[go: up one dir, main page]

CN104289042B - A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof - Google Patents

A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof Download PDF

Info

Publication number
CN104289042B
CN104289042B CN201410452788.XA CN201410452788A CN104289042B CN 104289042 B CN104289042 B CN 104289042B CN 201410452788 A CN201410452788 A CN 201410452788A CN 104289042 B CN104289042 B CN 104289042B
Authority
CN
China
Prior art keywords
nanofiber
filter material
dimethylformamide
preparation
electrospinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410452788.XA
Other languages
Chinese (zh)
Other versions
CN104289042A (en
Inventor
丁彬
赵兴雷
王娜
俞建勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201410452788.XA priority Critical patent/CN104289042B/en
Publication of CN104289042A publication Critical patent/CN104289042A/en
Application granted granted Critical
Publication of CN104289042B publication Critical patent/CN104289042B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本发明涉及一种静电纺纳米纤维驻极过滤材料及其制备方法,在静电纺丝过程中通过控制聚合物溶液组分与温度、纳米纤维成型“快速冷却”过程,一步成型制备纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为0.01-70g/m2,孔隙率≥80%,纳米纤维驻极复合过滤材料的表面静电势为800-6000V,且表面电荷具有持久储存稳定性,疏水角大于150°,对0.006-1μm的颗粒的过滤效率可达99.999%以上,压阻小于20Pa,容尘量为300-3600g/m2,本发明制备工艺简单,过滤材料在个体防护口罩过滤、室内空气净化过滤以及高效/超高效空气过滤等领域具有广阔的应用前景。

The invention relates to an electrospinning nanofiber electret filter material and a preparation method thereof. During the electrospinning process, the components and temperature of the polymer solution are controlled, and the nanofiber forming "rapid cooling" process is used to form and prepare fibers without adhesion in one step. High-efficiency, low-resistance nanofiber electret filter material with a fluffy three-dimensional network structure, in which the nanofiber layer has a grammage of 0.01-70g/m 2 and a porosity of ≥80%. The surface of the nanofiber electret composite filter material The electrostatic potential is 800-6000V, and the surface charge has long-term storage stability, the hydrophobic angle is greater than 150°, the filtration efficiency of particles 0.006-1μm can reach more than 99.999%, the piezoresistance is less than 20Pa, and the dust holding capacity is 300-3600g/ m 2 , the preparation process of the present invention is simple, and the filter material has broad application prospects in the fields of personal protective mask filtration, indoor air purification filtration, high-efficiency/ultra-high-efficiency air filtration, and the like.

Description

一种静电纺纳米纤维驻极过滤材料及其制备方法A kind of electrostatic spinning nanofiber electret filter material and preparation method thereof

技术领域 technical field

本发明涉及一种静电纺纳米纤维驻极过滤材料及其制备方法,特别是提供一种在纳米纤维成型后使其瞬间降温“冻结”极化电荷和空间电荷的静电纺纳米纤维驻极过滤材料及其制备方法。 The invention relates to an electrospun nanofiber electret filter material and a preparation method thereof, in particular to provide an electrospun nanofiber electret filter material that instantly cools down after the nanofibers are formed and "freezes" polarized charges and space charges and its preparation method.

背景技术 Background technique

高性能静电纺纳米纤维过滤材料需具有高效率、低阻力的特点,但常规的过滤材料依靠材料本身的结构特点(孔径尺寸、堆积密度等)实现对颗粒的有效过滤,通常在具有高效率的同时也具有很高的压阻,致使过滤性能较差,因而仅靠纤维本身的结构特点很难实现过滤效率和压阻的有效平衡及高效率、低阻力的目标。而静电吸附作用(驻极材料)的引入可以在原有滤料结构效率的基础上大幅度提高静电吸附力对颗粒的拦截作用从而提高过滤效率,同时又保证低压阻的特点。 High-performance electrospun nanofiber filter materials need to have the characteristics of high efficiency and low resistance, but conventional filter materials rely on the structural characteristics of the material itself (pore size, packing density, etc.) to achieve effective filtration of particles, usually in high-efficiency At the same time, it also has a high pressure resistance, resulting in poor filtration performance, so it is difficult to achieve an effective balance between filtration efficiency and pressure resistance, high efficiency and low resistance only by the structural characteristics of the fiber itself. The introduction of electrostatic adsorption (electret material) can greatly improve the interception of particles by electrostatic adsorption on the basis of the structural efficiency of the original filter material, thereby improving the filtration efficiency, while ensuring the characteristics of low pressure resistance.

目前纤维驻极材料的研究、开发及生产主要采用高压电晕放电以及热极化的方式,其虽然能较好的驻极纤维滤料,但其同时也存在诸多缺点,例如:驻极性能不稳定,所产生电荷以在纤维表层的空间电荷为主且易失效,设备复杂,成本高等。公开的利用电晕放电以及热极化制备驻极纤维过滤材料的专利有:专利CN1427430A公开了一种“具有超高充电稳定性的多层驻极体及其制造方法”,其通过高温加热金属片上的FEP膜并在其上施加高压电,使其熔融粘接,后冷却完成驻极体,最后用电荷充电冷却的驻极体;专利CN101071683A公开了“一种驻极体的极化方法”,其通过升温融化高分子薄膜,并对其施加外电场进行驻极,最后降温完成驻极过程;专利CN101905101A公开了“一种熔喷聚丙烯驻极过滤材料的制备方法”,其通过高速热空气将挤出喷丝孔的熔体吹成超细的纤维,同时使纤维通过电晕放电装置的电极,完成驻极;专利CN103240945A公开了“一种复合聚合物驻极体的制备方法”采用电晕极化或热极化方法对复合膜驻极。这些专利技术均采用加热或高温处理后在高压电下驻极聚合物材料,虽有一定的驻极效果,能够在一定程度上提高驻极使用稳定性,但是由于降温过程均为自然冷却且仅降至室温,导致降温过程中出现极化电荷“退极化”的现象以及空间电荷的逸散,且在使用过程中,易受到环境条件影响致使电荷性能衰减,从而导致驻极性能无法满足实际使用要求。 At present, the research, development and production of fiber electret materials mainly adopt high-voltage corona discharge and thermal polarization. Although it can better electret fiber filter material, it also has many shortcomings, such as: electret performance Unstable, the generated charge is mainly the space charge on the surface of the fiber and is prone to failure, the equipment is complicated, and the cost is high. The published patents for preparing electret fiber filter materials by using corona discharge and thermal polarization include: patent CN1427430A discloses a "multi-layer electret with ultra-high charging stability and its manufacturing method", which uses high-temperature heating of metal FEP film on the sheet and apply high voltage on it to make it melt and bond, then cool to complete the electret, and finally charge the cooled electret with electric charge; patent CN101071683A discloses "a polarization method of electret ", which melts the polymer film by heating up, and applies an external electric field to electret, and finally cools down to complete the electret process; patent CN101905101A discloses "a method for preparing a melt-blown polypropylene electret filter material", which passes high-speed Hot air blows the melt extruded from the spinneret hole into ultra-fine fibers, and at the same time makes the fibers pass through the electrodes of the corona discharge device to complete the electret; patent CN103240945A discloses "a method for preparing a composite polymer electret" The composite film is electretized by corona polarization or thermal polarization. These patented technologies all adopt electret polymer materials under high voltage after heating or high temperature treatment. It only drops to room temperature, resulting in the phenomenon of "depolarization" of polarized charges and the dissipation of space charges during the cooling process, and in the process of use, it is easily affected by environmental conditions and causes the charge performance to decay, resulting in the unsatisfactory electret performance. actual use requirements.

发明内容 Contents of the invention

本发明的目的是提供一种静电纺纳米纤维驻极过滤材料及其制备方法,特别是提供一种热极化的静电纺纳米纤维驻极过滤材料及其制备方法,静电纺是一种利用高压电进行纺丝的纳米纤维制备技术同时也是一种纳米纤维驻极技术,其相比于电晕放电以及热极化驻极技术的优势在于纺丝的过程中即可将大量空间电荷注入纤维当中,而空间电荷易被纤维内部的深陷阱捕获,同时可诱导偶极极化而产生极化电荷,驻极效果长效持久,而在静电纺丝的同时辅助加热所纺聚合物溶液,使其产生一定的“热极化效果”,并在纳米纤维成型后使其瞬间降温至0°以下,以冻结极化电荷和空间电荷,防止“退极化”现象以及空间电荷的逸散,因而静电纺丝法可一步成型制备纳米纤维驻极过滤材料,且具有优异的驻极效果。 The purpose of the present invention is to provide a kind of electrostatic spinning nanofiber electret filter material and its preparation method, especially provide a kind of thermopolarized electrostatic spinning nanofiber electret filter material and its preparation method. The nanofiber preparation technology of piezoelectric spinning is also a nanofiber electret technology. Compared with corona discharge and thermal polarization electret technology, its advantage is that a large amount of space charge can be injected into the fiber during spinning. Among them, the space charge is easily captured by the deep trap inside the fiber, and at the same time it can induce dipole polarization to generate polarized charges. It produces a certain "thermal polarization effect", and after the nanofiber is formed, it instantly cools down to below 0° to freeze the polarized charge and space charge, preventing the "depolarization" phenomenon and the dissipation of space charge, thus The electrospinning method can be used to prepare nanofiber electret filter materials in one step, and has excellent electret effect.

本发明的具体实施步骤为: Concrete implementation steps of the present invention are:

1)配制一定浓度(3~40%)的聚合物溶液或两种、三种聚合物的混合物溶液或至少含有一种无机纳米颗粒的聚合物溶液、两种、三种聚合物的混合物溶液。不同聚合物溶液分别的配制过程:①不含有无机纳米颗粒的聚合物溶液配制过程为:直接将一定量的一种、两种或三种聚合物加入到相应的溶剂当中,并用磁力搅拌装置连续搅拌3-20小时,制备出均匀、稳定的溶液;②含有无机纳米颗粒的聚合物配制过程为:先将无机纳米颗粒加入溶剂中,并超声0.5-15个小时,然后将一定量的一种、两种或三种聚合物加入其中,并用磁力搅拌装置连续搅拌3-20小时,配制成均匀、稳定的溶液。 1) Prepare a polymer solution with a certain concentration (3-40%) or a mixture solution of two or three polymers or a polymer solution containing at least one inorganic nanoparticle, or a mixture solution of two or three polymers. The preparation process of different polymer solutions: ① The preparation process of the polymer solution without inorganic nanoparticles is: directly add a certain amount of one, two or three polymers to the corresponding solvent, and use a magnetic stirring device to continuously Stir for 3-20 hours to prepare a uniform and stable solution; ② The preparation process of the polymer containing inorganic nanoparticles is as follows: first add the inorganic nanoparticles to the solvent, and ultrasonically for 0.5-15 hours, and then a certain amount of a , Two or three kinds of polymers are added therein, and continuously stirred with a magnetic stirring device for 3-20 hours to prepare a uniform and stable solution.

2)将一定浓度(3~40%)的聚合物溶液或含无机纳米颗粒的聚合物溶液吸入喷丝模块中,其中喷丝模块连接温控装置(温度范围:30~120℃),可使喷丝模块里的溶液保持在一定温度下,同时喷丝模块里含有在线搅拌装置,目的是使无机纳米颗粒均匀分散于聚合物中,防止团聚。 2) Inhale a certain concentration (3-40%) of a polymer solution or a polymer solution containing inorganic nanoparticles into the spinneret module, where the spinneret module is connected to a temperature control device (temperature range: 30-120°C), which can make The solution in the spinneret module is kept at a certain temperature. At the same time, the spinneret module contains an online stirring device to make the inorganic nanoparticles evenly dispersed in the polymer and prevent agglomeration.

3)在静电纺丝单元内进行纺丝,喷丝模块前端的针头连接高压电源,所纺的纳米纤维用基材接收,在基材的背面(1~100mm)有一个液氮恒速(1~100L/min)释放装置,其可使静电纺纤维材料瞬间降至低温(小于0℃),由于聚合物溶液在静电场的作用下,会产生大量极化电荷,此时的极化电荷容易由于受到分子链运动以及环境温度以及湿度等的影响,使得已经极化的分子会出现退极化现象,导致驻极效果差,而瞬间冷却可以在极短的时间内使聚合物的温度降至零度以下,以快“冻结”分子链,防止退极化现象的发生,同时瞬间冷却聚合物使得聚合物已捕集到的空间电荷的动能降低,降低电子逃逸能力,可瞬间强化空间的电荷的储存,强化驻极效果。另外,氮气以一定速度通过基材,会给飞行中的纳米纤维产生一个反作用力,阻碍纤维与纤维间的紧密排列,有利于成型的纳米纤维形成蓬松的结构,以形成纤维间无粘连、蓬松的三维网状互通结构的高效、低阻驻极过滤材料,形成的的疏水的(疏水角>150°)纳米纤维驻极过滤材料对0.02~6μm的颗粒的过滤效率可达99.999%以上,压阻小于20Pa。 3) Spinning is carried out in the electrospinning unit. The needle at the front end of the spinning module is connected to a high-voltage power supply. The spun nanofibers are received by the substrate. ~100L/min) release device, which can instantly reduce the electrospun fiber material to a low temperature (less than 0°C), because the polymer solution will generate a large amount of polarized charges under the action of an electrostatic field, and the polarized charges at this time are easy Due to the influence of molecular chain movement and ambient temperature and humidity, the polarized molecules will depolarize, resulting in poor electret effect, and instant cooling can reduce the temperature of the polymer to a low temperature in a very short time. Below zero temperature, to quickly "freeze" the molecular chain to prevent the occurrence of depolarization, and at the same time cool the polymer instantly to reduce the kinetic energy of the space charge that the polymer has captured, reduce the ability of electrons to escape, and instantly strengthen the space charge. Storage, strengthen the electret effect. In addition, when nitrogen passes through the substrate at a certain speed, it will generate a reaction force for the flying nanofibers, hinder the tight arrangement between fibers, and help the formed nanofibers to form a fluffy structure, so as to form a fluffy and non-adhesive fiber structure. The high-efficiency and low-resistance electret filter material with a three-dimensional network interconnected structure, the formed hydrophobic (hydrophobic angle > 150°) nanofiber electret filter material can filter 0.02-6μm particles with a filtration efficiency of more than 99.999%. The resistance is less than 20Pa.

其中静电纺丝的工艺条件为:电压5~70KV,接收距离3~40cm,灌注速度0.1~10mL/h,温度0~35℃,相对湿度0~90%。 The process conditions of electrospinning are: voltage 5-70KV, receiving distance 3-40cm, perfusion speed 0.1-10mL/h, temperature 0-35°C, relative humidity 0-90%.

其中“瞬间降温”处理所产生的积极效果为:①驻极材料表面静电势增强,普通静电纺驻极材料表面静电势一般仅在的300~1200V,而经“瞬间冷却”处理的静电纺驻极材料表面静电势为800~6000V;②驻极寿命大大增强:普通静电纺驻极材料半年电荷衰减50%,经“瞬间冷却”处理的静电纺驻极材料保存半年时间电荷无衰减。 Among them, the positive effects produced by the "instantaneous cooling" treatment are: ① The electrostatic potential on the surface of the electret material is enhanced. The electrostatic potential on the surface of the electrode material is 800-6000V; ②The life of the electret is greatly enhanced: the charge of the ordinary electrospun electret material decays by 50% in half a year, and the electrospun electret material treated with "instantaneous cooling" saves the charge for half a year without decay.

作为优选的技术方案: As a preferred technical solution:

一种静电纺纳米纤维驻极过滤材料的制备方法,所述制备步骤中包括: A preparation method of electrospun nanofiber electret filter material, comprising:

1)将聚合物溶液加热至30~120℃后进行静电纺丝; 1) Electrospinning is performed after heating the polymer solution to 30-120°C;

2)所述静电纺丝所得纤维用接收基材接收后快速降温至0℃以下,即获得静电纺纳米纤维驻极过滤材料;所述快速降温是指所纺纳米纤维与接收基材的距离小于1mm时,纳米纤维与液氮接触后在小于5s的时间内降低至0℃以下。 2) The fiber obtained by electrospinning is quickly cooled to below 0° C. after being received by the receiving substrate, and the electrospun nanofiber electret filter material is obtained; the rapid cooling means that the distance between the spun nanofiber and the receiving substrate is less than When the thickness is 1mm, the nanofibers drop below 0°C within less than 5s after contacting with liquid nitrogen.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,所述聚合物溶液的质量浓度为3~40%。 According to the above-mentioned preparation method of electrospun nanofiber electret filter material, the mass concentration of the polymer solution is 3-40%.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其纺丝采用的聚合物为聚偏氟乙烯、聚丙烯、聚对苯二甲酸丁二酯、聚对苯二甲酸乙二酯、聚芳酯、聚醋酸乙烯、尼龙6、聚乙烯醇、聚甲基丙烯酸甲酯、聚苯胺、聚氧化乙烯、聚乙烯吡咯烷酮、聚丙烯腈、聚己内酯、聚乙二醇、聚氨酯、氟化聚氨酯、聚砜、聚醚砜、聚偏氟乙烯~六氟丙烯、聚偏氟乙烯~四氟乙烯~全氟甲基乙烯基醚、聚偏氟乙烯~三氟氯乙烯中的一种,或者是任意两种或三种聚合物的混合物。 A kind of preparation method of electrospinning nanofiber electret filter material as above, the polymer that its spinning adopts is polyvinylidene fluoride, polypropylene, polybutylene terephthalate, polyethylene terephthalate Esters, polyarylates, polyvinyl acetate, nylon 6, polyvinyl alcohol, polymethylmethacrylate, polyaniline, polyethylene oxide, polyvinylpyrrolidone, polyacrylonitrile, polycaprolactone, polyethylene glycol, polyurethane , fluorinated polyurethane, polysulfone, polyethersulfone, polyvinylidene fluoride ~ hexafluoropropylene, polyvinylidene fluoride ~ tetrafluoroethylene ~ perfluoromethyl vinyl ether, polyvinylidene fluoride ~ trifluorochloroethylene species, or a mixture of any two or three polymers.

所述聚合物包括均聚物、嵌段共聚物、无规共聚物、两种不同均聚物的混合物、均聚物与嵌段共聚物的混合物以及均聚物与无规共聚物的混合物; Said polymers include homopolymers, block copolymers, random copolymers, mixtures of two different homopolymers, mixtures of homopolymers and block copolymers, and mixtures of homopolymers and random copolymers;

所述嵌段共聚物和无规共聚物的作用是:由于嵌段共聚物不同分子链部分在静电纺过程中会形成不同的结晶区和非晶区,在外电场的作用下电子或离子会在界面处聚集形成界面的极化,产生极化电荷,而两种或多种聚合的混合物通过静电纺丝制备的纳米纤维会由多种聚合物组分组成,而不同聚合物组分之间会形成界面,在外加点成的作用下同样会形成界面极化,产生极化电荷。 The effect of the block copolymer and the random copolymer is: because different molecular chain parts of the block copolymer will form different crystalline regions and amorphous regions during the electrospinning process, electrons or ions will be in the The aggregation at the interface forms the polarization of the interface, resulting in polarized charges, and the nanofibers prepared by electrospinning a mixture of two or more polymers will consist of a variety of polymer components, and there will be interactions between different polymer components. The interface is formed, and the interface polarization will also be formed under the action of the external point formation, resulting in polarized charges.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,所述聚合物溶液中溶剂根据聚合物种类分别对应为: A method for preparing an electrospun nanofiber electret filter material as described above, the solvent in the polymer solution corresponds to:

聚偏氟乙烯:N,N~二甲基甲酰胺(DMF)、N~甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、磷酸三乙酯和二甲基亚砜(DMSO); Polyvinylidene fluoride: N,N~dimethylformamide (DMF), N~methylpyrrolidone (NMP), dimethylacetamide (DMAc), triethyl phosphate and dimethyl sulfoxide (DMSO);

聚丙烯:正庚烷、四氢氟萘、二甲苯等; Polypropylene: n-heptane, tetrahydronaphthalene, xylene, etc.;

聚对苯二甲酸丁二酯:二氯甲烷、四氢呋喃(THF)、三氯甲烷、丙酮等; Polybutylene terephthalate: dichloromethane, tetrahydrofuran (THF), chloroform, acetone, etc.;

聚对苯二甲酸乙二酯:二氯甲烷、四氢呋喃、三氯甲烷、丙酮等; Polyethylene terephthalate: dichloromethane, tetrahydrofuran, chloroform, acetone, etc.;

聚芳酯:二氯甲烷、四氢呋喃、三氯甲烷、丙酮等; Polyarylate: dichloromethane, tetrahydrofuran, chloroform, acetone, etc.;

聚醋酸乙烯:甲苯、丙酮、乙醇、醋酸、乙酸乙酯、三氯甲烷等; Polyvinyl acetate: toluene, acetone, ethanol, acetic acid, ethyl acetate, chloroform, etc.;

尼龙6的溶剂为甲酸; The solvent of nylon 6 is formic acid;

聚乙烯醇:为水、乙醇、N,N~二甲基甲酰胺、四氢呋喃; Polyvinyl alcohol: water, ethanol, N,N-dimethylformamide, tetrahydrofuran;

聚甲基丙烯酸甲酯:氯仿、乙酸、乙酸乙酯、丙酮、甲苯等; Polymethyl methacrylate: chloroform, acetic acid, ethyl acetate, acetone, toluene, etc.;

聚苯胺:N,N~二甲基甲酰胺、N~甲基吡咯烷酮等; Polyaniline: N,N~dimethylformamide, N~methylpyrrolidone, etc.;

聚氧化乙烯的:N,N~二甲基甲酰胺、乙醇、水、三氯甲烷; Polyethylene oxide: N,N-dimethylformamide, ethanol, water, chloroform;

聚乙烯吡咯烷酮:水、乙醇、N,N~二甲基乙酰胺、N,N~二甲基甲酰胺等; Polyvinylpyrrolidone: water, ethanol, N,N~dimethylacetamide, N,N~dimethylformamide, etc.;

聚丙烯腈:N,N~二甲基甲酰胺、二甲基亚砜等; Polyacrylonitrile: N,N~dimethylformamide, dimethyl sulfoxide, etc.;

聚己内酯:N,N~二甲基甲酰胺、丙酮等; Polycaprolactone: N,N~dimethylformamide, acetone, etc.;

聚乙二醇:水、乙醇、N,N~二甲基甲酰胺等; Polyethylene glycol: water, ethanol, N,N-dimethylformamide, etc.;

聚氨酯:N,N~二甲基甲酰胺、丙酮、N~甲基吡咯烷酮等; Polyurethane: N,N~dimethylformamide, acetone, N~methylpyrrolidone, etc.;

氟化聚氨酯:N,N~二甲基甲酰胺、丙酮、N~甲基吡咯烷酮等; Fluorinated polyurethane: N,N~dimethylformamide, acetone, N~methylpyrrolidone, etc.;

聚砜和聚醚砜:N,N~二甲基甲酰胺、丙酮、N~甲基吡咯烷酮、二甲基乙酰胺、四氢呋喃等; Polysulfone and polyethersulfone: N,N~dimethylformamide, acetone, N~methylpyrrolidone, dimethylacetamide, tetrahydrofuran, etc.;

聚偏氟乙烯-六氟丙烯:N,N~二甲基甲酰胺、N~甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜等; Polyvinylidene fluoride-hexafluoropropylene: N,N~dimethylformamide, N~methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide, etc.;

聚偏氟乙烯-四氟乙烯-全氟甲基乙烯基醚:N,N~二甲基甲酰胺、N~甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜等; Polyvinylidene fluoride-tetrafluoroethylene-perfluoromethyl vinyl ether: N,N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide, etc. ;

聚偏氟乙烯-三氟氯乙烯:N,N~二甲基甲酰胺、N~甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜等; Polyvinylidene fluoride-chlorotrifluoroethylene: N,N~dimethylformamide, N~methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide, etc.;

上述任意两种或三种聚合物的混合物所用溶剂为可分别溶解单一聚合物的溶剂的混合物或可同时溶解两种或三种聚合物的单一溶剂。 The solvent used for the mixture of any two or three polymers mentioned above is a mixture of solvents that can respectively dissolve a single polymer or a single solvent that can dissolve two or three polymers simultaneously.

如上所述的的一种静电纺纳米纤维驻极过滤材料,所述聚合物溶液中还含有至少一种无机纳米颗粒,所述无机纳米颗粒:二氧化硅、三氧化二铝、氧化锌、氧化钡、二氧化钛、五氧化二钽、钛酸钡、锆钛酸铅、氮化硅、电气石、勃姆石或倍半硅氧烷纳米颗粒等; A kind of electrospun nanofiber electret filter material as above, also contains at least one kind of inorganic nanoparticles in the polymer solution, the inorganic nanoparticles: silicon dioxide, aluminum oxide, zinc oxide, oxide Barium, titanium dioxide, tantalum pentoxide, barium titanate, lead zirconate titanate, silicon nitride, tourmaline, boehmite or silsesquioxane nanoparticles, etc.;

所述无机纳米颗粒所加的量为:聚合物和无机纳米颗粒总量的0.1~10wt%; The added amount of the inorganic nanoparticles is: 0.1-10wt% of the total amount of the polymer and the inorganic nanoparticles;

所述含无机纳米颗粒聚合物溶液的配制过程为:先将无机纳米颗粒加入溶剂中,并超声0.5-15个小时,然后将聚合物溶液加入其中,并用磁力搅拌装置连续搅拌3-20小时,配制成均匀且稳定的溶液; The preparation process of the polymer solution containing inorganic nanoparticles is as follows: firstly add the inorganic nanoparticles into the solvent, and ultrasonicate for 0.5-15 hours, then add the polymer solution therein, and continuously stir for 3-20 hours with a magnetic stirring device, Formulated into a homogeneous and stable solution;

所述含无机纳米颗粒的作用机理为:无机纳米颗粒在外电场存在的条件下会有空间电荷的注入以及极化电荷的产生,对驻极效果有很大的增强作用,并且无机驻极体与有机聚合物混合产生的界面在外电场的存在下会产生界面极化,产生极化电荷,同样增强驻极效果,同时无机纳米颗粒的加入会使所制备的纳米纤维产生表面粗糙的结构,使得制备的纳米纤维膜产生超疏水的性能。 The mechanism of action of the inorganic nanoparticles is as follows: the inorganic nanoparticles will inject space charges and generate polarized charges under the condition of the presence of an external electric field, which greatly enhances the electret effect, and the inorganic electret and The interface generated by the mixing of organic polymers will produce interface polarization in the presence of an external electric field, resulting in polarized charges, which also enhances the electret effect. The nanofibrous membrane produces superhydrophobic properties.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,所述喷丝模块连接温控装置,其目的为通过加热使溶液中中的冻结的聚合物分子链“解冻”,这有利于后续外加电场的作用下,偶极分子更好的极化,产生更多的极化电荷; A method for preparing an electrospun nanofiber electret filter material as described above, the spinneret module is connected to a temperature control device, and its purpose is to "thaw" the frozen polymer molecular chains in the solution by heating, which has Under the action of the subsequent external electric field, the dipole molecules are better polarized and more polarized charges are generated;

所述加热是指聚合物在静电纺丝的喷丝模块中加热,即喷丝模块连接一温控装置;所述喷丝模块里还含有在线搅拌装置。 The heating means that the polymer is heated in the spinning module of electrospinning, that is, the spinning module is connected with a temperature control device; the spinning module also contains an online stirring device.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,所述静电纺丝的工艺条件为:电压5~70KV,接收距离3~40cm,灌注速度0.1~10mL/h,温度0~35℃,相对湿度0~90%。 A method for preparing an electrospinning nanofiber electret filter material as described above, the process conditions of the electrospinning are: voltage 5-70KV, receiving distance 3-40cm, perfusion speed 0.1-10mL/h, temperature 0- 35°C, relative humidity 0-90%.

如上所述的一种纳米纤维驻极空气过滤材料,所述纳米纤维的接收方式为:平板接收或空心平板装置接收,接收方式为上下接收或左右接收。 According to the above-mentioned nanofiber electret air filter material, the receiving method of the nanofibers is: flat plate receiving or hollow flat plate receiving, and the receiving method is up and down receiving or left and right receiving.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,所述基材的材质为:木浆纤维素基材、纤维基材或混合的纤维基材; A method for preparing an electrospun nanofiber electret filter material as described above, the material of the substrate is: wood pulp cellulose substrate, fiber substrate or mixed fiber substrate;

所述木浆纤维素基材为挺度0.5~5mN·m,克重8~400g/m2的木浆纤维素滤纸或木浆纤维素非织造布,木浆纤维素滤纸为瓦楞滤纸,其中纤维素瓦楞滤纸的瓦楞距离为0~3mm; The wood pulp cellulose substrate is a wood pulp cellulose filter paper or a wood pulp cellulose nonwoven fabric with a stiffness of 0.5 to 5 mN·m and a grammage of 8 to 400 g/m 2 , and the wood pulp cellulose filter paper is a corrugated filter paper, wherein The corrugation distance of cellulose corrugated filter paper is 0-3mm;

所述纤维基材为含纤维素纤维、聚酯纤维、聚烯烃纤维的滤纸或非织造布,其挺度为0.5~5mN·m,克重为6~350g/m2;纤维滤纸包含瓦楞滤纸,其中纤维素瓦楞滤纸的瓦楞距离为0~3mm; The fiber substrate is filter paper or non-woven fabric containing cellulose fiber, polyester fiber, polyolefin fiber, its stiffness is 0.5-5mN·m, and its grammage is 6-350g/ m2 ; the fiber filter paper includes corrugated filter paper , wherein the corrugated distance of cellulose corrugated filter paper is 0-3mm;

所述混合的纤维基材为含纤维素纤维素、聚酯纤维、聚烯烃纤维中的两种以上组成的混合纤维的滤纸或非织造布,其挺度为为0.5~5mN·m,克重为6~350g/m2,所述混合纤维滤纸为瓦楞滤纸,其中纤维素瓦楞滤纸的瓦楞距离为0mm~3mm。 The mixed fiber base material is a filter paper or a non-woven fabric containing mixed fibers composed of two or more of cellulose cellulose, polyester fibers, and polyolefin fibers, and its stiffness is 0.5 to 5 mN·m, and its grammage is 6-350g/m 2 , the mixed fiber filter paper is corrugated filter paper, wherein the corrugated distance of the cellulose corrugated filter paper is 0mm-3mm.

如上所述的一种静电纺纳米纤维驻极过滤材料的制备方法,所述所述降温的方式是在所述接收基材的背面1~100mm距离处设有一个液氮恒速释放装置,释放速度为1~100L/min。 A method for preparing an electrospun nanofiber electret filter material as described above, the cooling method is to install a liquid nitrogen constant-velocity release device at a distance of 1 to 100 mm from the back of the receiving substrate to release The speed is 1-100L/min.

如上所述的的一种静电纺纳米纤维驻极过滤材料,所述静电纺纳米纤维驻极过滤材料为基材层和纳米纤维层的两层复合结构; An electrospun nanofiber electret filter material as described above, the electrospun nanofiber electret filter material is a two-layer composite structure of a substrate layer and a nanofiber layer;

所述基材层的材质为多孔的木浆纤维素基材、纤维基材或混合的纤维基材,其纤维直径为10~50μm,孔径尺寸为3~120μm; The material of the substrate layer is porous wood pulp cellulose substrate, fiber substrate or mixed fiber substrate, the fiber diameter is 10-50 μm, and the pore size is 3-120 μm;

所述纳米纤维层的纳米纤维直径:0.008~1μm,纳米纤维层克重为:0.01~70g/m2,纳米纤维层的孔隙率为≥80%;所述静电纺纳米纤维驻极过滤材料表面静电势为1700~2300V,疏水角>150°,对0.006~1μm的颗粒的过滤效率可达99.999%以上,压阻小于20Pa,容尘量为300~3600g/m2The nanofiber diameter of the nanofiber layer: 0.008-1 μm, the grammage of the nanofiber layer: 0.01-70 g/m 2 , the porosity of the nanofiber layer ≥ 80%; the surface of the electrospun nanofiber electret filter material The electrostatic potential is 1700-2300V, the hydrophobic angle is more than 150°, the filtration efficiency of 0.006-1μm particles can reach more than 99.999%, the pressure resistance is less than 20Pa, and the dust holding capacity is 300-3600g/m 2 .

有益效果: Beneficial effect:

1.本发明首次通过控制聚合物溶液组分和温度、无机纳米颗粒含量以及纳米纤维成型“瞬间冷却”,从而一步成型制备纤维间无粘连、结构蓬松的三维网状互通结构纳米纤维驻极过滤材料,复合纳米纤维驻极材料具有高的表面静电势、超强静电吸附性能。 1. For the first time, the present invention controls the composition and temperature of the polymer solution, the content of inorganic nanoparticles, and the "instantaneous cooling" of nanofiber forming, so as to prepare a three-dimensional network-like interconnected structure nanofiber electret filter with no adhesion between fibers and a fluffy structure in one step. Materials, composite nanofiber electret materials have high surface electrostatic potential and super electrostatic adsorption performance.

2.本发明提供的制备方法工艺简单,可适用于一系列广泛的聚合物基纳米纤维驻极复合过滤材料的制备。此外,本制备方法具有良好的纤维结构可控性,可通过控制液氮释放速度以及无机纳米颗粒的含量,实现对纤维膜的堆积密度以及润湿性能的精确控制。 2. The preparation method provided by the present invention has a simple process and is applicable to the preparation of a wide range of polymer-based nanofiber electret composite filter materials. In addition, the preparation method has good controllability of the fiber structure, and can precisely control the bulk density and wettability of the fiber membrane by controlling the release rate of liquid nitrogen and the content of inorganic nanoparticles.

3.本专利制备的纳米纤维过滤材料具有较高的表面静电势,以及优异的电荷储存稳定性,因而具有较高的静电吸附过滤性能,性能优于现有纤维驻极复合过滤材料。 3. The nanofiber filter material prepared by this patent has high surface electrostatic potential and excellent charge storage stability, so it has high electrostatic adsorption filtration performance, which is better than the existing fiber electret composite filter material.

4.本发明制备的纳米纤维驻极复合过滤材料具有孔径小、孔隙率高、结构蓬松的三维网状互通结构,材料的这些特性使其在实际使用过程中,在保证高过滤效率的同时,具有极高的空气透过性,这会大大降低实际能耗,具有广泛的实际应用前景。 4. The nanofiber electret composite filter material prepared by the present invention has a small pore size, high porosity, and a fluffy three-dimensional network structure. These characteristics of the material make it possible to ensure high filtration efficiency during actual use. It has extremely high air permeability, which will greatly reduce the actual energy consumption, and has a wide range of practical application prospects.

附图说明 Description of drawings

图1为纺丝设备结构示意图,其中1为喷丝模块,2为温度控制装置,3为接收基材,4为接收输运装置,5为液氮恒定释放装置,。 Fig. 1 is a schematic diagram of the structure of spinning equipment, in which 1 is a spinning module, 2 is a temperature control device, 3 is a receiving substrate, 4 is a receiving and transporting device, and 5 is a liquid nitrogen constant release device.

图2为静电纺纳米纤维驻极材料以及商业熔喷PP无纺布静电吸附过滤性能与温度关系图,该图表明本专利制备的驻极过滤材料具有优异的静电吸附过滤性能以及电荷储存稳定性能。 Figure 2 is a graph showing the relationship between electrostatic adsorption filtration performance and temperature of electrospun nanofiber electret materials and commercial melt-blown PP non-woven fabrics. This figure shows that the electret filter material prepared by this patent has excellent electrostatic adsorption filtration performance and charge storage stability. .

具体实施方式 detailed description

下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。 The present invention will be further described below in combination with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the teachings of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

实施例1 Example 1

一种静电纺纳米纤维驻极过滤材料及其制备方法,具体步骤为: An electrospun nanofiber electret filter material and a preparation method thereof, the specific steps are:

第一步:将聚偏氟乙烯粉末置于80℃真空烘箱中下真空干燥3小时。 Step 1: Place the polyvinylidene fluoride powder in a vacuum oven at 80° C. for 3 hours to vacuum dry.

第二步:将干燥完毕的聚偏氟乙烯粉末溶于N,N-二甲基甲酰胺中,将所述溶液置于磁力搅拌器上分别搅拌10小时,形成均相溶液;所述均相溶液中,聚偏氟乙烯的质量分数为40%。 Step 2: Dissolve the dried polyvinylidene fluoride powder in N,N-dimethylformamide, place the solution on a magnetic stirrer and stir for 10 hours to form a homogeneous solution; the homogeneous In the solution, the mass fraction of polyvinylidene fluoride is 40%.

第三步:使用图1所示的静电纺设备纺丝,先在喷丝模块1中抽入一定量上述聚偏氟乙烯聚合物溶液,并将喷丝模块的温控装置2调至70℃,恒定20分钟以使聚合物均匀受热,其中喷丝模块喷丝口到接收基材的距离为15cm,所加电压为60kV。 The third step: use the electrospinning equipment shown in Figure 1 to spin, first pump a certain amount of the above-mentioned polyvinylidene fluoride polymer solution into the spinning module 1, and adjust the temperature control device 2 of the spinning module to 70°C , kept constant for 20 minutes to heat the polymer evenly, wherein the distance from the spinneret of the spinneret to the receiving substrate was 15 cm, and the applied voltage was 60 kV.

第四步:打开高压电源,将电压调至60kV,纺丝的环境温度为25℃,湿度为60%,将聚合物溶液以5mL/h的灌注速度静电纺丝到接收基材3上,同时安装在接收输运装置4里面的液氮恒速释放装置5以50L/min的速度释放液氮,所纺纳米纤维与液氮接触的瞬间温度降至0℃以下,同时纳米纤维受到与其运动方向相反的反作用力,从而获得纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为50g/m2,纳米纤维驻极复合过滤材料的表面静电势为4000V,疏水角152°,如图2所示,所纺纳米纤维驻极过滤材料对0.006-1μm颗粒的过滤效率可达99.9991%,并且具有优异的电荷储存稳定性能,压阻19Pa,容尘量为2000g/m2Step 4: Turn on the high-voltage power supply, adjust the voltage to 60kV, and spin the ambient temperature at 25°C and the humidity at 60%, electrospin the polymer solution onto the receiving substrate 3 at a perfusion rate of 5mL/h, and at the same time The liquid nitrogen constant-speed release device 5 installed in the receiving and transporting device 4 releases liquid nitrogen at a rate of 50L/min, and the instantaneous temperature of the spun nanofibers in contact with the liquid nitrogen drops below 0°C, and at the same time, the nanofibers are affected by the direction of movement. Opposite reaction force, so as to obtain a high-efficiency, low-resistance nanofiber electret filter material with no adhesion between fibers and a fluffy three-dimensional network structure. The nanofiber layer has a gram weight of 50g/m 2 The surface electrostatic potential of the material is 4000V, and the hydrophobic angle is 152°. As shown in Figure 2, the spun nanofiber electret filter material has a filtration efficiency of 99.9991% for 0.006-1μm particles, and has excellent charge storage stability. The resistance is 19Pa, and the dust holding capacity is 2000g/m 2 .

实施例2 Example 2

一种静电纺纳米纤维驻极过滤材料及其制备方法,具体步骤为: An electrospun nanofiber electret filter material and a preparation method thereof, the specific steps are:

第一步:将聚对苯二甲酸丁二酯颗粒置于50℃真空烘箱中下真空干燥1小时。 Step 1: Place the polybutylene terephthalate particles in a vacuum oven at 50° C. for 1 hour to vacuum dry.

第二步:将勃姆石加入一定量二氯甲烷中,并超声4小时,然后将干燥完毕的聚对苯二甲酸丁二酯颗粒加入含勃姆石的二氯甲烷溶剂中,将上述溶液置于磁力搅拌器上分别搅拌12小时,形成均相溶液;所述均相溶液中,聚对苯二甲酸丁二酯的质量分数为20%,勃姆石含量为聚合物和无机纳米颗粒总量的3wt%。 The second step: add boehmite to a certain amount of dichloromethane, and ultrasonic for 4 hours, then add the dried polybutylene terephthalate particles into the dichloromethane solvent containing boehmite, and dissolve the above solution Place on a magnetic stirrer and stir for 12 hours respectively to form a homogeneous solution; in the homogeneous solution, the mass fraction of polybutylene terephthalate is 20%, and the boehmite content is the total amount of polymer and inorganic nanoparticles. 3wt% of the amount.

第三步:使用图1所示的静电纺设备纺丝,先在喷丝模块1中在10mL的喷丝模块中抽入一定量上述含勃姆石的聚对苯二甲酸丁二酯聚合物溶液,并将喷丝模块的温控装置2调至60℃,恒定20分钟以使聚合物均匀受热,其中喷丝模块喷丝口到接收基材的距离为30cm,所加电压为50kV。 The third step: use the electrospinning equipment shown in Figure 1 to spin, first draw a certain amount of the above-mentioned polybutylene terephthalate polymer containing boehmite in the spinneret module 1 in the 10mL spinneret module solution, and adjust the temperature control device 2 of the spinneret module to 60°C for 20 minutes to heat the polymer evenly, wherein the distance from the nozzle of the spinneret module to the receiving substrate is 30cm, and the applied voltage is 50kV.

第四步:打开高压电源,将电压调至50kV,纺丝的环境温度为25℃,湿度为60%,将聚合物溶液以5mL/h的灌注速度静电纺丝到接收基材3上,同时安装在接收输运装置4里面的液氮恒速释放装置5以60L/min的速度释放液氮,所纺纳米纤维与液氮接触的瞬间温度降至0℃以下,同时纳米纤维受到与其运动方向相反的反作用力,从而获得纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为61g/m2,纳米纤维驻极复合过滤材料的表面静电势为3300V,疏水角158°,如图2所示,所纺纳米纤维驻极过滤材料对0.006-1μm颗粒的过滤效率可达99.9994%,并且具有优异的电荷储存稳定性能,压阻12Pa,容尘量为2980g/m2Step 4: Turn on the high-voltage power supply, adjust the voltage to 50kV, and spin the ambient temperature at 25°C and the humidity at 60%, electrospin the polymer solution onto the receiving substrate 3 at a perfusion speed of 5mL/h, and simultaneously The liquid nitrogen constant-speed release device 5 installed in the receiving and transporting device 4 releases liquid nitrogen at a speed of 60L/min, and the instantaneous temperature of the spun nanofibers in contact with liquid nitrogen drops below 0°C, and at the same time, the nanofibers are affected by the direction of their movement. Opposite reaction force, so as to obtain a high-efficiency, low-resistance nanofiber electret filter material with no adhesion between fibers and a fluffy three-dimensional network structure. The nanofiber layer has a gram weight of 61g/m 2 . The surface electrostatic potential of the material is 3300V, and the hydrophobic angle is 158°. As shown in Figure 2, the spun nanofiber electret filter material has a filtration efficiency of 99.9994% for 0.006-1μm particles, and has excellent charge storage stability. The resistance is 12Pa, and the dust holding capacity is 2980g/m 2 .

实施例3 Example 3

一种静电纺纳米纤维驻极过滤材料及其制备方法,具体步骤为: An electrospun nanofiber electret filter material and a preparation method thereof, the specific steps are:

第一步:将氟化聚氨酯颗粒和聚醚砜颗粒分别置于70℃和80℃真空烘箱中下真空干燥2小时。第二步:将倍半硅氧烷加入一定量甲酸和DMF混合溶剂中,并超声5小时,然后将干燥完毕的氟化聚氨酯颗粒和聚醚砜颗粒加入含倍半硅氧烷的甲酸和DMF混合溶剂中,将上述溶液置于磁力搅拌器上分别搅拌10小时,形成均相溶液;所述均相溶液中,氟化聚氨酯和聚醚砜的质量分数为20%,两者混合的比例为1:4,倍半硅氧烷含量为聚合物和无机纳米颗粒总量的3wt%。 Step 1: Place the fluorinated polyurethane particles and the polyethersulfone particles in vacuum ovens at 70°C and 80°C for 2 hours, respectively, to dry in vacuum. The second step: add silsesquioxane to a certain amount of formic acid and DMF mixed solvent, and ultrasonic for 5 hours, then add the dried fluorinated polyurethane particles and polyethersulfone particles to formic acid and DMF containing silsesquioxane In the mixed solvent, the above solution was placed on a magnetic stirrer and stirred for 10 hours respectively to form a homogeneous solution; in the homogeneous solution, the mass fraction of fluorinated polyurethane and polyethersulfone was 20%, and the mixing ratio of the two was 1:4, the content of silsesquioxane is 3wt% of the total amount of polymer and inorganic nanoparticles.

第三步:使用图1所示的静电纺设备纺丝,先在喷丝模块1中抽入一定量上述含倍半硅氧烷的氟化聚氨酯和聚醚砜聚合物混合溶液,并将喷丝模块的温控装置2调至80℃,恒定20分钟以使聚合物均匀受热,其中喷丝模块喷丝口到接收基材的距离为35cm,所加电压为65kV。第四步:打开高压电源,将电压调至65kV,纺丝的环境温度为20℃,湿度为40%,将聚合物溶液以6mL/h的灌注速度静电纺丝到接收基材3上,同时安装在接收输运装置4里面的液氮恒速释放装置5以49L/min的速度释放液氮,所纺纳米纤维与液氮接触的瞬间温度降至0℃以下,同时纳米纤维受到与其运动方向相反的反作用力,从而获得纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为66g/m2,纳米纤维驻极复合过滤材料的表面静电势为2320V,疏水角154°,如图2所示,所纺纳米纤维驻极过滤材料对0.006-1μm颗粒的过滤效率可达99.9999%,并且具有优异的电荷储存稳定性能,压阻7Pa,容尘量为3280g/m2The third step: use the electrospinning equipment shown in Figure 1 to spin, first pump a certain amount of the above-mentioned mixed solution of fluorinated polyurethane and polyethersulfone polymer containing silsesquioxane into the spinning module 1, and spray The temperature control device 2 of the silk module was adjusted to 80° C. and kept constant for 20 minutes to heat the polymer evenly. The distance from the nozzle of the spinning module to the receiving substrate was 35 cm, and the applied voltage was 65 kV. Step 4: Turn on the high-voltage power supply, adjust the voltage to 65kV, the ambient temperature of spinning is 20°C, and the humidity is 40%, electrospin the polymer solution onto the receiving substrate 3 at a perfusion speed of 6mL/h, and at the same time The liquid nitrogen constant-speed release device 5 installed in the receiving and transporting device 4 releases liquid nitrogen at a rate of 49L/min, and the instantaneous temperature of the spun nanofibers in contact with liquid nitrogen drops below 0°C, and at the same time, the nanofibers are affected by the direction of their movement. Opposite reaction force, so as to obtain a high-efficiency, low-resistance nanofiber electret filter material with no adhesion between fibers and a fluffy three-dimensional network structure. The nanofiber layer has a grammage of 66g/m 2 . The surface electrostatic potential of the material is 2320V, and the hydrophobic angle is 154°. As shown in Figure 2, the spun nanofiber electret filter material has a filtration efficiency of 99.9999% for 0.006-1μm particles, and has excellent charge storage stability. The resistance is 7Pa, and the dust holding capacity is 3280g/m 2 .

实施例4 Example 4

一种静电纺纳米纤维驻极过滤材料及其制备方法,具体步骤为: An electrospun nanofiber electret filter material and a preparation method thereof, the specific steps are:

第一步:分别将聚醋酸乙烯颗粒和尼龙6颗粒置于30℃和80℃真空烘箱中下真空干燥3小时。 Step 1: Place the polyvinyl acetate particles and the nylon 6 particles in vacuum ovens at 30°C and 80°C for 3 hours to vacuum dry, respectively.

第二步:将干燥完毕的聚醋酸乙烯颗粒和尼龙6颗粒分别溶于甲苯和甲酸中,并将上述溶液置于磁力搅拌器上分别搅拌12小时,形成均相溶液;所述均相溶液中,聚醋酸乙烯和尼龙6混合溶液的质量分数为20%,两者的混合比例为4:1。 Second step: dissolve the dried polyvinyl acetate particles and nylon 6 particles in toluene and formic acid respectively, and place the above solutions on a magnetic stirrer to stir for 12 hours respectively to form a homogeneous solution; , the mass fraction of the mixed solution of polyvinyl acetate and nylon 6 is 20%, and the mixing ratio of the two is 4:1.

第三步:使用图1所示的静电纺设备纺丝,先在喷丝模块1中抽入一定量上述聚醋酸乙烯颗粒和尼龙6聚合物溶液,并将喷丝模块的温控装置2调至90℃,恒定20分钟以使聚合物均匀受热,其中喷丝模块喷丝口到接收基材的距离为35cm,所加电压为55kV。 The third step: use the electrospinning equipment shown in Figure 1 to spin, first pump a certain amount of the above-mentioned polyvinyl acetate particles and nylon 6 polymer solution into the spinneret module 1, and adjust the temperature control device 2 of the spinneret module To 90°C, keep it constant for 20 minutes to heat the polymer evenly, wherein the distance from the spinneret of the spinneret module to the receiving substrate is 35cm, and the applied voltage is 55kV.

第四步:打开高压电源,将电压调至55kV,纺丝的环境温度为20℃,湿度为50%,将聚合物溶液以7mL/h的灌注速度静电纺丝到接收基材3上,同时安装在接收输运装置4里面的液氮恒速释放装置5以60L/min的速度释放液氮,所纺纳米纤维与液氮接触的瞬间温度降至0℃以下,同时纳米纤维受到与其运动方向相反的反作用力,从而获得纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为32g/m2,纳米纤维驻极复合过滤材料的表面静电势为3860V,疏水角162°,如图2所示,所纺纳米纤维驻极过滤材料对0.006-1μm颗粒的过滤效率可达99.9991%,并且具有优异的电荷储存稳定性能,压阻5Pa,容尘量为2980g/m2Step 4: Turn on the high-voltage power supply, adjust the voltage to 55kV, the ambient temperature of spinning is 20°C, and the humidity is 50%, electrospinning the polymer solution onto the receiving substrate 3 at a perfusion speed of 7mL/h, and at the same time The liquid nitrogen constant-speed release device 5 installed in the receiving and transporting device 4 releases liquid nitrogen at a speed of 60L/min, and the instantaneous temperature of the spun nanofibers in contact with liquid nitrogen drops below 0°C, and at the same time, the nanofibers are affected by the direction of their movement. Opposite reaction force, so as to obtain a high-efficiency, low-resistance nanofiber electret filter material with no adhesion between fibers and a fluffy three-dimensional network structure. The nanofiber layer has a grammage of 32g/m 2 . The surface electrostatic potential of the material is 3860V, and the hydrophobic angle is 162°. As shown in Figure 2, the spun nanofiber electret filter material has a filtration efficiency of 99.9991% for 0.006-1μm particles, and has excellent charge storage stability. The resistance is 5Pa, and the dust holding capacity is 2980g/m 2 .

实施例5 Example 5

一种静电纺纳米纤维驻极过滤材料及其制备方法,具体步骤为: An electrospun nanofiber electret filter material and a preparation method thereof, the specific steps are:

第一步:将聚氨酯颗粒、聚氧化乙烯粉末和聚醚砜颗粒置于70℃真空烘箱中下干燥3小时。 Step 1: Dry the polyurethane particles, polyethylene oxide powder and polyethersulfone particles in a vacuum oven at 70°C for 3 hours.

第二步:将电气石加入一定量DMF溶剂中,并超声5小时,然后将干燥完毕的聚氨酯颗粒、聚氧化乙烯粉末和聚醚砜颗粒加入含电气石的DMF溶剂中,将上述溶液置于磁力搅拌器上分别搅拌10小时,形成均相溶液;所述均相溶液中,聚氨酯、聚氧化乙烯和聚醚砜的质量分数为35%,三者混合的比例为1:4:4,电气石含量为聚合物和无机纳米颗粒总量的3wt%。 The second step: add tourmaline to a certain amount of DMF solvent, and ultrasonic for 5 hours, then add the dried polyurethane particles, polyethylene oxide powder and polyethersulfone particles into the DMF solvent containing tourmaline, and place the above solution in Stir on a magnetic stirrer for 10 hours to form a homogeneous solution; in the homogeneous solution, the mass fraction of polyurethane, polyethylene oxide and polyethersulfone is 35%, and the mixing ratio of the three is 1:4:4. The content of stone is 3wt% of the total amount of polymer and inorganic nanoparticles.

第三步:使用图1所示的静电纺设备纺丝,先在喷丝模块1中抽入一定量上述含电气石的聚氨酯颗粒、聚氧化乙烯和聚醚砜聚合物混合溶液,并将喷丝模块的温控装置2调至100℃,恒定20分钟以使聚合物均匀受热,其中喷丝模块喷丝口到接收基材的距离为35cm,所加电压为65kV。 The third step: use the electrospinning equipment shown in Figure 1 to spin, first pump a certain amount of the above-mentioned polyurethane particles containing tourmaline, polyethylene oxide and polyethersulfone polymer mixed solution into the spinning module 1, and spray The temperature control device 2 of the silk module was adjusted to 100° C. and kept constant for 20 minutes to heat the polymer evenly. The distance from the nozzle of the spinning module to the receiving substrate was 35 cm, and the applied voltage was 65 kV.

第四步:打开高压电源,将电压调至65kV,纺丝的环境温度为25℃,湿度为40%,将聚合物溶液以4mL/h的灌注速度静电纺丝到接收基材3上,同时安装在接收输运装置4里面的液氮恒速释放装置5以45L/min的速度释放液氮,所纺纳米纤维与液氮接触的瞬间温度降至0℃以下,同时纳米纤维受到与其运动方向相反的反作用力,从而获得纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为67g/m2,纳米纤维驻极复合过滤材料的表面静电势为3220V,疏水角164°,如图2所示,所纺纳米纤维驻极过滤材料对0.006-1μm颗粒的过滤效率可达99.9998%,并且具有优异的电荷储存稳定性能,压阻5Pa,容尘量为3420g/m2Step 4: Turn on the high-voltage power supply, adjust the voltage to 65kV, and spin the ambient temperature at 25°C and the humidity at 40%, electrospin the polymer solution onto the receiving substrate 3 at a perfusion rate of 4mL/h, and at the same time The liquid nitrogen constant-speed release device 5 installed in the receiving and transporting device 4 releases liquid nitrogen at a rate of 45L/min, and the instantaneous temperature of the spun nanofibers in contact with liquid nitrogen drops below 0°C, and at the same time, the nanofibers are affected by the direction of their movement. Opposite reaction force, so as to obtain a high-efficiency, low-resistance nanofiber electret filter material with no adhesion between fibers and a fluffy three-dimensional network structure. The nanofiber layer has a grammage of 67g/m 2 . The surface electrostatic potential of the material is 3220V, and the hydrophobic angle is 164°. As shown in Figure 2, the spun nanofiber electret filter material has a filtration efficiency of 99.9998% for 0.006-1μm particles, and has excellent charge storage stability. The resistance is 5Pa, and the dust holding capacity is 3420g/m 2 .

实施例6 Example 6

一种静电纺纳米纤维驻极过滤材料及其制备方法,具体步骤为: An electrospun nanofiber electret filter material and a preparation method thereof, the specific steps are:

第一步:将聚乙烯醇粉末、氟化聚氨酯颗粒和聚氧化乙烯粉末分别置于70℃真空烘箱中真空干燥3小时。 Step 1: Put the polyvinyl alcohol powder, fluorinated polyurethane particles and polyethylene oxide powder in a vacuum oven at 70° C. for 3 hours to vacuum dry.

第二步:将干燥完毕的聚乙烯醇粉末、氟化聚氨酯颗粒和聚氧化乙烯粉末溶于DMF中,将所述溶液置于磁力搅拌器上分别搅拌10小时,形成均相溶液;所述均相溶液中,聚乙烯醇、氟化聚氨酯和聚氧化乙烯的质量分数为20%,三者的混合比例为4:4:1。 Second step: dissolve the dried polyvinyl alcohol powder, fluorinated polyurethane particles and polyethylene oxide powder in DMF, place the solution on a magnetic stirrer and stir for 10 hours respectively to form a homogeneous solution; In the phase solution, the mass fraction of polyvinyl alcohol, fluorinated polyurethane and polyethylene oxide is 20%, and the mixing ratio of the three is 4:4:1.

第三步:使用图1所示的静电纺设备纺丝,先在喷丝模块1中抽入一定量上述聚乙烯醇、氟化聚氨酯和聚氧化乙烯聚合物溶液,并将喷丝模块的温控装置2调至100℃,恒定20分钟以使聚合物均匀受热,其中喷丝模块喷丝口到接收基材的距离为30cm,所加电压为40kV。 The third step: use the electrospinning equipment shown in Figure 1 to spin, first pump a certain amount of the above-mentioned polyvinyl alcohol, fluorinated polyurethane and polyethylene oxide polymer solution in the spinneret module 1, and the temperature of the spinneret module The control device 2 was adjusted to 100°C and kept constant for 20 minutes to heat the polymer evenly. The distance from the nozzle of the spinneret module to the receiving substrate was 30cm, and the applied voltage was 40kV.

第四步:打开高压电源,将电压调至40kV,纺丝的环境温度为28℃,湿度为55%,将聚合物溶液以3mL/h的灌注速度静电纺丝到接收基材3上,同时安装在接收输运装置4里面的液氮恒速释放装置5以40L/min的速度释放液氮,所纺纳米纤维与液氮接触的瞬间温度降至0℃以下,同时纳米纤维受到与其运动方向相反的反作用力,从而获得纤维间无粘连、蓬松的三维网状互通结构的高效、低阻纳米纤维驻极过滤材料,其中纳米纤维层的克重为55g/m2,纳米纤维驻极复合过滤材料的表面静电势为4270V,疏水角159°,如图2所示,所纺纳米纤维驻极过滤材料对0.006-1μm颗粒的过滤效率可达99.9997%,并且具有优异的电荷储存稳定性能,压阻11Pa,容尘量为2590g/m2Step 4: Turn on the high-voltage power supply, adjust the voltage to 40kV, the ambient temperature of spinning is 28°C, and the humidity is 55%, electrospin the polymer solution onto the receiving substrate 3 at a perfusion speed of 3mL/h, and at the same time The liquid nitrogen constant-speed release device 5 installed in the receiving and transporting device 4 releases liquid nitrogen at a speed of 40L/min, and the instantaneous temperature of the spun nanofibers in contact with liquid nitrogen drops below 0°C, and at the same time, the nanofibers are affected by the direction of their movement. Opposite reaction force, so as to obtain a high-efficiency, low-resistance nanofiber electret filter material with no adhesion between fibers and a fluffy three-dimensional network structure. The nanofiber layer has a grammage of 55g/m 2 . The surface electrostatic potential of the material is 4270V, and the hydrophobic angle is 159°. As shown in Figure 2, the spun nanofiber electret filter material has a filtration efficiency of 99.9997% for 0.006-1μm particles, and has excellent charge storage stability. The resistance is 11Pa, and the dust holding capacity is 2590g/m 2 .

实施例7-27制备步骤同实施例1,其中溶液参数、工艺参数和复合过滤材料性能参数如表1-2所示: Embodiment 7-27 preparation steps are the same as embodiment 1, wherein solution parameters, process parameters and composite filter material performance parameters are as shown in table 1-2:

表1 Table 1

表2 Table 2

实施例28-75制备步骤同实施例2,其中溶液参数、工艺参数和复合过滤材料性能参数如表3-6所示: Embodiment 28-75 preparation steps are the same as embodiment 2, wherein solution parameters, process parameters and composite filter material performance parameters are as shown in table 3-6:

表3 table 3

表4 Table 4

表5 table 5

表6 Table 6

实施例76-97制备步骤同实施例3,实施例98-99制备步骤同实施例4,其中溶液参数、工艺参数和复合过滤材料性能参数如表7-8所示: The preparation steps of Examples 76-97 are the same as in Example 3, and the preparation steps of Examples 98-99 are the same as in Example 4, wherein the solution parameters, process parameters and composite filter material performance parameters are as shown in Table 7-8:

表7 Table 7

表8 Table 8

实施例100-109制备步骤同实施例5,实施例109-110制备步骤同实施例6,其中溶液参数、工艺参数和复合过滤材料性能参数如表9所示: Embodiment 100-109 preparation steps are the same as embodiment 5, and embodiment 109-110 preparation steps are the same as embodiment 6, wherein solution parameters, process parameters and composite filter material performance parameters are as shown in table 9:

表9 Table 9

Claims (9)

1.一种静电纺纳米纤维驻极过滤材料的制备方法,其特征是包括以下步骤:1. a preparation method of electrospinning nanofiber electret filter material, is characterized in that comprising the following steps: 1)将聚合物溶液加热至30~120℃后进行静电纺丝;1) Electrospinning is performed after heating the polymer solution to 30-120°C; 2)所述静电纺丝所得纤维用接收基材接收后快速降温至0℃以下,即获得静电纺纳米纤维驻极过滤材料;所述快速降温是指所纺纳米纤维与接收基材的距离小于1mm时,纳米纤维与液氮接触后在小于5s的时间内降低至0℃以下;2) The fiber obtained by electrospinning is quickly cooled to below 0° C. after being received by the receiving substrate, and the electrospun nanofiber electret filter material is obtained; the rapid cooling means that the distance between the spun nanofiber and the receiving substrate is less than When the thickness is 1mm, the nanofibers will drop below 0°C in less than 5s after contacting with liquid nitrogen; 所述聚合物溶液中,聚合物为聚偏氟乙烯、聚丙烯、聚对苯二甲酸丁二酯、聚对苯二甲酸乙二酯、聚芳酯、聚醋酸乙烯、尼龙6、聚乙烯醇、聚甲基丙烯酸甲酯、聚苯胺、聚氧化乙烯、聚乙烯吡咯烷酮、聚丙烯腈、聚己内酯、聚乙二醇、聚氨酯、氟化聚氨酯、聚砜、聚醚砜、聚偏氟乙烯-六氟丙烯、聚偏氟乙烯-四氟乙烯-全氟甲基乙烯基醚、聚偏氟乙烯-三氟氯乙烯中的一种,或者是任意两种或三种聚合物的混合物;其中所述聚合物溶液中溶剂根据聚合物种类分别对应为:In the polymer solution, the polymer is polyvinylidene fluoride, polypropylene, polybutylene terephthalate, polyethylene terephthalate, polyarylate, polyvinyl acetate, nylon 6, polyvinyl alcohol , polymethyl methacrylate, polyaniline, polyethylene oxide, polyvinylpyrrolidone, polyacrylonitrile, polycaprolactone, polyethylene glycol, polyurethane, fluorinated polyurethane, polysulfone, polyethersulfone, polyvinylidene fluoride - One of hexafluoropropylene, polyvinylidene fluoride-tetrafluoroethylene-perfluoromethyl vinyl ether, polyvinylidene fluoride-chlorotrifluoroethylene, or a mixture of any two or three polymers; where The solvent in the polymer solution corresponds to: 聚偏氟乙烯:N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜;Polyvinylidene fluoride: N,N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide; 聚丙烯:正庚烷、四氢氟萘、二甲苯;Polypropylene: n-heptane, tetrahydronaphthalene, xylene; 聚对苯二甲酸丁二酯:二氯甲烷、四氢呋喃(THF)、三氯甲烷、丙酮;Polybutylene terephthalate: dichloromethane, tetrahydrofuran (THF), chloroform, acetone; 聚对苯二甲酸乙二酯:二氯甲烷、四氢呋喃、三氯甲烷、丙酮;Polyethylene terephthalate: dichloromethane, tetrahydrofuran, chloroform, acetone; 聚芳酯:二氯甲烷、四氢呋喃、三氯甲烷、丙酮;Polyarylate: dichloromethane, tetrahydrofuran, chloroform, acetone; 聚醋酸乙烯:甲苯、丙酮、乙醇、醋酸、乙酸乙酯、三氯甲烷;Polyvinyl acetate: toluene, acetone, ethanol, acetic acid, ethyl acetate, chloroform; 尼龙6:甲酸;Nylon 6: formic acid; 聚乙烯醇:水、乙醇、N,N-二甲基甲酰胺、四氢呋喃;Polyvinyl alcohol: water, ethanol, N,N-dimethylformamide, tetrahydrofuran; 聚甲基丙烯酸甲酯:氯仿、乙酸、乙酸乙酯、丙酮、甲苯;Polymethyl methacrylate: chloroform, acetic acid, ethyl acetate, acetone, toluene; 聚苯胺:N,N-二甲基甲酰胺、N-甲基吡咯烷酮;Polyaniline: N,N-dimethylformamide, N-methylpyrrolidone; 聚氧化乙烯:N,N-二甲基甲酰胺、乙醇、水、三氯甲烷;Polyethylene oxide: N,N-dimethylformamide, ethanol, water, chloroform; 聚乙烯吡咯烷酮:水、乙醇、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺;Polyvinylpyrrolidone: water, ethanol, N,N-dimethylacetamide, N,N-dimethylformamide; 聚丙烯腈:N,N-二甲基甲酰胺、二甲基亚砜;Polyacrylonitrile: N,N-dimethylformamide, dimethylsulfoxide; 聚己内酯:N,N-二甲基甲酰胺、丙酮;Polycaprolactone: N,N-dimethylformamide, acetone; 聚乙二醇:水、乙醇、N,N-二甲基甲酰胺;Polyethylene glycol: water, ethanol, N,N-dimethylformamide; 聚氨酯:N,N-二甲基甲酰胺、丙酮、N-甲基吡咯烷酮;Polyurethane: N,N-dimethylformamide, acetone, N-methylpyrrolidone; 氟化聚氨酯:N,N-二甲基甲酰胺、丙酮、N-甲基吡咯烷酮;Fluorinated polyurethane: N,N-dimethylformamide, acetone, N-methylpyrrolidone; 聚砜和聚醚砜:N,N-二甲基甲酰胺、丙酮、N-甲基吡咯烷酮、二甲基乙酰胺、四氢呋喃;Polysulfone and polyethersulfone: N,N-dimethylformamide, acetone, N-methylpyrrolidone, dimethylacetamide, tetrahydrofuran; 聚偏氟乙烯-六氟丙烯:N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜;Polyvinylidene fluoride-hexafluoropropylene: N,N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide; 聚偏氟乙烯-四氟乙烯-全氟甲基乙烯基醚:N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜;Polyvinylidene fluoride-tetrafluoroethylene-perfluoromethyl vinyl ether: N,N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide; 聚偏氟乙烯-三氟氯乙烯:N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基乙酰胺、磷酸三乙酯和二甲基亚砜;Polyvinylidene fluoride-chlorotrifluoroethylene: N,N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, triethyl phosphate and dimethyl sulfoxide; 上述任意两种或三种聚合物的混合物所用溶剂:上述溶剂中可分别溶解单一聚合物的溶剂的混合物或可同时溶解两种或三种聚合物的单一溶剂;The solvent used for the mixture of any two or three polymers above: a mixture of solvents that can dissolve a single polymer in the above solvents or a single solvent that can dissolve two or three polymers at the same time; 聚合物溶液配制过程为:将聚合物加入到相应的溶剂中,并用磁力搅拌装置连续搅拌3-20小时。The preparation process of the polymer solution is as follows: adding the polymer into the corresponding solvent, and continuously stirring for 3-20 hours with a magnetic stirring device. 2.根据权利要求1所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述聚合物溶液的质量浓度为3~40%。2. The preparation method of a kind of electrospun nanofiber electret filter material according to claim 1, characterized in that, the mass concentration of the polymer solution is 3-40%. 3.根据权利要求1或2所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述聚合物溶液中,聚合物包括均聚物、嵌段共聚物、无规共聚物、两种不同均聚物的混合物、均聚物与嵌段共聚物的混合物以及均聚物与无规共聚物的混合物。3. the preparation method of a kind of electrospinning nanofiber electret filter material according to claim 1 and 2, is characterized in that, in described polymer solution, polymer comprises homopolymer, block copolymer, random Copolymers, mixtures of two different homopolymers, mixtures of homopolymers and block copolymers, and mixtures of homopolymers and random copolymers. 4.根据权利要求1所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述聚合物溶液中还含有至少一种无机纳米颗粒,所述无机纳米颗粒为二氧化硅、三氧化二铝、氧化锌、氧化钡、二氧化钛、五氧化二钽、钛酸钡、锆钛酸铅、氮化硅、电气石、勃姆石或倍半硅氧烷纳米颗粒;所述无机纳米颗粒所加的量为:聚合物和无机纳米颗粒总量的0.1~10wt%;配制过程为:先将无机纳米颗粒加入溶剂中,并超声0.5-15个小时,然后将聚合物溶液加入其中,并用磁力搅拌装置连续搅拌3-20小时,配制成均匀且稳定的溶液。4. the preparation method of a kind of electrospinning nanofiber electret filter material according to claim 1, is characterized in that, also contains at least one inorganic nanoparticle in the described polymer solution, and described inorganic nanoparticle is carbon dioxide Silicon, aluminum oxide, zinc oxide, barium oxide, titanium dioxide, tantalum pentoxide, barium titanate, lead zirconate titanate, silicon nitride, tourmaline, boehmite, or silsesquioxane nanoparticles; the The added amount of inorganic nanoparticles is: 0.1-10wt% of the total amount of polymer and inorganic nanoparticles; Wherein, a magnetic stirring device is continuously stirred for 3-20 hours to prepare a uniform and stable solution. 5.根据权利要求1所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述加热是指聚合物在静电纺丝的喷丝模块中加热,即喷丝模块连接一温控装置;所述喷丝模块里还含有在线搅拌装置。5. the preparation method of a kind of electrospinning nanofiber electret filter material according to claim 1, is characterized in that, described heating refers to that polymer is heated in the spinneret module of electrospinning, promptly spinneret module connects A temperature control device; the spinning module also contains an online stirring device. 6.根据权利要求1所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述静电纺丝的工艺条件为:电压5~70kV,接收距离3~40cm,灌注速度0.1~10mL/h,温度0~35℃,相对湿度0~90%。6. The preparation method of a kind of electrospinning nanofiber electret filter material according to claim 1, characterized in that, the process conditions of the electrospinning are: voltage 5-70kV, receiving distance 3-40cm, perfusion speed 0.1~10mL/h, temperature 0~35℃, relative humidity 0~90%. 7.根据权利要求1所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述接收基材为木浆纤维素基材、纤维基材或混合的纤维基材;7. the preparation method of a kind of electrospinning nanofiber electret filter material according to claim 1, is characterized in that, described receiving substrate is the fiber substrate of wood pulp cellulose substrate, fiber substrate or mixing; 木浆纤维素基材为挺度0.5~5mN·m,克重8~400g/m2的木浆纤维素滤纸或木浆纤维素非织造布,木浆纤维素滤纸为瓦楞滤纸,其中纤维素瓦楞滤纸的瓦楞距离为0~3mm;The wood pulp cellulose substrate is wood pulp cellulose filter paper or wood pulp cellulose nonwoven fabric with a stiffness of 0.5-5mN m and a grammage of 8-400g/m2. The wood pulp cellulose filter paper is corrugated filter paper, of which the cellulose The corrugated distance of corrugated filter paper is 0~3mm; 纤维基材为含纤维素纤维、聚酯纤维、聚烯烃纤维的滤纸或非织造布,其挺度为0.5~5mN·m,克重为6~350g/m2;纤维滤纸包含瓦楞滤纸,其中纤维素瓦楞滤纸的瓦楞距离为0~3mm;The fiber substrate is filter paper or non-woven fabric containing cellulose fiber, polyester fiber, polyolefin fiber, its stiffness is 0.5-5mN·m, and its grammage is 6-350g/ m2 ; the fiber filter paper includes corrugated filter paper, of which The corrugation distance of cellulose corrugated filter paper is 0-3mm; 混合的纤维基材为含纤维素纤维、聚酯纤维、聚烯烃纤维中的两种以上组成的混合纤维的滤纸或非织造布,其挺度为为0.5~5mN·m,克重为6~350g/m2,所述混合纤维滤纸为瓦楞滤纸,其中纤维素瓦楞滤纸的瓦楞距离为0mm~3mm。The mixed fiber substrate is a filter paper or non-woven fabric containing mixed fibers composed of two or more of cellulose fibers, polyester fibers, and polyolefin fibers, with a stiffness of 0.5 to 5 mN·m and a grammage of 6 to 5. 350g/m 2 , the mixed fiber filter paper is corrugated filter paper, wherein the corrugated distance of the cellulose corrugated filter paper is 0mm-3mm. 8.根据权利要求1所述的一种静电纺纳米纤维驻极过滤材料的制备方法,其特征在于,所述降温的方式是在所述接收基材的背面1~100mm距离处设有一个液氮恒速释放装置,释放速度为1~100L/min。8. The preparation method of a kind of electrospinning nanofiber electret filter material according to claim 1, characterized in that, the mode of cooling is to set a liquid crystal at a distance of 1 to 100 mm from the back side of the receiving substrate. Nitrogen constant speed release device, the release speed is 1-100L/min. 9.根据以上权利要求1~8中任一项所述制备方法制备的静电纺纳米纤维驻极过滤材料,其特征在于,所述静电纺纳米纤维驻极过滤材料为基材层和纳米纤维层的两层复合结构;基材层的材质为多孔的木浆纤维素基材、纤维基材或混合的纤维基材,其纤维直径为10~50μm,孔径尺寸为3~120μm;纳米纤维层的纳米纤维直径:0.008~1μm,纳米纤维层克重为:0.01~70g/m2,纳米纤维层的孔隙率为≥80%;所述静电纺纳米纤维复合驻极过滤材料表面静电势为800-6000V,疏水角>150°,对0.006~1μm的颗粒的过滤效率可达99.999%以上,压阻小于20Pa,容尘量为300~3600g/m29. According to the electrospun nanofiber electret filter material prepared by the preparation method described in any one of claims 1 to 8 above, it is characterized in that the electrospun nanofiber electret filter material is a substrate layer and a nanofiber layer The two-layer composite structure; the material of the substrate layer is porous wood pulp cellulose substrate, fiber substrate or mixed fiber substrate, the fiber diameter is 10-50 μm, and the pore size is 3-120 μm; the nanofiber layer Nanofiber diameter: 0.008-1 μm, nanofiber layer gram weight: 0.01-70g/m 2 , nanofiber layer porosity ≥ 80%; the surface electrostatic potential of the electrospun nanofiber composite electret filter material is 800- 6000V, hydrophobic angle > 150°, the filtration efficiency of 0.006-1μm particles can reach more than 99.999%, the pressure resistance is less than 20Pa, and the dust holding capacity is 300-3600g/m 2 .
CN201410452788.XA 2014-09-05 2014-09-05 A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof Active CN104289042B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410452788.XA CN104289042B (en) 2014-09-05 2014-09-05 A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410452788.XA CN104289042B (en) 2014-09-05 2014-09-05 A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104289042A CN104289042A (en) 2015-01-21
CN104289042B true CN104289042B (en) 2016-04-20

Family

ID=52309132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410452788.XA Active CN104289042B (en) 2014-09-05 2014-09-05 A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104289042B (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801110B (en) * 2015-04-17 2016-03-23 盐城工学院 A kind of plush and nano electrospun felt composite filter material and preparation method thereof
CN104815485A (en) * 2015-04-17 2015-08-05 华中师范大学 Transparent charge nanofiber air filtering material and preparation method thereof
CN104921342B (en) * 2015-05-14 2016-08-17 青岛华世洁环保科技有限公司 A kind of nanofiber MULTILAYER COMPOSITE filter face mask and preparation method thereof
CN105080220B (en) * 2015-09-09 2016-08-31 江苏创云环保科技有限公司 A kind of air filting material and its preparation method and application
CN107227502A (en) * 2016-03-23 2017-10-03 张国勇 A kind of electrostatic spinning formula of liquid of composite air filtering material
CN105803678A (en) * 2016-04-18 2016-07-27 生纳科技(上海)有限公司 Nanofiber membrane capable of filtering out impurities and preparation method and application thereof
CN105833744A (en) * 2016-04-20 2016-08-10 清北高科(北京)科技有限公司 Single-layer supporting multifunctional air filter membrane
CN105920919B (en) * 2016-05-17 2018-07-10 华南理工大学 A kind of preparation of super-hydrophobic electret filter for being used to purify PM2.5 and activation method
JP2018001063A (en) * 2016-06-28 2018-01-11 Jnc株式会社 Filter medium and manufacturing method of the same
CN107587259A (en) * 2016-07-06 2018-01-16 南京理工大学 A kind of composite electrospun tunica fibrosa of high efficiency filter performance and preparation method thereof
CN106676752A (en) * 2016-08-25 2017-05-17 仇颖超 Preparation method of low-resistance composite air filter material
CN106521809B (en) * 2016-10-17 2019-04-30 安徽工程大学 A kind of preparation method and application of functional PMMA-MMT-TiO2 composite nanofiber membrane
CN106567192A (en) * 2016-10-25 2017-04-19 嘉善蓝欣涂料有限公司 Method for preparing multifunctional health-care nanofiber membrane
CN106637668A (en) * 2016-10-31 2017-05-10 安徽江威精密制造有限公司 Electrostatic spinning capacitor diaphragm material capable of enhancing strength through silica sol cooperating with polymer
CN106521686A (en) * 2016-11-07 2017-03-22 杭州同净环境科技有限公司 Silica nanoparticle-loaded fiber electret material and preparation method thereof
CN106544786A (en) * 2016-11-08 2017-03-29 铜陵市启动电子制造有限责任公司 A kind of titanium doped modified Static Spinning diaphragm of supercapacitor material of lanthanum lithium
CN106367895A (en) * 2016-11-08 2017-02-01 铜陵市启动电子制造有限责任公司 Composite electrostatic spinning fiber diaphragm material with doped zirconia and compounded polyurethane
CN106835325B (en) * 2017-02-16 2019-10-18 华南理工大学 An electromagnetic integrated nanofiber filter material and its preparation and activation method
CN108939942A (en) * 2017-05-19 2018-12-07 南京理工大学 A kind of preparation method of composite membrane
CN107377006B (en) * 2017-08-08 2019-10-29 东华大学 A kind of flexibility black TiO2Nano fibrous membrane and preparation method thereof
CN107413325B (en) * 2017-08-08 2019-10-29 东华大学 A kind of rare earth/carbon co-doped flexibility TiO2Nano fibrous membrane and preparation method thereof
CN107475904B (en) * 2017-08-08 2020-05-05 东华大学 Flexible ordered mesoporous TiO2Nanofiber membrane and preparation method thereof
CN107441827B (en) * 2017-08-17 2020-08-11 东华大学 Multilayer electret nanofiber filtering material and preparation method thereof
CN108130603A (en) * 2017-12-21 2018-06-08 河北工业大学 A kind of preparation method and application for the polymer fiber for adding tourmaline nano particle
CN108425272B (en) * 2018-02-26 2021-03-23 嘉兴学院 Method for protecting paper document by adopting electrostatic spinning fiber membrane
CN108505388B (en) * 2018-03-28 2019-12-10 华南理工大学 A controllable mixed nanofibril filter paper and its preparation method and application
WO2019214581A1 (en) * 2018-05-07 2019-11-14 Honeywell Performance Materials And Technologies (China) Co., Ltd. Poly-chlorotrifluoroethylene copolymer nanofibers, methods of manufacturing such nanofibers, and products made with such nanofibers
CN109166960A (en) * 2018-08-23 2019-01-08 浙江理工大学 A kind of preparation method of fiber base flexible piezoelectric sensors
CN109367165B (en) * 2018-09-10 2020-09-29 中原工学院 LiNbO3Anti-haze window screen with/PAN (polyacrylonitrile) composite nanofiber electret and preparation method of anti-haze window screen
CN109364579A (en) * 2018-11-07 2019-02-22 嘉兴富瑞邦新材料科技有限公司 A kind of air purifier electret nanofiber filtration material and preparation method thereof
CN109589685A (en) * 2018-11-07 2019-04-09 嘉兴富瑞邦新材料科技有限公司 A kind of automobile air conditioner filter element electret nanofiber filtration material and preparation method thereof
CN109569092A (en) * 2018-11-07 2019-04-05 嘉兴富瑞邦新材料科技有限公司 A kind of HVAC electret nanofiber filtration material and preparation method thereof
CN109589684A (en) * 2018-11-07 2019-04-09 嘉兴富瑞邦新材料科技有限公司 A kind of fresh air system electret nanofiber filtration material and preparation method thereof
CN111334935A (en) * 2018-12-19 2020-06-26 上海精发实业股份有限公司 Spunbonded filament electrostatic framework filter material and preparation method and application thereof
CN111364164A (en) * 2018-12-25 2020-07-03 上海精发实业股份有限公司 Multifunctional self-reinforced bicomponent filament electrostatic filtering material and preparation method and application thereof
CN109730378B (en) * 2018-12-29 2021-11-23 青岛军融创新工程研究院有限公司 PM2.5 protective mask with electrostatic spinning film and preparation method thereof
CN110253984B (en) * 2019-06-19 2021-05-07 大连工业大学 Electrospinning nanofiber membrane-fabric composite coating material and preparation method
CN110344127A (en) * 2019-06-23 2019-10-18 浙江理工大学 A kind of centrifugal spinning preparation method of porous Kynoar/polyethylene glycol oxide micro/nano-fibre
CN110237608A (en) * 2019-07-04 2019-09-17 江苏中科睿赛污染控制工程有限公司 A kind of air filter material and its preparation method and application
CN111111474B (en) * 2019-12-23 2022-08-09 爱舍环境科技(成都)有限公司 Medium for air filtration
CN110984827A (en) * 2020-01-13 2020-04-10 中原工学院 PU/Si3N4Electret nanofiber anti-haze window screen and preparation method thereof
CN111330355B (en) * 2020-02-28 2022-06-14 厦门理工学院 A kind of electret nanofiber high-efficiency filter material and preparation method thereof
CN111495035B (en) * 2020-02-28 2022-09-06 中科贝思达(厦门)环保科技股份有限公司 Electret nanofiber air filtering material and preparation method thereof
CN111228892A (en) * 2020-03-11 2020-06-05 上海市纺织科学研究院有限公司 Preparation method of high-temperature-resistant electret filter material
CN111455474B (en) * 2020-03-23 2022-04-08 东华大学 A kind of wool-like crimped electrospinning nanofiber and preparation method thereof
CN113208206B (en) * 2020-04-02 2023-06-27 北京化工大学 Full-biodegradable mask and preparation method thereof
CN111501110A (en) * 2020-04-16 2020-08-07 西北工业大学 A kind of preparation method of large aperture electrospinning nanofiber material
CN112779673B (en) * 2021-01-05 2021-12-07 武汉纺织大学 Multifunctional composite melt-blown non-woven fabric and preparation method thereof
CN113136631A (en) * 2021-03-12 2021-07-20 宁波方太厨具有限公司 Preparation method of conductive nanofiber, composite nanofiber filter screen and preparation method thereof
CN113181711A (en) * 2021-04-26 2021-07-30 苏州和塑美科技有限公司 Degradable nanofiber air filtering material and preparation method thereof
CN113265769B (en) * 2021-05-10 2022-09-09 东营俊富净化科技有限公司 High-quality electric cotton non-woven fabric material and preparation method thereof
CN113457477A (en) * 2021-08-13 2021-10-01 南方科技大学台州研究院 Nanofiber filtering membrane and preparation method and application thereof
CN113862800B (en) * 2021-11-03 2024-12-06 常州诺金科技有限公司 Electrospinning structure with multiple nozzles
CN114504951B (en) * 2022-01-24 2023-09-22 华南理工大学 A recyclable electret filter membrane and its preparation method, cleaning and charge regeneration method
CN114642973B (en) * 2022-03-14 2022-11-25 中纺院(浙江)技术研究院有限公司 Air filtering material with temperature and humidity response performance and preparation and application thereof
CN114892338A (en) * 2022-05-11 2022-08-12 中广核研究院有限公司 Nanofiber membrane and preparation method and application thereof
CN115006917B (en) * 2022-06-13 2024-04-26 昆承新材料科技(江苏)有限公司 Fluffy nano filter material and preparation method and application thereof
CN115538181A (en) * 2022-11-04 2022-12-30 广东省美净滤清器有限公司 Efficient fade-resistant electret filter material for dust removal and preparation method thereof
CN116949682B (en) * 2023-06-03 2024-01-26 广东爱航环境科技有限公司 Non-woven fabric for deodorizing and antibacterial air purifier and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375886B1 (en) * 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
CN201765960U (en) * 2010-04-15 2011-03-16 群扬材料工业股份有限公司 Polymer Static Film
CN102505357A (en) * 2011-09-22 2012-06-20 东华大学 Electrostatic spinning melt blowing composite non-woven material for filtering blood and preparation method of electrostatic spinning melt blowing composite non-woven material
CN103785231B (en) * 2014-03-08 2016-10-12 广州市三泰汽车内饰材料有限公司 A kind of air filter

Also Published As

Publication number Publication date
CN104289042A (en) 2015-01-21

Similar Documents

Publication Publication Date Title
CN104289042B (en) A kind of electrostatic spinning nano fiber electret filtering material and preparation method thereof
CN104766938B (en) A kind of compound lithium ion battery separator and preparation method thereof
CN102242464B (en) Polymer-ceramic compound nanometer fibrous membrane as well as preparation method and application thereof
CN108589048A (en) Orientation capillary power drive is prepared using electrostatic spinning large area efficiently to catchment the methods of hydrophobic/hydrophilic Janus composite cellulosic membranes
CN105200539B (en) A preparation method of nanofiber/spun-bonded non-woven composite filter material and composite filter material prepared by the method
Raghavan et al. Electrospun polymer nanofibers: The booming cutting edge technology
CN102629679B (en) Nanofiber lithium ion battery diaphragm material with composite structure and preparation method thereof
CN103258978A (en) Preparation method of P(VDF-HFP) (Poly(Vinyl Fluoride-Hexafluoropropylene)) inorganic compound porous nano fiber lithium ion battery separator
CN104028047B (en) A kind of high abrasion antistripping electrostatic spinning nano fiber composite filter material and spinning process thereof
CN104645715B (en) High-efficiency and low-resistance nanofiber air filter material for masks and preparation method thereof
CN103469488A (en) Preparation method of reinforced electrostatic spinning nano-fiber lithium-ion battery separator
CN104766937B (en) A kind of environment-friendlylithium lithium ion battery membrane and preparation method thereof
CN105970485B (en) A kind of polyimides/zirconium dioxide composite nano-fiber membrane and preparation method thereof
CN106237717A (en) A kind of efficient low-resistance electrostatic spinning nano fiber air filting material and mass preparation method
CN106283389B (en) A kind of hydrophobic/hydrophilic infiltration sex differernce composite cellulosic membrane and preparation method thereof
CN103474610A (en) Method for preparing composite lithium-ion battery separator through electrostatic spinning/electrostatic spraying
CN103343423B (en) A kind of crosslinked polyethers imide fiber film and preparation thereof that can be used as lithium electric separator
CN104466064A (en) Preparation method of battery diaphragm
CN104674383A (en) Carbon nano fiber aerogel electrostatic spinning construction method
CN106835304A (en) A kind of electrostatic spinning electrical painting device and its application
CN108201735B (en) Filter device and preparation method thereof
CN111282342B (en) Long-acting electret nanofiber filtering material and preparation method thereof
CN106925033A (en) A kind of composite nano fiber PM2.5 filtering materials and preparation method thereof
CN107195894A (en) A kind of metal carbon nano-fiber composite material and its preparation method and application
CN111394892B (en) A kind of polyimide nanofiber membrane coaxially coated with nano-zirconia inorganic layer and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant