由基清除性能的材料或过氧化氢分解催化剂例如铈阳离子、 二氧化铈、二氧化锰或其他添加剂的需要,因此避免了与引入这些材 料有关的缺陷。
该多孔团簇具有开口结构,和孔隙率是70-98%,适宜地80-95%, 适宜地85-95%,优选90-95%。孔隙率由多孔团簇的体积质量(由它的 几何形状尺寸和它的质量来确定)与已知的聚合物密度之比来确定。
该多孔团簇的平均纸张定量是1g/m2-7g/m2,适宜地 1.5g/m2-3g/m2。
电解质膜中的多孔团簇适宜的最大厚度是50μm,30μm,适宜地 25μm,优选20μm。
电解质膜中的多孔团簇适宜的最小厚度是5μm,适宜地10μm。
为了形成多孔团簇,适宜地通过纺丝技术,在适宜的基底或表面上形成纳米纤维。例如,该纳米纤维可以使用电纺来形成:使用注射器泵通过针来推动包含在适宜溶剂中的杂环类聚合物的电纺溶液,并且向该针施加高电压。在平移和旋转移动的接地旋转鼓收集器上收集电纺纳米纤维的团簇,该收集器设置为与该针有一定距离,例如距离该针约10-15cm。通过控制溶液参数例如浓度来获得纤维形态,而团簇厚度和均匀度通过沉积时间和收集器旋转/平移速度来控制。
该多孔团簇不经过任何另外的加工,例如任何致密化加工如压延 或焊接等。
该离子传导性聚合物适宜地是质子传导性聚合物,特别是部分或 完全氟化的磺酸聚合物。合适的质子传导性聚合物的例子包括全氟磺 酸离聚物(例如(E.I.DuPont de Nemours and Co.)、 (Asahi Kasei)、(SolvaySpecialty Polymer)、(Asahi Glass Co.)。
该多孔团簇基本上完全浸渍有离子传导性聚合物来形成电解质 膜。用“基本上完全浸渍”表示至少80%,适宜地至少90%,适宜地至 少95%,和理想地100%的多孔团簇孔用离子传导性聚合物填充。
适宜地,过量的离子传导性聚合物存在于该电解质膜的两个表面 上,来帮助粘附到催化剂层。
该多孔团簇可以用离子传导性聚合物通过以下方法来浸渍:
将离子传导性聚合物层(在溶液/分散体中)流延到载体材料上。在 该离子传导性聚合物层仍然潮湿时,将多孔纳米纤维团簇铺入该湿层 中,并且该离子传导性聚合物浸渍到多孔团簇的一个面中。将另一离 子传导性聚合物层施用到该多孔团簇的第二面,并且从该第二面浸入 该多孔团簇中。将经浸渍的多孔团簇干燥和适当退火来形成电解质膜。
该离子传导性聚合物的溶液/分散体可以包含另外的组分,例如短 纳米纤维,例如1-50μm的短纳米纤维。
用离子传导性聚合物浸渍多孔团簇的替代方法将是本领域技术人 员已知的。
在本发明的最终电解质膜中,离子传导性聚合物:纳米纤维的重量 比适宜地大于70:30,优选大于90:10。适宜地,离子传导性聚合物: 纳米纤维之比小于98:2。在本文上下文中,纳米纤维指的是多孔团簇 中的纳米纤维。
电解质膜中多孔团簇的厚度适宜地分布在最终电解质膜的至少 80%厚度,适宜地至少85%厚度,最适宜地至少90%厚度。该多孔团 簇分布在膜的厚度,以使得电解质膜的厚度和多孔团簇的厚度基本相 等;但是,实际上,电解质膜的厚度可以稍厚于多孔团簇,以使得多 孔团簇的厚度是电解质膜的厚度的至多99%,例如95%。
具有分布在电解质膜的至少80%厚度的多孔团簇增强了最终电 解质膜的稳定(机械和化学)。
本发明的电解质膜可以包含多于一个的分布在电解质膜的至少 80%厚度的多孔团簇,例如两个多孔团簇。
图1显示了本发明的电解质膜的示意图。
本发明还提供了一种催化的电解质膜,其包含催化剂层和本发明 的电解质膜。
该催化剂层包含一种或多种电催化剂。该一种或多种电催化剂独 立地是磨细的未负载的金属粉末,或负载的催化剂,其中小纳米颗粒 分散在导电微粒碳载体上。该电催化剂金属适宜地选自
(i)铂族金属(铂、钯、铑、钌、铱和锇),
(ii)金或银,
(iii)贱金属,
或者包含这些金属或它们的氧化物中的一种或多种的合金或混合 物。优选的电催化剂金属是铂,其可以与其他贵金属或贱金属形成合 金。如果该电催化剂是负载的催化剂,则金属颗粒在碳载体材料上的 负载量适宜地是形成的电催化剂的重量的10-90重量%,优选15-75 重量%。
所用的具体的电催化剂将取决于打算催化的反应,并且它的选择 在本领域技术人员的能力范围内。
该催化剂层适宜地作为墨来施用到电解质膜的第一和/或第二面, 该墨为有机的或含水的(但是优选为含水的)。该墨可以适宜地包含其 他组分,例如EP0731520中所述的离子传导性聚合物,包含其来改进 层内的离子传导性。可选地,该催化剂层可以通过预先制备的催化剂 层的贴花转印来施用。
该催化剂层可以进一步包含另外的组分。这样的另外的组分包括 但不限于促进析氧和因此将有益于电池反转情形和高电势偏移的催化 剂,或者过氧化氢分解催化剂。适于包含在催化剂层中的这样的催化 剂和任何其他添加剂的例子将是本领域技术人员已知的。
本发明进一步提供一种膜电极组件,其包含本发明的电解质膜和 在该电解质膜的第一和/或第二面上的气体扩散电极。
本发明进一步提供一种膜电极组件,其包含本发明的催化的电解 质膜和至少一个催化剂层上存在的气体扩散层。
该膜电极组件可以通过许多方式构建,包括但不限于:
(i)本发明的电解质膜可以夹入两个气体扩散电极(一个阳极和一 个阴极)之间;
(ii)一侧上具有催化剂层的本发明的催化的电解质膜可以夹入气 体扩散层和气体扩散电极之间,该气体扩散层与该催化的电解质膜具 有催化剂组分的侧接触;或者
(iii)两侧都具有催化剂组分的本发明的催化的电解质膜可以夹入 两个气体扩散层之间。
阳极和阴极气体扩散层适宜地基于常规的气体扩散基底。典型的 基底包括非织造纸或网,其包含碳纤维和热固性树脂粘合剂的网络(例 如可获自日本Toray IndustriesInc.的TGP-H系列碳纤维纸,或者可 获自德国Freudenberg FCCT KG的H2315系列,或者可获自德国 SGL Technologies GmbH的系列,或者可获自Ballard PowerSystems Inc.的系列,或者织造碳布。在引入MEA之前,碳 纸、网或布可以进行另外的处理,来使得它更可润湿(亲水性)或更可 阻湿(疏水性)。任何处理的性质将取决于燃料电池的类型和将使用的 操作条件。基底可以经由浸渍从液体悬浮液引入材料例如无定形炭黑 而变得更可润湿,或者可以通过用聚合物例如PTFE或聚氟乙烯丙烯 (FEP)的胶体悬浮液浸渍基底的孔结构,随后干燥和加热到高于该聚合 物熔点而变得更疏水。对于应用例如PEMFC来说,微多孔层也可以 施用到气体扩散基底将与电催化剂层接触的面。该微多孔层典型地包 含炭黑和聚合物例如聚四氟乙烯(PTFE)的混合物。
本发明进一步提供一种燃料电池,其包含上述的电解质膜、催化 的电解质膜或膜电极组件。在一个实施方案中,该燃料电池是 PEMFC。
除了用于PEMFC中之外,本发明的电解质膜将用于需要这样的 离子传导性聚合物膜的任何电化学装置,例如电解槽中。
将进一步参考以下实施例来描述本发明,其是说明性的,并非限 制本发明。
实施例1
膜制作
获自PBI Performance Products Inc.的聚[2,2'-(间亚苯基)-5,5'-二 苯并咪唑](PBI)使用以下参数,从13%的二甲基乙酰胺(DMAc)溶液中 电纺:15kV施加电压,0.12mL/h流速;针收集器距离10cm;鼓收集 器转速800rpm;和平移速度10mm/s。将电纺团簇从鼓除去。
PBI电纺团簇包含无规取向的纳米纤维,其平均纤维直径是 200nm,具有140-280nm的相对窄的纤维直径分布,并且长度是几十 微米。图2提供了电纺团簇的扫描电镜(SEM)图,其显示了纤维是无 规取向的。图2中还显示了显示纤维直径分布的图。
PBI纳米纤维的厚度可以使用同轴针电纺来进一步控制。芯溶液 是PBI溶液,和鞘溶液是DMAc。通过使用溶剂鞘,延迟了电纺过程 中发生的纤维的蒸发和干燥,其导致聚合物纳米纤维更大的拉伸,和 最终电纺团簇中更细的纳米纤维。使用2/1的芯/鞘流速比,平均纤维 直径是120μm(范围60-180nm)(参见图3)。
电纺PBI团簇的厚度是10μm,孔隙率是83%,和定量是2.27g/m2。
将来自于Solvay Specialty Polymers的当量700g/mol的 PFSA分散体(13%w/v的60/35/5的H2O/1-丙醇/DMAc的 溶液)使用刮刀片方法流延到特氟龙板上。该PBI电纺团簇然后直接置 于流延PFSA分散体的顶上。目视确认流延PFSA分散体向纳米纤维 团簇内的浸渍,并且PFSA分散体的第二层然后流延到PBI电纺团簇 的顶上。整体膜厚度通过刮刀片的栅厚度来控制。该流延电解质膜首 先在室温干燥,随后在80℃干燥一整夜,然后在升高的温度(160℃) 热压(25kg/cm2)。
在除去溶剂和热压后,该电解质膜的名义厚度是30μm,和该电 纺PBI团簇在电解质膜的约85%厚度延伸。电解质膜中PFSA:纳米纤 维的重量比是90:10。
图4给出了电解质膜的SEM图像。横截面SEM通过在液氮中冻 裂样品来进行。图4显示了该电纺团簇允许纤维在浸渍过程中的某些 位移,导致在该电解质膜的整个横截面中存在着纤维。这具有降低质 子传导的阻力的益处,因为在该电解质膜内不存在PFSA不足的区域。 它还允许电解质膜更大的挠性来容纳溶胀导致的机械应力。在冻裂之 后在纳米纤维和PFSA基质之间不可见的分离,这显示了电纺团簇和 PFSA之间优异的界面。在该电解质膜中,纳米纤维表现出完全浸入 PFSA中,并且二者之间的界面不可区分,这表明PFSA到纳米纤维 表面的强连接。
实施例2(对比例)
将聚醚砜(PES)的20重量%的DMAc/丙酮溶液在25℃在旋转和 平移鼓收集器上电纺。收集纳米纤维团簇,并且在140℃压制。将来 自于Solvay Specialty Polymers的当量700g/mol的PFSA 分散体(13%w/v的70/30的H2O/1-丙醇溶液)使用刮刀片方法流延到特 氟龙板上。该PES电纺团簇然后直接置于流延PFSA分散体的顶上。 PFSA分散体的第二层然后流延到PES电纺团簇的顶上。整体膜厚度 通过刮刀片的栅厚度来控制。该流延电解质膜在50℃,然后在120℃ 和然后在145℃干燥。
实施例3(对比例)
实施例4(对比例)
在80℃测量膜的溶胀、吸水量和质子传导率测量。
平面内质子传导率在尺寸约25×5mm的样品上,使用Bekktech 4 点探针装置和具有受控温度和相对湿度(RH)的测量室来进行。阻抗测 量在80℃和110℃,在50-95%的RH范围进行。在110℃的测量在 206kPa的室压力进行。结果在表1中作为三次测量的平均值给出。膜 吸水量通过在80℃的水中浸泡一整夜之前和之后,称重尺寸3×3cm 的样品(使用模板来切割)来测定。膜尺寸溶胀在相同的样品上,通过 测量浸入水中之前和之后的样品尺寸来测定。
表1
实施例1的膜在水中的溶胀百分率远小于实施例3和4的膜,其 据信是由于电纺PBI团簇和PFSA离聚物之间的离子相互作用。实施 例1的质子传导率高于实施例3,并且与实施例4相当。
机械拉伸强度使用弹性模量和断裂伸长率来测定。机械拉伸测量 在Zwick RoellZ1.0仪器上,使用装备有受控的湿度/温度腔室和 TestXpert V11.0软件的200N静态负载室进行。测试在100×5mm条 的样品上,使用1mm/s的牵引速率和10mm的夹具距离来进行。对于 在升高的温度/RH的测量来说,将样品在所需条件下保持一整夜,然 后安装和在样品腔室中平衡1h,并且在测量之前预先拉伸,来考虑膜 的任何溶胀。结果在表2中给出。
表2
实施例1的膜的弹性模量和屈服点全部明显高于实施例3和4的 膜,这证实了实施例1的膜更坚硬和更坚固,具有较低的断裂伸长率。
MEA制作
MEA 1:使用模板将实施例1的膜和电极切割到52×52mm,并且 使用子团簇圈来限定25cm2的作用区域。电极是标准电极,具有在阳 极处0.2mg/cm2和在阴极处0.4mg/cm2的铂催化剂负载量。MEA通过 在150℃热压5分钟来制作。
MEA 2(对比例):MEA 2使用实施例2的膜,依照用于MEA 1 所述的制作方法来制备。
MEA 3(对比例):MEA 3使用实施例3的膜,依照用于MEA 1 所述的制作方法来制备。
MEA 4:MEA 4以类似于上述用于MEA 1所述的方式,使用实 施例1的膜来制备,除了作用区域是45cm2,并且MEA通过在170℃ 热压2分钟来制作。
MEA 5(对比例):MEA 5是使用实施例3的膜,依照用于MEA 4 所述的制作方法来制备。
MEA 6(对比例):MEA 6使用实施例4的膜,依照用于MEA 4 所述的制作方法来制备。
耐久性测试
开路电压(OCV)固定分加速应力测试:
OCV固定分测试在以下条件下进行,来评估膜的耐久性:将膜电 极组件在85℃和13%RH保持在开路电压,并且经时监控电池电压 的降低。如图5中可见,MEA 3显示OCV明显降低,而MEA 1显示 OCV明显更少的降低。
湿-干循环加速应力测试:
湿-干循环测试在80℃在OCV,通过从0%RH(10分钟)循环到 90℃露点(10分钟)来进行,以进一步评估膜对于由水合/脱水引起的 体积变化的耐久性。图6显示了MEA 1明显比MEA 2和MEA 3稳 定。在150小时后,MEA 2和MEA 3表现出OCV延迟率的增加,而 MEA 1保持稳定,并且表现出与MEA 2和MEA 3相比明显降低的延 迟率,其显示了纳米纤维增强提供了抗由水合和脱水的体积变化引起 的应力的机械强度和完整性,形成明显改善的稳定性。
电池组耐久性测试:
构建了包含9个工作面积45cm2的MEA的短燃料电池电池组, 其包含MEA 4、MEA 5和MEA 6中每个的3个MEA。该电池组在 加速耐久性测试方案下操作,其经设计来复制用于在实时环境中操作 的燃料电池的实际负载循环条件。该测试方案包括恒定高电流操作的重复周期,随后是高电流和低电流条件之间的循环,然后从低电流条 件切换到关闭,和启动到低电流条件(即重复开-关循环)。这些实际操 作模式之间的快速循环经设计来在较短时间内加速性能特性,其将在 实时操作的千分之十小时的实际燃料电池操作中观察到。该加速测试 循环在50kPag入口压力和30%入口相对湿度(RH),在80℃电池组 温度进行。对于阳极,气体以1.5×化学计量比供给,对于阴极,以2.0× 化学计量比供给。耐久性测试进行了几乎2,000小时。在耐久性测试 方案过程中,通过运行电流相对于电压极化来定期测量电池组中MEA 的性能。这些极化测试在70℃电池组温度,环境压力,100%RH, 在阳极和阴极二者上进行。从对于氢气/空气操作的极化测量,绘制在 0.3Acm-2的电流密度,单个电池电压相对于时间的图。来自于MEA 类型MEA 4,MEA 5和MEA 6中的每个的电池电压由引入短电池组 中的每个类型的3个MEA来平均。
图7中显示了三个MEA的平均MEA电压耐久性。可以看到, MEA 5和MEA 6每个在约750小时经历了性能(电池电压)的显著下 降,而MEA 4在整个2000小时测试中保持了非常稳定的电池电压。 这个燃料电池电池组耐久性测试清楚地显示,与使用非增强的而其他方面类似的膜的其他MEA相比,来源于使用本发明的增强膜的MEA 的明显增强的耐久性。
总之,从该测试结果可以看到,本发明的MEA表现出改进的耐 久性,其超过了相应的未增强的膜或使用不同类型增强的膜所表现出 的耐久性。
不希望受限于理论,本发明人相信这可能是由于电纺团簇的相分 离和连续性,和离子传导性聚合物和电纺网中的纳米纤维表面之间的 离子交联(酸-碱相互作用,或氢键)。另外,该电纺团簇允许厚度方向 上更大的溶胀,因为纤维可以在这个方向上相对于彼此移动,但是限 制了平面内方向上的溶胀,因为纤维不是弹性的。
此外,用于形成电纺团簇的杂环类聚合物具有抗氧化剂性能,并 且可以通过消除损害性物质例如过氧化物自由基来有助于电解质膜的 稳定性。由于这些抗氧化剂性能,可以不再必需抗氧化剂或过氧化氢 分解催化剂例如二氧化铈引入膜中。
还可以想到的是,纳米纤维和离子传导性聚合物之间的强非共价 相互作用可以允许在微小的损坏例如操作过程中形成的针孔之后电解 质膜的重整或自愈。这样的重整过程将通过施加压力/温度(在操作过 程中已经存在于燃料电池中的条件)来促进。
Claims (14)
1.电解质膜,其包含:
(i)由缠绕的纳米纤维形成的多孔团簇,其中该纳米纤维由非离子传导性杂环类聚合物组成,该杂环类聚合物包含碱性官能团,并且可溶于有机溶剂;和
(ii)离子传导性聚合物,其是部分或完全氟化的磺酸聚合物;
其中至少80%的该多孔团簇的孔填充有离子传导性聚合物,其中该电解质膜中的该多孔团簇的厚度分布在该电解质膜的至少80%厚度,和其中该纳米纤维是纺丝纳米纤维。
2.根据权利要求1所述的电解质膜,其中该杂环类聚合物选自聚苯并咪唑、聚吡啶、聚嘧啶、聚苯并噻唑、聚噁二唑、聚喹啉、聚喹喔啉、聚噻二唑、聚三唑、聚噁唑和聚噻唑及其衍生物。
3.根据权利要求1所述的电解质膜,其中该杂环类聚合物是聚唑或其衍生物。
4.根据权利要求3所述的电解质膜,其中该聚唑选自聚苯并咪唑、聚三唑、聚噻唑和聚二噻唑和它们的衍生物。
5.根据权利要求1-4中任一项所述的电解质膜,其中该纳米纤维的平均直径是100-400nm。
6.根据权利要求1-4中任一项所述的电解质膜,其中该多孔团簇的孔隙率是70-98%。
7.根据权利要求1-4中任一项所述的电解质膜,其中该多孔团簇的平均定量是1.0g/m2-7g/m2。
8.根据权利要求1-4中任一项所述的电解质膜,其中该电解质膜中离子传导性聚合物:纳米纤维的重量比大于70:30。
9.催化的膜,其包含根据权利要求1-8中任一项所述的电解质膜和在该电解质膜的第一和/或第二面上的催化剂层。
10.膜电极组件,其包含根据权利要求1-8中任一项所述的电解质膜和在该电解质膜的第一和/或第二面上的气体扩散电极。
11.膜电极组件,其包含根据权利要求9所述的催化的膜和在该催化剂层上的气体扩散层。
12.燃料电池,其包含根据权利要求1-8中任一项所述的电解质膜,根据权利要求9所述的催化的膜,或者根据权利要求10或11所述的膜电极组件。
13.根据权利要求12所述的燃料电池,其中该燃料电池是PEMFC。
14.电解槽,其包含根据权利要求1-8中任一项所述的电解质膜。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1413794.7A GB201413794D0 (en) | 2014-08-04 | 2014-08-04 | Membrane |
GB1413794.7 | 2014-08-04 | ||
PCT/GB2015/052253 WO2016020668A1 (en) | 2014-08-04 | 2015-08-04 | Membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107078327A CN107078327A (zh) | 2017-08-18 |
CN107078327B true CN107078327B (zh) | 2020-09-22 |
Family
ID=51587710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580041972.8A Active CN107078327B (zh) | 2014-08-04 | 2015-08-04 | 膜 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10777833B2 (zh) |
EP (1) | EP3177388B1 (zh) |
JP (1) | JP6707519B2 (zh) |
KR (1) | KR102473497B1 (zh) |
CN (1) | CN107078327B (zh) |
DK (1) | DK3177388T3 (zh) |
GB (1) | GB201413794D0 (zh) |
WO (1) | WO2016020668A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3013441C (en) * | 2016-02-18 | 2022-09-20 | Toray Industries, Inc. | Composite polymer electrolyte membrane, and membrane electrode assembly and solid polymer fuel cell using same |
EP3609008B1 (en) | 2017-04-03 | 2021-06-02 | Asahi Kasei Kabushiki Kaisha | Composite polymer electrolyte membrane |
KR102293177B1 (ko) | 2017-11-30 | 2021-08-26 | 코오롱인더스트리 주식회사 | 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 막 전극 어셈블리 |
KR102431106B1 (ko) * | 2018-05-25 | 2022-08-09 | 주식회사 엘지화학 | 강화 분리막 제조용 수지 조성물, 이의 제조방법 및 이를 포함하는 전지 |
DE102019104561A1 (de) * | 2019-02-22 | 2020-08-27 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Verfahren zur Herstellung einer Kompositschicht, elektrochemische Einheit und Verwendung der Kompositschicht |
KR20220066047A (ko) | 2019-09-20 | 2022-05-23 | 도레이 카부시키가이샤 | 복합 고분자 전해질막, 촉매층을 갖는 전해질막, 막전극 복합체 및 고체 고분자형 연료 전지 |
DE102020215405A1 (de) | 2020-12-07 | 2022-06-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer Membran-Elektroden-Anordnung (MEA), Membran-Elektroden-Anordnung (MEA) sowie Brennstoffzelle |
GB2624228A (en) | 2022-11-11 | 2024-05-15 | Johnson Matthey Hydrogen Technologies Ltd | Reinforced ion-conducting membrane |
WO2024189366A1 (en) | 2023-03-16 | 2024-09-19 | Johnson Matthey Hydrogen Technologies Limited | Reinforced ion-conducting membrane |
WO2024248102A1 (ja) * | 2023-06-02 | 2024-12-05 | 東京都公立大学法人 | ナノファイバー付加体、電解質膜、複合電解質膜、燃料電池およびイオン伝導性付加剤 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6248469B1 (en) * | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
CN1633465A (zh) * | 2002-02-15 | 2005-06-29 | 东洋纺织株式会社 | 复合离子交换膜、及电解质膜-电极接合体 |
EP1911864A1 (en) * | 2005-07-29 | 2008-04-16 | Toyo Boseki Kabushiki Kasisha | Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9504713D0 (en) | 1995-03-09 | 1995-04-26 | Johnson Matthey Plc | Improved electrocatalytic material |
KR100527322B1 (ko) * | 1997-05-06 | 2006-01-27 | 소니 가부시끼 가이샤 | 폴리머겔전해질형성용시트,이를사용한폴리머겔전해질및그의제법 |
US6689501B2 (en) | 2001-05-25 | 2004-02-10 | Ballard Power Systems Inc. | Composite ion exchange membrane for use in a fuel cell |
JP4269211B2 (ja) * | 2002-10-07 | 2009-05-27 | 東洋紡績株式会社 | 複合イオン交換膜およびその製造方法 |
JP3978663B2 (ja) * | 2002-10-17 | 2007-09-19 | 東洋紡績株式会社 | 電解質膜−電極接合体 |
JP2005068396A (ja) | 2003-04-18 | 2005-03-17 | Toyobo Co Ltd | 複合イオン交換膜 |
JP4836438B2 (ja) * | 2004-11-25 | 2011-12-14 | 旭化成イーマテリアルズ株式会社 | 高分子電解質積層膜 |
KR101000214B1 (ko) * | 2008-05-28 | 2010-12-10 | 주식회사 엘지화학 | 이온전도성 수지 파이버, 이온전도성 복합막, 막-전극 접합체 및 연료전지 |
KR101144398B1 (ko) * | 2009-01-15 | 2012-05-10 | 서울대학교산학협력단 | 염기성 치환기를 갖는 폴리벤즈이미다졸계 고분자 및 이를 포함하는 전해질막 |
CN102612780A (zh) | 2009-08-25 | 2012-07-25 | 可隆工业株式会社 | 用于燃料电池的聚合物电解质膜及其制备方法 |
WO2011149732A2 (en) | 2010-05-25 | 2011-12-01 | 3M Innovative Properties Company | Reinforced electrolyte membrane |
EP2580799B1 (en) * | 2010-06-08 | 2017-03-08 | Rensselaer Polytechnic Institute | Method for the production of an electrochemical cell |
KR101433133B1 (ko) | 2011-03-31 | 2014-08-25 | 코오롱인더스트리 주식회사 | 고분자 전해질 및 이의 제조 방법 |
JP5867828B2 (ja) | 2011-04-28 | 2016-02-24 | 日本バイリーン株式会社 | 複合膜およびその製造方法 |
KR20130110569A (ko) | 2012-03-29 | 2013-10-10 | 코오롱인더스트리 주식회사 | 고분자 전해질막 및 그 제조방법 |
US20140134506A1 (en) | 2012-11-06 | 2014-05-15 | Francis John Kub | Proton Exchange Membrane |
KR101995527B1 (ko) * | 2012-12-28 | 2019-07-02 | 코오롱인더스트리 주식회사 | 연료전지용 강화복합막 및 이를 포함하는 연료전지용 막-전극 어셈블리 |
JP2015065153A (ja) * | 2013-08-30 | 2015-04-09 | 三菱製紙株式会社 | 電気化学素子用セパレータ、電気化学素子用セパレータの製造方法及び電気化学素子 |
-
2014
- 2014-08-04 GB GBGB1413794.7A patent/GB201413794D0/en not_active Ceased
-
2015
- 2015-08-04 CN CN201580041972.8A patent/CN107078327B/zh active Active
- 2015-08-04 WO PCT/GB2015/052253 patent/WO2016020668A1/en active Application Filing
- 2015-08-04 DK DK15749849.4T patent/DK3177388T3/da active
- 2015-08-04 EP EP15749849.4A patent/EP3177388B1/en active Active
- 2015-08-04 US US15/329,850 patent/US10777833B2/en active Active
- 2015-08-04 JP JP2017505551A patent/JP6707519B2/ja active Active
- 2015-08-04 KR KR1020177005672A patent/KR102473497B1/ko active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6248469B1 (en) * | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
CN1633465A (zh) * | 2002-02-15 | 2005-06-29 | 东洋纺织株式会社 | 复合离子交换膜、及电解质膜-电极接合体 |
EP1911864A1 (en) * | 2005-07-29 | 2008-04-16 | Toyo Boseki Kabushiki Kasisha | Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component |
Also Published As
Publication number | Publication date |
---|---|
EP3177388B1 (en) | 2022-03-02 |
US20170279142A1 (en) | 2017-09-28 |
KR20170038881A (ko) | 2017-04-07 |
CN107078327A (zh) | 2017-08-18 |
KR102473497B1 (ko) | 2022-12-05 |
WO2016020668A1 (en) | 2016-02-11 |
JP6707519B2 (ja) | 2020-06-10 |
JP2017532716A (ja) | 2017-11-02 |
EP3177388A1 (en) | 2017-06-14 |
US10777833B2 (en) | 2020-09-15 |
GB201413794D0 (en) | 2014-09-17 |
DK3177388T3 (da) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107078327B (zh) | 膜 | |
US10381672B2 (en) | Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same | |
KR101376362B1 (ko) | 연료전지용 고분자 전해질막 및 그 제조방법 | |
CN102047476B (zh) | 离子导电树脂纤维、离子导电杂化膜、膜电极组件和燃料电池 | |
JP5793666B1 (ja) | 燃料電池用の電解質膜およびその製造方法、並びに膜電極接合体および燃料電池 | |
KR102175009B1 (ko) | 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템 | |
Wu et al. | A PBI‐Sb0. 2Sn0. 8P2O7‐H3PO4 Composite Membrane for Intermediate Temperature Fuel Cells | |
KR102563567B1 (ko) | 연료전지용 고분자 전해질막 및 그 제조방법 | |
DK2869382T3 (en) | Improved diaphragm electrode devices | |
KR101630212B1 (ko) | Pai-ptm 부직포에 탄화수소계 고분자 전해질을 함침시켜 제조한 복합막 및 이의 용도 | |
JP4771702B2 (ja) | 補強材を有する高分子固体電解質膜 | |
KR102125412B1 (ko) | 연료전지용 탄화수소계 강화 고분자 전해질막의 제조방법 및 이에 의해 제조된 강화 고분자 전해질막 | |
Yu | Polybenzimidazole/porous poly (tetrafluoro ethylene) composite membranes | |
JP2006269266A (ja) | 補強材を有する複合高分子固体電解質膜 | |
WO2024189366A1 (en) | Reinforced ion-conducting membrane | |
CN114730900B (zh) | 聚合物电解质膜、包括该聚合物电解质膜的膜-电极组件和燃料电池 | |
KR102701887B1 (ko) | 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료 전지 | |
KR102786326B1 (ko) | 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막 | |
WO2024100413A1 (en) | Reinforced ion-conducting membrane | |
KR102154101B1 (ko) | Pan 부직포 지지체에 탄화수소계 전해질을 함침시켜 제조한 복합막 및 이의 용도 | |
KR20230081646A (ko) | 연료전지용 강화복합막, 이의 제조방법, 및 이를 포함하는 연료전지용 막-전극 어셈블리 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: London Patentee after: Johnson Matthey Hydrogen Technology Co., Ltd. Patentee after: National Research Center Patentee after: UNIVERSITE MONTPELLIER 2 Address before: London Patentee before: JOHNSON MATTHEY FUEL CELLS LTD. Patentee before: National Research Center Patentee before: UNIVERSITE MONTPELLIER 2 |
|
CP01 | Change in the name or title of a patent holder |