[go: up one dir, main page]

CN107195894A - A kind of metal carbon nano-fiber composite material and its preparation method and application - Google Patents

A kind of metal carbon nano-fiber composite material and its preparation method and application Download PDF

Info

Publication number
CN107195894A
CN107195894A CN201710546201.5A CN201710546201A CN107195894A CN 107195894 A CN107195894 A CN 107195894A CN 201710546201 A CN201710546201 A CN 201710546201A CN 107195894 A CN107195894 A CN 107195894A
Authority
CN
China
Prior art keywords
citrate
metal
composite material
carbon nanofiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710546201.5A
Other languages
Chinese (zh)
Other versions
CN107195894B (en
Inventor
兰金叻
金玉强
原浩成
马文强
主汎
主一汎
杨小平
于运花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710546201.5A priority Critical patent/CN107195894B/en
Publication of CN107195894A publication Critical patent/CN107195894A/en
Application granted granted Critical
Publication of CN107195894B publication Critical patent/CN107195894B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种金属碳纳米纤维复合材料及其制备方法和应用,其解决了现有材料中金属活性材料的纺入量较低的技术问题,本发明中金属碳纳米纤维复合材料包括碳纳米纤维和块体金属活性材料;块体金属活性材料的表面被聚合物基的碳包覆,且内部为纳米球形材料;块体金属活性材料由碳纳米纤维牵引并被碳纳米纤维所缠绕;金属活性物质占金属碳纳米纤维复合材料的质量分数为30~70%。本发明同时提供了其制备方法和应用。本发明可用于电池材料的制备领域。

The invention relates to a metal-carbon nanofiber composite material and its preparation method and application, which solves the technical problem that the spinning amount of metal active materials in existing materials is relatively low. The metal-carbon nanofiber composite material in the invention includes carbon nanofiber Fiber and bulk metal active materials; the surface of the bulk metal active material is coated with polymer-based carbon, and the interior is a nano-spherical material; the bulk metal active material is drawn by carbon nanofibers and entangled by carbon nanofibers; metal The mass fraction of the active material in the metal carbon nanofiber composite material is 30-70%. The invention also provides its preparation method and application. The invention can be used in the field of battery material preparation.

Description

一种金属碳纳米纤维复合材料及其制备方法和应用A kind of metal carbon nanofiber composite material and its preparation method and application

技术领域technical field

本发明涉及电池材料领域,具体地说涉及一种金属碳纳米纤维复合材料及其制备方法和应用。The invention relates to the field of battery materials, in particular to a metal carbon nanofiber composite material and its preparation method and application.

背景技术Background technique

近些年来,石油资源的短缺以及环境问题的日益加剧,迫使人们开发一些更加清洁和高效的储能设备。在所有的储能设备中,锂离子电池因其高能量密度、长循环寿命等特点而被广泛应用。但由于全世界金属锂的储量有限,科研工作者开始开发如钠离子电池、镁离子电池、铝离子电池等储能设备。与此同时,人们对于储能设备的需求逐渐多样化,柔性电极材料的研发成了一个重要的科研课题。In recent years, the shortage of oil resources and the aggravation of environmental problems have forced people to develop some cleaner and more efficient energy storage devices. Among all energy storage devices, lithium-ion batteries are widely used due to their high energy density and long cycle life. However, due to the limited reserves of lithium metal in the world, researchers have begun to develop energy storage devices such as sodium-ion batteries, magnesium-ion batteries, and aluminum-ion batteries. At the same time, people's demand for energy storage devices is gradually diversifying, and the research and development of flexible electrode materials has become an important scientific research topic.

静电纺丝具有制备装置简单、成本低、可纺材料多、工艺可控性强、易工业化推广等优点。在所有涉及柔性电极材料的研究中,静电纺丝法作为制备柔性电极材料的手段受到了人们的广泛关注。Electrospinning has the advantages of simple preparation equipment, low cost, more spinnable materials, strong process controllability, and easy industrialization. Among all the researches involving flexible electrode materials, electrospinning has attracted much attention as a means to prepare flexible electrode materials.

目前,关于静电纺丝法的研究主要集中于将金属活性材料分散于纤维的内部,得到碳纳米纤维复合材料。通过上述方法可以解决大部分电极材料体积膨胀大的问题,同时可以增加材料的导电性,有利于提高电极材料的电化学性能。At present, the research on the electrospinning method mainly focuses on dispersing the metal active material inside the fiber to obtain the carbon nanofiber composite material. The above method can solve the problem of large volume expansion of most electrode materials, and at the same time can increase the conductivity of the material, which is beneficial to improving the electrochemical performance of the electrode material.

但此种方法金属活性材料的纺入量较低,且静电纺丝法对于溶液体系的选择、静电纺丝参数的设定以及热处理的选择等方面具有较高的要求,外部条件对产物的微观结构也有较大的影响,仍需要大量的研究来克服现有的问题。目前,国内外采用经典纺丝的研究主要集中于将纳米材料分散于纤维的内部,得到碳纳米纤维复合材料,鲜有将微米尺度材料与静电纺丝法结合的报道。However, the spinning amount of metal active materials in this method is relatively low, and the electrospinning method has high requirements for the selection of the solution system, the setting of the electrospinning parameters, and the selection of heat treatment. The structure also has a large influence, and a lot of research is still needed to overcome the existing problems. At present, the research on classical spinning at home and abroad mainly focuses on dispersing nanomaterials in the interior of fibers to obtain carbon nanofiber composite materials. There are few reports on the combination of micron-scale materials and electrospinning.

发明内容Contents of the invention

本发明就是为了解决现有材料中金属活性材料的纺入量较低的技术问题,提供一种通过将微米尺度的材料进行静电纺丝、得到金属碳纳米纤维复合材料及其制备方法和应用。The present invention aims to solve the technical problem of low spinning amount of metal active materials in existing materials, and provides a metal-carbon nanofiber composite material obtained by electrospinning micron-scale materials and its preparation method and application.

为此,本发明提供一种金属碳纳米纤维复合材料,金属碳纳米纤维复合材料包括碳纳米纤维和金属活性材料,所述块体金属活性材料的表面被聚合物基的碳包覆,且内部为纳米球形材料;同时块体金属活性材料由碳纳米纤维牵引并被碳纳米纤维所缠绕;金属碳纳米纤维复合材料的金属活性物质质量分数为30~70%。To this end, the present invention provides a metal-carbon nanofiber composite material, the metal-carbon nanofiber composite material includes carbon nanofibers and metal active materials, the surface of the bulk metal active material is coated with polymer-based carbon, and the inner It is a nano-spherical material; at the same time, the bulk metal active material is drawn by carbon nanofibers and entwined by carbon nanofibers; the mass fraction of the metal active material in the metal-carbon nanofiber composite material is 30-70%.

优选的,金属活性材料为柠檬酸铁、柠檬酸铋、柠檬酸钴、柠檬酸铁铵、柠檬酸镍、柠檬酸锌、柠檬酸钛、柠檬酸锆、柠檬酸锡、柠檬酸镁或柠檬酸铜中的一种或几种碳化后形成的材料。Preferably, the metal active material is iron citrate, bismuth citrate, cobalt citrate, iron ammonium citrate, nickel citrate, zinc citrate, titanium citrate, zirconium citrate, tin citrate, magnesium citrate or citric acid A material formed after one or more carbonizations of copper.

优选的,聚合物为聚乙烯吡咯烷酮、聚丙烯腈、聚吡咯、聚酰亚胺或聚乙烯醇中的一种或两种组合。Preferably, the polymer is one or a combination of polyvinylpyrrolidone, polyacrylonitrile, polypyrrole, polyimide or polyvinyl alcohol.

本发明同时提供了一种金属碳纳米纤维复合材料的制备方法,其包括如下步骤:(1)配置静电纺丝溶液:将1~10wt%的聚合物加入有机溶液中,放入60~90℃的烘箱中恒温处理3~30小时,再加入金属前驱体,然后搅拌4~24小时,制得静电纺丝溶液,金属前驱体与聚合物的重量比之比为(0.5~10):1;(2)采用静电纺丝方法制备复合纳米纤维膜:使用的静电纺丝方法参数:注射器针头内径为0.9~1.6mm,温度为15~40℃,相对湿度<30%,静电电压为15~22kV,纺丝液流量为0.4~1.5ml/h,接收距离为15~30cm,转筒转速为500~1200rpm,采用单针或多针头纺丝;(3)热处理:将所述步骤(2)得到的复合纳米纤维膜在氮气氛围、600~1000℃下进行热处理,升温速度为1~10℃/min,降温速度为1~10℃/min,保温时间为1~5小时,即得最终产物。The present invention also provides a method for preparing a metal-carbon nanofiber composite material, which includes the following steps: (1) configuring an electrospinning solution: adding 1 to 10 wt% of a polymer into an organic solution, and placing it at 60 to 90°C Constant temperature treatment in an oven for 3 to 30 hours, then adding the metal precursor, and then stirring for 4 to 24 hours to obtain an electrospinning solution, the weight ratio of the metal precursor to the polymer is (0.5 to 10): 1; (2) Preparation of composite nanofiber membrane by electrospinning method: the parameters of the electrospinning method used: the inner diameter of the syringe needle is 0.9-1.6mm, the temperature is 15-40°C, the relative humidity is <30%, and the electrostatic voltage is 15-22kV , the flow rate of spinning solution is 0.4~1.5ml/h, the receiving distance is 15~30cm, the rotary drum speed is 500~1200rpm, and single needle or multi-needle spinning is adopted; (3) heat treatment: the step (2) obtained The composite nanofiber membrane is heat-treated in a nitrogen atmosphere at 600-1000°C, the heating rate is 1-10°C/min, the cooling rate is 1-10°C/min, and the holding time is 1-5 hours to obtain the final product.

优选的,步骤(1)的聚合物为聚乙烯吡咯烷酮、聚丙烯腈、聚吡咯、聚酰亚胺或聚乙烯醇中的一种或两种组合。Preferably, the polymer in step (1) is one or a combination of polyvinylpyrrolidone, polyacrylonitrile, polypyrrole, polyimide or polyvinyl alcohol.

优选的,步骤(1)的溶剂为无水乙醇、丙烯碳酸酯、乙酸乙酯、丁烯碳酸酯、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、或N-甲基吡咯烷酮中的一种或多种组合。Preferably, the solvent of step (1) is absolute ethanol, propylene carbonate, ethyl acetate, butylene carbonate, N,N-dimethylacetamide, N,N-dimethylformamide, or N- One or more combinations of methylpyrrolidone.

优选的,步骤(1)的金属前驱体为柠檬酸铁、柠檬酸铋、柠檬酸钴、柠檬酸铁铵、柠檬酸镍、柠檬酸锌、柠檬酸钛、柠檬酸锆、柠檬酸锡、柠檬酸镁或柠檬酸铜中的一种或多种组合。Preferably, the metal precursor of step (1) is iron citrate, bismuth citrate, cobalt citrate, ferric ammonium citrate, nickel citrate, zinc citrate, titanium citrate, zirconium citrate, tin citrate, lemon citrate One or more combinations of magnesium citrate or copper citrate.

优选的,步骤(1)的金属前驱体为微米尺度的颗粒,其在一个维度、两个维度或三个维度上为微米尺寸。Preferably, the metal precursor in step (1) is micron-sized particles, which are micron-sized in one dimension, two dimensions or three dimensions.

本发明同时提供金属碳纳米纤维复合材料作为电池正极或者负极材料的应用。The invention also provides the application of the metal-carbon nanofiber composite material as a positive electrode or negative electrode material of a battery.

优选的,应用于锂离子电池、钠离子电池、锌离子电池或镁离子电池中的一种或几种。Preferably, it is applied to one or more of lithium-ion batteries, sodium-ion batteries, zinc-ion batteries or magnesium-ion batteries.

本发明具有以下优点:The present invention has the following advantages:

(1)本发明将微米尺度的材料进行静电纺丝,得到了一种具有新结构的电池材料。该方法的使得活性物质的纺入量有了很大的提高,最高可达到65%以上。复合材料的结构特点主要是微米尺度的材料出现在碳纳米纤维外部,表面被一层聚合物基的碳包覆,内部材料在碳化过后变为纳米材料。同时块体的两端被两根碳纳米纤维牵引又被其余的碳纳米纤维所缠绕,实现了双重保护。该结构可以为材料提供更多的离子和电子传输通道,同时有利于电解液的浸润,使得电极材料具有较好的电化学性能。(1) In the present invention, micron-scale materials are electrospun to obtain a battery material with a new structure. The method greatly improves the spinning-in amount of the active substance, which can reach more than 65%. The structural characteristics of composite materials are mainly that micron-scale materials appear outside carbon nanofibers, the surface is covered by a layer of polymer-based carbon, and the internal materials become nanomaterials after carbonization. At the same time, both ends of the block are drawn by two carbon nanofibers and wound by the rest of the carbon nanofibers, achieving double protection. This structure can provide more ion and electron transport channels for the material, and at the same time facilitates the infiltration of the electrolyte, so that the electrode material has better electrochemical performance.

(2)本发明以静电纺丝为方法,制备了复合纳米纤维膜,材料可作为无导电剂和粘结剂的柔性电极材料使用。本发明工艺简单、可控性强、成本低廉、低碳环保,便于工业化推广应用。(2) The present invention uses electrospinning as a method to prepare composite nanofiber membranes, which can be used as flexible electrode materials without conductive agents and binders. The invention has the advantages of simple process, strong controllability, low cost, low carbon and environmental protection, and is convenient for industrial popularization and application.

附图说明Description of drawings

图1是本发明实施例1制备的柔性电极材料的光学照片;Fig. 1 is the optical photo of the flexible electrode material that the embodiment of the present invention 1 prepares;

图2是本发明实施例1的扫描电镜图;Fig. 2 is the scanning electron microscope figure of embodiment 1 of the present invention;

图3是本发明实施例1的透射电镜图;Fig. 3 is the transmission electron microscope figure of embodiment 1 of the present invention;

图4是本发明实施例1的产物作为锂离子电池负极的循环放电容量图。Fig. 4 is a diagram of the cycle discharge capacity of the product of Example 1 of the present invention as the negative electrode of a lithium ion battery.

具体实施方式detailed description

下面实施例对本发明进行进一步的阐述,下属说明仅为了解释本发明,并不对其内容进行限定。The following examples further illustrate the present invention, and the following descriptions are only for explaining the present invention, and do not limit its content.

实施例1Example 1

配置静电纺丝溶液:将1g的聚丙烯腈加入10g N,N-二甲基甲酰胺溶液中,放入60℃的烘箱中恒温处理30小时,再加入1.9g微米尺度的柠檬酸铋,然后搅拌24小时,制得静电纺丝溶液,金属前驱体与聚合物的质量之比为1.9:1;Configure the electrospinning solution: add 1g of polyacrylonitrile to 10g of N,N-dimethylformamide solution, put it in an oven at 60°C for 30 hours, then add 1.9g of micron-sized bismuth citrate, and then Stir for 24 hours to prepare an electrospinning solution, the mass ratio of the metal precursor to the polymer is 1.9:1;

采用静电纺丝工艺制备复合纳米纤维膜:将静电纺丝溶液倒入带内径1.2mm针头的注射器中,在室温相对湿度<30%的环境中,以20kV的电压1ml/h的注射速度静电纺丝8小时,接收距离为20cm,转筒转速为1000rpm,制得复合纳米纤维膜;Preparation of composite nanofiber membrane by electrospinning process: Pour the electrospinning solution into a syringe with a needle with an inner diameter of 1.2mm, and electrospin at an injection speed of 1ml/h at a voltage of 20kV in an environment with a relative humidity of <30% at room temperature silk for 8 hours, the receiving distance is 20cm, and the rotary drum speed is 1000rpm, and the composite nanofiber membrane is obtained;

热处理工艺:将得到的复合纳米纤维膜在氮气氛围、600℃下进行热处理,升温速度为3℃/min,保温时间为2小时,即得最终复合碳纳米纤维膜;Heat treatment process: heat-treat the obtained composite nanofiber membrane in a nitrogen atmosphere at 600°C with a heating rate of 3°C/min and a holding time of 2 hours to obtain the final composite carbon nanofiber membrane;

电化学测试:将产物切成直径12mm的圆片,组装锂离子电池,进行电化学测试。Electrochemical test: cut the product into discs with a diameter of 12 mm, assemble a lithium-ion battery, and perform electrochemical tests.

实施例2Example 2

配置静电纺丝溶液:将0.5g的聚丙烯腈加入5g丙烯碳酸酯溶液中,放入60℃的烘箱中恒温处理20小时,再加入5g微米尺度的柠檬酸铁,然后搅拌24小时,制得静电纺丝溶液,金属前驱体与聚合物的之比为10:1;Configure the electrospinning solution: add 0.5g of polyacrylonitrile to 5g of propylene carbonate solution, put it in an oven at 60°C for 20 hours at a constant temperature, then add 5g of micron-scale ferric citrate, and then stir for 24 hours to obtain Electrospinning solution, the ratio of metal precursor to polymer is 10:1;

采用静电纺丝工艺制备复合纳米纤维膜:将静电纺丝溶液倒入带内径0.9mm针头的注射器中,在室温相对湿度<30%的环境中,以22kV的电压0.8ml/h的注射速度静电纺丝6小时,接收距离为30cm,转筒转速为1200rpm,制得复合纳米纤维膜;Preparation of composite nanofibrous membrane by electrospinning process: Pour the electrospinning solution into a syringe with a needle with an inner diameter of 0.9mm, and in an environment with a relative humidity of <30% at room temperature, electrospin the electrospinning solution at an injection speed of 0.8ml/h at a voltage of 22kV Spinning for 6 hours, the receiving distance is 30cm, and the rotating speed of the drum is 1200rpm, and the composite nanofiber film is obtained;

热处理工艺:将得到的复合纳米纤维膜在氮气氛围、1000℃下进行热处理,升温速度为5℃/min,保温时间为5小时,即得最终复合碳纳米纤维膜;Heat treatment process: heat-treat the obtained composite nanofiber membrane in a nitrogen atmosphere at 1000°C with a heating rate of 5°C/min and a holding time of 5 hours to obtain the final composite carbon nanofiber membrane;

电化学测试:将产物切成直径12mm的圆片,组装锂离子电池,进行电化学测试。Electrochemical test: cut the product into discs with a diameter of 12 mm, assemble a lithium-ion battery, and perform electrochemical tests.

实施例3Example 3

配置静电纺丝溶液:将5g的聚乙烯吡咯烷酮加入10g N,N-二甲基乙酰胺溶液中,放入90℃的烘箱中恒温处理12小时,再加入2.5g微米尺度的柠檬酸钼,然后搅拌4小时,制得静电纺丝溶液,金属前驱体与聚合物的之比为0.5:1;Prepare the electrospinning solution: add 5g of polyvinylpyrrolidone to 10g of N,N-dimethylacetamide solution, put it in an oven at 90°C for 12 hours, then add 2.5g of micron-sized molybdenum citrate, and then Stir for 4 hours to prepare an electrospinning solution, the ratio of the metal precursor to the polymer is 0.5:1;

采用静电纺丝工艺制备复合纳米纤维膜:将静电纺丝溶液倒入带内径1.6mm针头的双头注射器中,在室温相对湿度<30%的环境中,以22kV的电压0.4ml/h的注射速度静电纺丝10小时,接收距离为15cm,转筒转速为500rpm,制得复合纳米纤维膜;Preparation of composite nanofiber membrane by electrospinning process: pour the electrospinning solution into a double-headed syringe with a needle with an inner diameter of 1.6mm, and inject at a voltage of 0.4ml/h at 22kV in an environment with a relative humidity of <30% at room temperature The speed electrospinning was 10 hours, the receiving distance was 15cm, and the rotating speed of the drum was 500rpm to prepare a composite nanofiber membrane;

热处理工艺:将得到的复合纳米纤维膜在氮气氛围、800℃下进行热处理,升温速度为10℃/min,保温时间为1小时,即得最终复合碳纳米纤维膜;Heat treatment process: heat-treat the obtained composite nanofiber membrane in a nitrogen atmosphere at 800°C with a heating rate of 10°C/min and a holding time of 1 hour to obtain the final composite carbon nanofiber membrane;

电化学测试:将产物切成直径12mm的圆片,组装钠离子电池,进行电化学测试。Electrochemical test: cut the product into discs with a diameter of 12mm, assemble a sodium ion battery, and perform electrochemical tests.

实施例4Example 4

配置静电纺丝溶液:将2.74g的聚乙烯吡咯烷酮加入8g N,N-二甲基甲酰胺溶液中,放入80℃的烘箱中恒温处理3小时,再加入1.37g微米尺度的柠檬酸铋,然后搅拌12小时,制得静电纺丝溶液,金属前驱体与聚合物的之比为0.5:1;Configure the electrospinning solution: add 2.74g of polyvinylpyrrolidone to 8g of N,N-dimethylformamide solution, put it in an oven at 80°C for 3 hours, then add 1.37g of micron-sized bismuth citrate, Then stir for 12 hours to prepare an electrospinning solution, the ratio of the metal precursor to the polymer is 0.5:1;

采用静电纺丝工艺制备复合纳米纤维膜:将静电纺丝溶液倒入带内径1.0mm针头的注射器中,在室温相对湿度<30%的环境中,以22kV的电压0.9ml/h的注射速度静电纺丝10小时,接收距离为15cm,转筒转速为500rpm,制得复合纳米纤维膜;Preparation of composite nanofibrous membrane by electrospinning process: Pour the electrospinning solution into a syringe with a needle with an inner diameter of 1.0mm, and in an environment with a relative humidity of <30% at room temperature, electrospin the electrospinning solution at an injection speed of 0.9ml/h at a voltage of 22kV Spinning for 10 hours, the receiving distance is 15cm, and the drum rotating speed is 500rpm to prepare a composite nanofiber membrane;

热处理工艺:将得到的复合纳米纤维膜在氮气氛围、600℃下进行热处理,升温速度为1℃/min,保温时间为4小时,即得最终复合碳纳米纤维膜;Heat treatment process: heat-treat the obtained composite nanofiber membrane in a nitrogen atmosphere at 600°C with a heating rate of 1°C/min and a holding time of 4 hours to obtain the final composite carbon nanofiber membrane;

电化学测试:将产物切成直径12mm的圆片,组装镁离子电池,进行电化学测试。Electrochemical test: cut the product into discs with a diameter of 12 mm, assemble a magnesium ion battery, and perform electrochemical tests.

实施例5Example 5

配置静电纺丝溶液:将1的聚乙烯吡咯烷酮加入10g N,N-二甲基甲酰胺溶液中,放入80℃的烘箱中恒温处理3小时,再加入3.6g柠檬酸镍,然后搅拌12小时,制得静电纺丝溶液,金属前驱体与聚合物的之比为3.6:1;Prepare electrospinning solution: add 1% polyvinylpyrrolidone to 10g N,N-dimethylformamide solution, put it in an oven at 80°C for 3 hours, then add 3.6g nickel citrate, and then stir for 12 hours , to prepare an electrospinning solution, the ratio of the metal precursor to the polymer is 3.6:1;

采用静电纺丝工艺制备复合纳米纤维膜:将静电纺丝溶液倒入带内径1.2mm针头的注射器中,在室温相对湿度<30%的环境中,以20kV的电压0.8ml/h的注射速度静电纺丝8小时,接收距离为15cm,转筒转速为500rpm,制得复合纳米纤维膜;Preparation of composite nanofibrous membrane by electrospinning process: Pour the electrospinning solution into a syringe with a needle with an inner diameter of 1.2mm, and in an environment with a relative humidity of <30% at room temperature, electrospin the electrospinning solution at an injection speed of 0.8ml/h at a voltage of 20kV Spinning for 8 hours, the receiving distance is 15cm, and the rotary drum speed is 500rpm, and the composite nanofiber film is obtained;

热处理工艺:将得到的复合纳米纤维膜在氮气氛围、700℃下进行热处理,升温速度为5℃/min,保温时间为3小时,即得最终复合碳纳米纤维膜;Heat treatment process: heat-treat the obtained composite nanofiber membrane in a nitrogen atmosphere at 700°C with a heating rate of 5°C/min and a holding time of 3 hours to obtain the final composite carbon nanofiber membrane;

电化学测试:将产物切成直径12mm的圆片,组装锂离子电池,进行电化学测试。Electrochemical test: cut the product into discs with a diameter of 12 mm, assemble a lithium-ion battery, and perform electrochemical tests.

Claims (10)

1.一种金属碳纳米纤维复合材料,其特征是其包括碳纳米纤维和块体金属活性材料;所述块体金属活性材料的表面被聚合物基的碳包覆,且内部为纳米球形材料;所述块体金属活性材料由所述碳纳米纤维牵引并被所述碳纳米纤维所缠绕;所述金属活性物质占所述金属碳纳米纤维复合材料的质量分数为30~70%。1. A metal-carbon nanofiber composite material is characterized in that it includes carbon nanofibers and bulk metal active materials; the surface of the bulk metal active materials is coated with polymer-based carbon, and the inside is a nano-spherical material ; the bulk metal active material is pulled by the carbon nanofiber and entwined by the carbon nanofiber; the mass fraction of the metal active material in the metal carbon nanofiber composite material is 30-70%. 2.根据权利要求1所述的金属碳纳米纤维复合材料,其特征在于所述块体金属活性材料为柠檬酸铁、柠檬酸铋、柠檬酸钴、柠檬酸铁铵、柠檬酸镍、柠檬酸锌、柠檬酸钛、柠檬酸锆、柠檬酸锡、柠檬酸镁或柠檬酸铜中的一种或几种碳化后形成的材料。2. The metal-carbon nanofiber composite material according to claim 1, wherein the bulk metal active material is iron citrate, bismuth citrate, cobalt citrate, ferric ammonium citrate, nickel citrate, citric acid A material formed after carbonization of one or more of zinc, titanium citrate, zirconium citrate, tin citrate, magnesium citrate or copper citrate. 3.根据权利要求1所述的金属碳纳米纤维复合材料,其特征在于所述聚合物为聚乙烯吡咯烷酮、聚丙烯腈、聚吡咯、聚酰亚胺或聚乙烯醇中的一种或两种组合。3. The metal-carbon nanofiber composite material according to claim 1, wherein the polymer is one or both of polyvinylpyrrolidone, polyacrylonitrile, polypyrrole, polyimide or polyvinyl alcohol combination. 4.一种金属碳纳米纤维复合材料的制备方法,其特征是包括如下步骤:4. A preparation method of metal carbon nanofiber composite material, characterized in that it comprises the steps: (1)配置静电纺丝溶液:将1~10wt%的聚合物加入有机溶液中,放入60~90℃的烘箱中恒温处理3~30小时,再加入金属前驱体,然后搅拌4~24小时,制得静电纺丝溶液,金属前驱体与聚合物的质量之比为(0.5~10):1;(1) Prepare the electrospinning solution: add 1-10wt% polymer into the organic solution, put it in an oven at 60-90°C for 3-30 hours, then add the metal precursor, and then stir for 4-24 hours , to prepare an electrospinning solution, the mass ratio of the metal precursor to the polymer is (0.5-10):1; (2)采用静电纺丝方法制备复合纳米纤维膜:使用的静电纺丝方法参数:注射器针头内径为0.9~1.6mm,温度为15~40℃,相对湿度<30%,静电电压为15~22kV,纺丝液流量为0.4~1.5ml/h,接收距离为15~30cm,转筒转速为500~1200rpm,采用单针或多针头纺丝;(2) Preparation of composite nanofiber membrane by electrospinning method: the parameters of the electrospinning method used: the inner diameter of the syringe needle is 0.9-1.6mm, the temperature is 15-40°C, the relative humidity is <30%, and the electrostatic voltage is 15-22kV , the spinning liquid flow rate is 0.4-1.5ml/h, the receiving distance is 15-30cm, the rotating drum speed is 500-1200rpm, and single-needle or multi-needle spinning is used; (3)热处理:将所述步骤(2)得到的复合纳米纤维膜在氮气氛围、600~1000℃下进行热处理,升温速度为1~10℃/min,降温速度为1~10℃/min,保温时间为1~5小时,即得最终产物。(3) Heat treatment: heat-treat the composite nanofiber membrane obtained in the step (2) in a nitrogen atmosphere at 600-1000° C., the heating rate is 1-10° C./min, and the cooling rate is 1-10° C./min. The holding time is 1 to 5 hours to obtain the final product. 5.根据权利要求4所述的金属碳纳米纤维复合材料的制备方法,其特征在于,所述步骤(1)的聚合物为聚乙烯吡咯烷酮、聚丙烯腈、聚吡咯、聚酰亚胺或聚乙烯醇中的一种或两种组合。5. the preparation method of metal-carbon nanofiber composite material according to claim 4, is characterized in that, the polymer of described step (1) is polyvinylpyrrolidone, polyacrylonitrile, polypyrrole, polyimide or polyvinylpyrrolidone. One or a combination of two vinyl alcohols. 6.根据权利要求4所述的金属碳纳米纤维复合材料的制备方法,其特征在于,所述步骤(1)的溶剂为无水乙醇、丙烯碳酸酯、乙酸乙酯、丁烯碳酸酯、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、或N-甲基吡咯烷酮中的一种或多种组合。6. the preparation method of metal-carbon nanofiber composite material according to claim 4, is characterized in that, the solvent of described step (1) is dehydrated alcohol, propylene carbonate, ethyl acetate, butylene carbonate, N , one or more combinations of N-dimethylacetamide, N,N-dimethylformamide, or N-methylpyrrolidone. 7.根据权利要求4所述的金属碳纳米纤维复合材料的制备方法,其特征在于,所述步骤(1)的金属前驱体为柠檬酸铁、柠檬酸铋、柠檬酸钴、柠檬酸铁铵、柠檬酸镍、柠檬酸锌、柠檬酸钛、柠檬酸锆、柠檬酸锡、柠檬酸镁或柠檬酸铜中的一种或多种组合。7. the preparation method of metal-carbon nanofiber composite material according to claim 4, is characterized in that, the metal precursor of described step (1) is iron citrate, bismuth citrate, cobalt citrate, ferric ammonium citrate , one or more combinations of nickel citrate, zinc citrate, titanium citrate, zirconium citrate, tin citrate, magnesium citrate or copper citrate. 8.根据权利要求4所述的金属碳纳米纤维复合材料的制备方法,其特征在于,所述步骤(1)的金属前驱体为微米尺度的颗粒,其在一个维度、两个维度或三个维度上为微米尺寸。8. The preparation method of metal-carbon nanofiber composite material according to claim 4, characterized in that, the metal precursor of the step (1) is a micron-scale particle, which is in one dimension, two dimensions or three Dimensionally micron-sized. 9.如权利要求1所述的金属碳纳米纤维复合材料作为电池正极或者负极材料的应用。9. The application of the metal-carbon nanofiber composite material as claimed in claim 1 as a battery positive or negative electrode material. 10.根据权利要求9所述的金属碳纳米纤维复合材料作为电池正极或者负极中的应用,其特征在于,应用于锂离子电池、钠离子电池、锌离子电池或镁离子电池中的一种或几种。10. The application of the metal-carbon nanofiber composite material according to claim 9 as the battery positive pole or negative pole, is characterized in that, it is applied to one or more of lithium-ion batteries, sodium-ion batteries, zinc-ion batteries or magnesium-ion batteries Several kinds.
CN201710546201.5A 2017-07-06 2017-07-06 A kind of metal carbon nanofiber composite material and its preparation method and application Active CN107195894B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710546201.5A CN107195894B (en) 2017-07-06 2017-07-06 A kind of metal carbon nanofiber composite material and its preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710546201.5A CN107195894B (en) 2017-07-06 2017-07-06 A kind of metal carbon nanofiber composite material and its preparation method and application

Publications (2)

Publication Number Publication Date
CN107195894A true CN107195894A (en) 2017-09-22
CN107195894B CN107195894B (en) 2020-06-09

Family

ID=59880414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710546201.5A Active CN107195894B (en) 2017-07-06 2017-07-06 A kind of metal carbon nanofiber composite material and its preparation method and application

Country Status (1)

Country Link
CN (1) CN107195894B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767215A (en) * 2018-05-15 2018-11-06 华中科技大学 A kind of material and the preparation method and application thereof inhibiting zinc dendrite
CN108899487A (en) * 2018-06-15 2018-11-27 合肥国轩高科动力能源有限公司 High-conductivity lithium ion battery negative electrode material and preparation method thereof
CN109256280A (en) * 2018-09-30 2019-01-22 天津工业大学 A kind of stanniferous micro/nano structure doping carbon material and preparation method thereof
CN109305697A (en) * 2018-08-27 2019-02-05 临沂大学 A kind of preparation method of nitrogen-containing hierarchical porous carbon nanotube film
CN109399691A (en) * 2018-12-04 2019-03-01 江苏理工学院 A kind of Cu-CuO/ carbon nano-fiber composite material and preparation method thereof
CN110048099A (en) * 2019-03-28 2019-07-23 天津大学 Electrode material of sodium-ion battery and its preparation method and application
CN111389403A (en) * 2020-03-24 2020-07-10 福州大学 Zn/Co doped carbon material and preparation method and application thereof
CN111939770A (en) * 2020-08-03 2020-11-17 浙江大学 A bismuth-based functional material for adsorbing gaseous iodine and its preparation method and application
CN113249824A (en) * 2021-05-27 2021-08-13 陕西师范大学 Preparation method of flexible carbon/lanthanum ferrite composite fiber membrane material
CN114507936A (en) * 2020-10-28 2022-05-17 纳米及先进材料研发院有限公司 Anisotropic heat transfer electromagnetic interference shielding composite material and preparation method thereof
CN115538174A (en) * 2022-12-02 2022-12-30 深圳市今朝时代股份有限公司 High-performance electrode material for supercapacitor and supercapacitor made of high-performance electrode material
CN117026425A (en) * 2023-09-11 2023-11-10 天津工业大学 Synthesis method of zinc oxide etched iron-cobalt alloy doped carbon nanofiber for electrocatalytic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626075A (en) * 2009-08-03 2010-01-13 北京化工大学 Stannum and carbon composite nano-fiber film negative-electrode material and preparation method thereof
CN102751475A (en) * 2012-06-20 2012-10-24 天津大学 Preparation for anode material of tin-cobalt alloy/carbon nanofiber film lithium ion battery
CN102965766A (en) * 2012-11-14 2013-03-13 同济大学 New method for synthesizing nanometal particle-loaded carbon nanofiber
CN103422192A (en) * 2013-08-05 2013-12-04 江苏科技大学 Fe-Co alloy/C composite nanofiber microwave absorbent, and preparation method and application thereof
CN103606689A (en) * 2013-11-14 2014-02-26 清华大学 Method for preparing carbon nanofiber based non-noble-metal catalyst through oxidation improved electrostatic spinning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626075A (en) * 2009-08-03 2010-01-13 北京化工大学 Stannum and carbon composite nano-fiber film negative-electrode material and preparation method thereof
CN102751475A (en) * 2012-06-20 2012-10-24 天津大学 Preparation for anode material of tin-cobalt alloy/carbon nanofiber film lithium ion battery
CN102965766A (en) * 2012-11-14 2013-03-13 同济大学 New method for synthesizing nanometal particle-loaded carbon nanofiber
CN103422192A (en) * 2013-08-05 2013-12-04 江苏科技大学 Fe-Co alloy/C composite nanofiber microwave absorbent, and preparation method and application thereof
CN103606689A (en) * 2013-11-14 2014-02-26 清华大学 Method for preparing carbon nanofiber based non-noble-metal catalyst through oxidation improved electrostatic spinning

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767215A (en) * 2018-05-15 2018-11-06 华中科技大学 A kind of material and the preparation method and application thereof inhibiting zinc dendrite
CN108767215B (en) * 2018-05-15 2021-03-26 华中科技大学 Material for inhibiting zinc dendrite and preparation method and application thereof
CN108899487A (en) * 2018-06-15 2018-11-27 合肥国轩高科动力能源有限公司 High-conductivity lithium ion battery negative electrode material and preparation method thereof
CN109305697A (en) * 2018-08-27 2019-02-05 临沂大学 A kind of preparation method of nitrogen-containing hierarchical porous carbon nanotube film
CN109256280A (en) * 2018-09-30 2019-01-22 天津工业大学 A kind of stanniferous micro/nano structure doping carbon material and preparation method thereof
CN109256280B (en) * 2018-09-30 2020-08-25 天津工业大学 Tin-containing micro/nano-structure doped carbon material and preparation method thereof
CN109399691A (en) * 2018-12-04 2019-03-01 江苏理工学院 A kind of Cu-CuO/ carbon nano-fiber composite material and preparation method thereof
CN110048099A (en) * 2019-03-28 2019-07-23 天津大学 Electrode material of sodium-ion battery and its preparation method and application
CN111389403B (en) * 2020-03-24 2022-11-15 福州大学 A kind of Zn/Co doped carbon material and its preparation method and application
CN111389403A (en) * 2020-03-24 2020-07-10 福州大学 Zn/Co doped carbon material and preparation method and application thereof
CN111939770A (en) * 2020-08-03 2020-11-17 浙江大学 A bismuth-based functional material for adsorbing gaseous iodine and its preparation method and application
CN111939770B (en) * 2020-08-03 2021-09-28 浙江大学 Bismuth-based functional material for adsorbing gaseous iodine and preparation method and application thereof
CN114507936A (en) * 2020-10-28 2022-05-17 纳米及先进材料研发院有限公司 Anisotropic heat transfer electromagnetic interference shielding composite material and preparation method thereof
CN114507936B (en) * 2020-10-28 2023-04-14 纳米及先进材料研发院有限公司 Anisotropic heat transfer electromagnetic interference shielding composite material and its preparation method
CN113249824A (en) * 2021-05-27 2021-08-13 陕西师范大学 Preparation method of flexible carbon/lanthanum ferrite composite fiber membrane material
CN113249824B (en) * 2021-05-27 2022-11-18 陕西师范大学 Preparation method of flexible carbon/lanthanum ferrite composite fiber membrane material
CN115538174A (en) * 2022-12-02 2022-12-30 深圳市今朝时代股份有限公司 High-performance electrode material for supercapacitor and supercapacitor made of high-performance electrode material
CN117026425A (en) * 2023-09-11 2023-11-10 天津工业大学 Synthesis method of zinc oxide etched iron-cobalt alloy doped carbon nanofiber for electrocatalytic

Also Published As

Publication number Publication date
CN107195894B (en) 2020-06-09

Similar Documents

Publication Publication Date Title
CN107195894B (en) A kind of metal carbon nanofiber composite material and its preparation method and application
CN106848314B (en) The lithium-sulfur cell preparation method of double-layer porous carbon nano-fiber and the method for preparing positive electrode using it
CN106450101B (en) A method of preparing lithium battery diaphragm with coaxial electrostatic spinning
CN103305965B (en) Si-C composite material with nanometer micropore gap and preparation method thereof and purposes
CN109736092B (en) Conductive polyaniline coated polyimide-based porous organic nano composite fiber membrane
CN103882559B (en) High-ratio surface porous carbon fiber and preparation method thereof and application
CN103803490B (en) Carbon nanofiber material and preparing method and application of carbon nanofiber material
CN104392847B (en) Preparation method of morphology controllable metal oxide/active carbon fiber combination electrode material
CN103855361A (en) Method for preparing nitrogen-doped porous carbon nanofiber cloth
CN104674383A (en) Carbon nano fiber aerogel electrostatic spinning construction method
CN102074683A (en) Porous carbon nanofiber anode material for lithium ion battery and preparation method thereof
CN106992288B (en) A kind of antimony/carbon nano-fiber flexible material and its preparation method and application
CN107541811B (en) A kind of carbon nano rod composite material and preparation method and application
CN108538630B (en) A kind of preparation method of biomass carbon/graphene flexible composite membrane
CN107956001A (en) A kind of preparation of ultracapacitor lignin nano carbon fiber
CN113097496B (en) Zinc cathode with composite nanofiber protective layer and preparation and application thereof
CN110359098A (en) A kind of mesoporous carbon fiber electrode material and preparation method thereof
CN104409738A (en) Making method of conductive carbon black/nanometer carbon fiber composite electrode for all-vanadium redox flow battery
CN105470484A (en) Preparation method of graphene/stannic oxide composite nanofiber membrane and application
CN112342689B (en) Porous carbon fiber electrode for flow battery and preparation method thereof
CN105780197A (en) Active carbon nanofiber and preparation method thereof
CN119710973A (en) Nanofiber and diaphragm with core-shell structure, preparation method of nanofiber and diaphragm and battery
CN104733190B (en) Composite diaphragm and preparation method thereof
CN107240510A (en) A kind of ZnFe2O4/ C composite nano fiber electrode material for super capacitor and preparation method thereof
CN114530573A (en) Flexible self-supporting anode for sodium ion battery and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant