[go: up one dir, main page]

CN104674383A - Carbon nano fiber aerogel electrostatic spinning construction method - Google Patents

Carbon nano fiber aerogel electrostatic spinning construction method Download PDF

Info

Publication number
CN104674383A
CN104674383A CN201510074631.2A CN201510074631A CN104674383A CN 104674383 A CN104674383 A CN 104674383A CN 201510074631 A CN201510074631 A CN 201510074631A CN 104674383 A CN104674383 A CN 104674383A
Authority
CN
China
Prior art keywords
nanofiber
airgel
electrospinning
solution
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510074631.2A
Other languages
Chinese (zh)
Inventor
钟鹭斌
郑煜铭
杨跃伞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201510074631.2A priority Critical patent/CN104674383A/en
Publication of CN104674383A publication Critical patent/CN104674383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明提供一种碳纳米纤维气凝胶的静电纺丝构建方法,属于纳米材料技术领域。具体步骤如下:步骤a)配制静电纺丝液;步骤b)选择适当的溶剂直接接收静电纺丝纳米纤维,得到纳米纤维溶液;步骤c)将纳米纤维溶液定型冷冻,然后置于冷冻干燥机中干燥,得到纳米纤维气凝胶;步骤d)将所述的纳米纤维气凝胶进行预氧化、碳化和活化,得到碳纳米纤维气凝胶。本发明提供的碳纳米纤维气凝胶的静电纺丝构建方法不仅简单易行,重复性好,且所制备的碳纳米纤维气凝胶组成和结构易控,可构建结构多样的复合碳纳米纤维气凝胶,以满足实际应用中的不同需求。The invention provides an electrospinning construction method of carbon nanofiber airgel, which belongs to the technical field of nanomaterials. The specific steps are as follows: Step a) Prepare the electrospinning solution; Step b) Select an appropriate solvent to directly receive the electrospun nanofibers to obtain a nanofiber solution; Step c) Freeze the nanofiber solution, and then place it in a freeze dryer drying to obtain nanofiber aerogel; step d) preoxidizing, carbonizing and activating the nanofiber aerogel to obtain carbon nanofiber aerogel. The electrospinning construction method of carbon nanofiber airgel provided by the present invention is not only simple and easy to implement, but also has good repeatability, and the composition and structure of the prepared carbon nanofiber airgel are easy to control, and composite carbon nanofibers with various structures can be constructed Aerogels to meet different needs in practical applications.

Description

碳纳米纤维气凝胶的静电纺丝构建方法Electrospinning construction method of carbon nanofiber airgel

技术领域 technical field

本发明涉及纳米材料技术领域,尤其涉及碳纳米纤维气凝胶的静电纺丝构建方法。 The invention relates to the technical field of nanomaterials, in particular to an electrospinning construction method of carbon nanofiber airgel.

背景技术 Background technique

碳气凝胶是由美国Pekblb首先发现的一种新型轻质纳米多孔材料,其基本特点为孔隙率高,比表面积大和密度变化范围广,在电学、热学和光学等方面具有特殊性能,有着广泛的应用前景。例如可以用作超级电容、催化剂载体、贮氢材料、电极材料、吸收剂以及气体检测器等。其中质轻和含掺杂的碳气凝胶更是有着极大的应用前景。例如,超轻的氮掺杂的石墨烯结构用作吸收剂和超级电容器电极,展示出极大的吸收容量和特殊电容。掺杂金属的碳气凝胶具有更高的贮氢性能。 Carbon airgel is a new lightweight nanoporous material first discovered by Pekblb in the United States. Its basic characteristics are high porosity, large specific surface area and wide range of density changes. It has special properties in electrical, thermal and optical aspects, and has a wide range of applications. application prospects. For example, it can be used as supercapacitor, catalyst carrier, hydrogen storage material, electrode material, absorbent and gas detector, etc. Among them, light weight and doped carbon aerogels have great application prospects. For example, ultralight nitrogen-doped graphene structures are used as absorbers and supercapacitor electrodes, exhibiting extremely large absorption capacity and special capacitance. Carbon aerogels doped with metals have higher hydrogen storage performance.

现有技术公开了多种制备碳气凝胶的方法,但是大多数方法难于一步法、简便制备含有多种组分掺杂的碳气凝胶,且不易于调控碳气凝胶的结构。因此,限制了更其广泛的应用。 The prior art discloses a variety of methods for preparing carbon aerogels, but most of the methods are difficult to prepare carbon aerogels doped with multiple components in one step, and it is not easy to control the structure of carbon aerogels. Therefore, its wider application is limited.

静电纺丝纳米纤维是通过使聚合物溶液带上高压静电,当电场力足够大时,聚合物液滴克服表面张力形成喷射细流,聚合物射流拉伸细化,同时弯曲、劈裂,溶剂蒸发或固化,沉积于接收板上而形成纳米纤维。静电纺丝纳米纤维技术可以将多种组分共同集成在同一根纤维中,从而制备复合纳米纤维,可以实现聚合物/聚合物、聚合物/无机物及无机物/无机物复合纤维的制备。此外,通过改变制备参数(如改变喷头结构、控制实验条件等),静电纺丝技术可制备出结构多样的纳米纤维材料(如实心、空心、核-壳结构的超细纤维或是蜘蛛网状结构的二维纤维膜等)。目前,大多数静电纺丝技术以金属材料作为接收器。因此,所得到一般是纳米纤维膜,要获得纳米纤维溶液必须再次将纳米纤维膜分散到适当溶剂里。这不仅耗时,而且纤维膜难于分散均匀,且在分散中易于断裂。 Electrospinning nanofibers is to charge the polymer solution with high-voltage static electricity. When the electric field force is large enough, the polymer droplets overcome the surface tension to form a fine jet stream, and the polymer jet is stretched and thinned, while bending and splitting. Evaporate or solidify and deposit on a receiver plate to form nanofibers. Electrospinning nanofiber technology can integrate multiple components into the same fiber to prepare composite nanofibers, which can realize the preparation of polymer/polymer, polymer/inorganic and inorganic/inorganic composite fibers. In addition, by changing the preparation parameters (such as changing the nozzle structure, controlling the experimental conditions, etc.), electrospinning technology can prepare nanofiber materials with various structures (such as solid, hollow, core-shell structure microfibers or spider webs). structure of two-dimensional fiber membrane, etc.). Currently, most electrospinning techniques use metallic materials as receivers. Therefore, the result is generally a nanofiber film, and to obtain a nanofiber solution, the nanofiber film must be dispersed in an appropriate solvent again. This is not only time-consuming, but also the fiber membrane is difficult to disperse uniformly and is easy to break during dispersion.

发明内容 Contents of the invention

解决目前碳气凝胶制备方法中,难于一步法、简便制备多组分掺杂,结构可控的碳气凝胶的技术问题,本发明公布了一种碳纳米纤维气凝胶的静电纺丝构建方法,该方法能简单、快速制备多组分,结构多样化的碳纳米纤维气凝胶,显著提高碳纳米纤维气凝胶的性能,满足现实中不同需求,扩大其应用前景。 To solve the technical problem of difficult one-step and simple preparation of carbon aerogel with multi-component doping and controllable structure in the current carbon aerogel preparation method, the present invention discloses a kind of electrospinning of carbon nanofiber aerogel A construction method, the method can simply and quickly prepare multi-component, structurally diverse carbon nanofiber airgel, significantly improve the performance of the carbon nanofiber airgel, meet different needs in reality, and expand its application prospects.

为了达到上述目的,本发明采用的以下步骤: In order to achieve the above object, the following steps that the present invention adopts:

步骤a)配制静电纺丝液; Step a) preparing an electrospinning solution;

步骤b)选择适当的溶剂直接接收静电纺丝纳米纤维,得到纳米纤维溶液; Step b) selecting an appropriate solvent to directly receive the electrospun nanofibers to obtain a nanofiber solution;

步骤c)将纳米纤维溶液定型冷冻,然后置于冷冻干燥机中干燥,得到纳米纤维气凝胶; Step c) freezing the nanofiber solution in a fixed shape, and then placing it in a freeze dryer to dry to obtain the nanofiber airgel;

步骤d)将所述的纳米纤维气凝胶进行预氧化、碳化和活化,得到碳纳米纤维气凝胶。 Step d) Preoxidizing, carbonizing and activating the nanofiber airgel to obtain the carbon nanofiber airgel.

本发明的优点是The advantages of the present invention are

1)以适当的溶剂直接接收静电纺丝纳米纤维,实现了一步法得到分散均一的纳米纤维溶液,且纳米纤维不会断裂,保持良好连续性,有利于提高碳纳米纤维气凝胶性能。 1) The electrospun nanofibers are directly received by an appropriate solvent, and a uniformly dispersed nanofiber solution can be obtained in one step, and the nanofibers will not break and maintain good continuity, which is conducive to improving the performance of carbon nanofiber airgel.

2)本方法制备的碳纳米纤维气凝胶,其原料来源广泛,不仅可以是高分子材料,也可以是多种有机/无机复合材料。 2) The carbon nanofiber airgel prepared by this method has a wide range of raw materials, not only polymer materials, but also various organic/inorganic composite materials.

3)本方法制备的碳纳米纤维气凝胶,其纳米纤维是由静电纺丝技术制备而成。因此,能轻易将多种组分共同集成在同一根纤维中,从而制备复合纳米纤维,有效地提高碳纳米纤维气凝胶性能。 3) The carbon nanofiber airgel prepared by this method is prepared by electrospinning technology. Therefore, multiple components can be easily integrated into the same fiber to prepare composite nanofibers, which can effectively improve the performance of carbon nanofiber airgel.

4)本方法制备的碳纳米纤维气凝胶结构可控(如纤维是否中空、纤维直径、比表面积和密度等),因此可以根据不同需求,制备最佳结构的碳纳米纤维气凝胶。 4) The structure of carbon nanofiber airgel prepared by this method is controllable (such as whether the fiber is hollow, fiber diameter, specific surface area and density, etc.), so carbon nanofiber airgel with the best structure can be prepared according to different needs.

附图说明 Description of drawings

图1为实施例一条件下,碳纳米纤维气凝胶的光学图。 Figure 1 is an optical diagram of the carbon nanofiber airgel under the conditions of Example 1.

图2为实施例一条件下,碳纳米纤维气凝胶的扫描电镜图(SEM)。 Fig. 2 is a scanning electron micrograph (SEM) of the carbon nanofiber airgel under the conditions of Example 1.

具体实施方式 Detailed ways

现结合附图和具体实施方式对本发明进一步说明。 The present invention will be further described in conjunction with the accompanying drawings and specific embodiments.

实施例一 Embodiment one

1) 纺丝液的配制:称取2 g的聚丙烯晴(PAN)粉末和0.3 g氧化石墨烯(GO),加入到含有20 g 二甲基甲酰胺(DMF)溶剂的100 mL锥形瓶中,置于60 ℃水浴中加热搅拌至溶解,配置成PAN-GO混合溶液。 1) Preparation of spinning solution: Weigh 2 g of polyacrylonitrile (PAN) powder and 0.3 g of graphene oxide (GO) into a 100 mL Erlenmeyer flask containing 20 g of dimethylformamide (DMF) solvent placed in a water bath at 60 °C, heated and stirred until dissolved, and configured as a PAN-GO mixed solution.

2)纳米纤维的制备:将步骤1)中的电纺丝液置于10 ml注射器中,以盛水的塑料容器作为纳米纤维的接收器收集纳米纤维。纺丝参数为:电压15 kV,喷丝口内径0.6 mm,纺丝液流速0.9 mL/h,喷丝头到接收水面的距离为15 cm,接收时间3 h,环境条件:温度30±5 ℃,相对湿度50±5%,接收器来回移动速度0.5 cm/s。 2) Preparation of nanofibers: The electrospinning solution in step 1) was placed in a 10 ml syringe, and the nanofibers were collected using a plastic container filled with water as a nanofiber receiver. Spinning parameters are: voltage 15 kV, spinneret inner diameter 0.6 mm, spinning solution flow rate 0.9 mL/h, distance from spinneret to receiving water surface 15 cm, receiving time 3 h, environmental conditions: temperature 30±5 ℃ , the relative humidity is 50±5%, and the receiver moves back and forth at a speed of 0.5 cm/s.

3)纳米纤维气凝胶的制备:将步骤2中的收集的纳米纤维溶液,根据所需密度和形状,进行定型,然后置于-4 ℃冰箱中冷冻5 h;接着将冷冻成型的纳米纤维置于冷冻干燥机中干燥2 d,得到纳米纤维气凝胶。 3) Preparation of nanofiber airgel: shape the nanofiber solution collected in step 2 according to the required density and shape, and then freeze it in a -4 °C refrigerator for 5 h; then freeze the formed nanofiber Dry in a freeze dryer for 2 days to obtain nanofiber airgel.

4)碳纳米纤维气凝胶的制备:将步骤3中的纳米纤维气凝胶置于280 ℃烘箱中,预氧化60 min;然后在管式马弗炉里,在N2保护下以,5 ℃/min 的速率升温至600℃后,保持0.5 h;接着再以5 ℃/min 的速率升温至900 ℃,在CO2环境下,活化0.5 h,最终以5 ℃/min 的速率降温到室温,得到含有石墨烯的碳纳米纤维气凝胶。 4) Preparation of carbon nanofiber airgel: place the nanofiber airgel in step 3 in an oven at 280 °C for 60 min; then in a tubular muffle furnace, under the protection of N 2 , After heating up to 600℃ at the rate of ℃/min, keep it for 0.5 h; then raise the temperature to 900 ℃ at the rate of 5 ℃/min, activate for 0.5 h in the CO 2 environment, and finally cool down to room temperature at the rate of 5 ℃/min , to obtain carbon nanofiber aerogels containing graphene.

5)碳纳米纤维气凝胶的电容性能测试:将步骤4中的碳纳米纤维气凝胶作为工作电极。用Ag/AgCl电极作参比电极,铂丝作对电极,在1 mol/L KOH电解液中,采用经典的三电极体系,在电化学工作站进行循环伏安及充放电测试。 5) Capacitance performance test of carbon nanofiber aerogel: the carbon nanofiber aerogel in step 4 was used as the working electrode. The Ag/AgCl electrode was used as the reference electrode, and the platinum wire was used as the counter electrode. In 1 mol/L KOH electrolyte, the classic three-electrode system was used to conduct cyclic voltammetry and charge-discharge tests at the electrochemical workstation.

实施例二 Embodiment two

1)纺丝液的配制:称取2 g的聚丙烯晴(PAN)粉末和0.1 g 氯化铁(FeCl3),加入到含有20 g 二甲基甲酰胺(DMF)溶剂的100 mL锥形瓶中,置于60℃水浴中加热搅拌至溶解,配置成PAN-FeCl3混合溶液。 1) Preparation of spinning solution: Weigh 2 g of polyacrylonitrile (PAN) powder and 0.1 g of ferric chloride (FeCl 3 ), add them into a 100 mL conical tube containing 20 g of dimethylformamide (DMF) solvent Place in a 60°C water bath, heat and stir until dissolved, and configure it as a PAN-FeCl 3 mixed solution.

2)纳米纤维的制备:将步骤1)中的电纺丝液置于10 ml注射器中,以盛水的塑料容器作为纳米纤维的接收器收集纳米纤维。纺丝参数为:电压15 kV,喷丝口内径0.6 mm,纺丝液流速0.9 mL/h,喷丝头到接收水面的距离为15 cm,接收时间3 h,环境条件:温度30±5 ℃,相对湿度50±5%,接收器来回移动速度0.5 cm/s。 2) Preparation of nanofibers: The electrospinning solution in step 1) was placed in a 10 ml syringe, and the nanofibers were collected using a plastic container filled with water as a nanofiber receiver. Spinning parameters are: voltage 15 kV, spinneret inner diameter 0.6 mm, spinning solution flow rate 0.9 mL/h, distance from spinneret to receiving water surface 15 cm, receiving time 3 h, environmental conditions: temperature 30±5 ℃ , the relative humidity is 50±5%, and the receiver moves back and forth at a speed of 0.5 cm/s.

3)纳米纤维气凝胶的制备:将步骤2中的收集的纳米纤维溶液,根据所需密度和形状,进行定型,然后置于-4 ℃冰箱中冷冻5 h;接着将冷冻成型的纳米纤维块置于冷冻干燥机中进行干燥2 d,得到纳米纤维气凝胶。 3) Preparation of nanofiber airgel: shape the nanofiber solution collected in step 2 according to the required density and shape, and then freeze it in a -4 °C refrigerator for 5 h; then freeze the formed nanofiber The blocks were dried in a freeze dryer for 2 days to obtain nanofiber airgel.

4)碳纳米纤维气凝胶的制备:将步骤3中的纳米纤维气凝胶置于管式马弗炉里,在N2保护下以,5 ℃/min 的速率升温至600℃后,保持0.5 h;接着再以5 ℃/min 的速率升温至800 ℃,在水蒸气环境下,活化0.5 h,最终以3 ℃/min 的速率降温到室温,得到掺杂铁的碳纳米纤维气凝胶。 4) Preparation of carbon nanofiber airgel: place the nanofiber airgel in step 3 in a tubular muffle furnace, heat up to 600°C at a rate of 5°C/min under the protection of N 2 , and keep 0.5 h; then heated up to 800 °C at a rate of 5 °C/min, activated for 0.5 h in a water vapor environment, and finally cooled to room temperature at a rate of 3 °C/min to obtain iron-doped carbon nanofiber airgel .

5)碳纳米纤维气凝胶的电容性能测试:将步骤4中的碳纳米纤维气凝胶作为工作电极。用Ag/AgCl电极作参比电极,铂丝作对电极,在1 mol/L KOH电解液中,采用经典的三电极体系,在电化学工作站进行循环伏安及充放电测试。 5) Capacitance performance test of carbon nanofiber aerogel: the carbon nanofiber aerogel in step 4 was used as the working electrode. The Ag/AgCl electrode was used as the reference electrode, and the platinum wire was used as the counter electrode. In 1 mol/L KOH electrolyte, the classic three-electrode system was used to conduct cyclic voltammetry and charge-discharge tests at the electrochemical workstation.

尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。 Although the present invention has been particularly shown and described in conjunction with preferred embodiments, it will be understood by those skilled in the art that changes in form and details may be made to the present invention without departing from the spirit and scope of the invention as defined by the appended claims. Making various changes is within the protection scope of the present invention.

Claims (7)

1.碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于包括以下步骤: 1. The electrospinning construction method of carbon nanofiber airgel, it is characterized in that comprising the following steps: 步骤a)配制静电纺丝液; Step a) preparing an electrospinning solution; 步骤b)选择适当的溶剂直接接收静电纺丝纳米纤维,得到纳米纤维溶液; Step b) selecting an appropriate solvent to directly receive the electrospun nanofibers to obtain a nanofiber solution; 步骤c)将纳米纤维溶液定型冷冻,然后置于冷冻干燥机中干燥,得到纳米纤维气凝胶; Step c) freezing the nanofiber solution in a fixed shape, and then placing it in a freeze dryer to dry to obtain the nanofiber airgel; 步骤d)将所述的纳米纤维气凝胶进行预氧化、碳化和活化,得到碳纳米纤维气凝胶。 Step d) Preoxidizing, carbonizing and activating the nanofiber airgel to obtain the carbon nanofiber airgel. 2.如权利要求1 所述的碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于所述步骤a)中的静电纺丝液包含聚合物溶液、无机溶液、聚合物/无机物复合溶液;其聚合物溶液包含聚丙烯腈、聚酰胺、聚碳酸酯、聚氨酯、聚氨酯尿素、聚氯乙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚苯乙烯、聚甲基丙烯酸甲酸、聚砜和聚醚砜等其中的一种或几种混合物,以及其改性聚合物等;无机物包含碳纳米管、氧化石墨烯、石墨烯、纳米粒子以及纳米粒子前躯物等。 2. The electrospinning construction method of carbon nanofiber airgel according to claim 1, characterized in that the electrospinning liquid in the step a) comprises polymer solution, inorganic solution, polymer/inorganic compound Solution; its polymer solution contains polyacrylonitrile, polyamide, polycarbonate, polyurethane, polyurethane urea, polyvinyl chloride, polyvinylidene fluoride, polyethylene terephthalate, polybutylene terephthalate One or more mixtures of ester, polystyrene, polymethacrylate, polysulfone and polyethersulfone, etc., and their modified polymers; inorganic substances include carbon nanotubes, graphene oxide, graphene, Nanoparticles and nanoparticle precursors, etc. 3.如权利要求1所述的碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于所述步骤b)的具体步骤为,根据所纺纳米纤维的物理化学性质,选择适当溶剂置于接收容器中,一步法形成纳米纤维溶液;其中溶剂包含水、乙醇、有机溶剂,以及它们的混合溶液等。 3. The electrospinning construction method of carbon nanofiber airgel according to claim 1, characterized in that the specific step of step b) is, according to the physical and chemical properties of the spun nanofibers, select an appropriate solvent to place In the receiving container, a nanofiber solution is formed in one step; wherein the solvent includes water, ethanol, organic solvent, and their mixed solution and the like. 4.如权利要求1所述的碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于所述步骤c)的具体步骤为,将充分分散的纳米纤维溶液置于液氮中冷冻10~60 min,或放于-4~-20 ℃冰箱中冷冻1~12 h,然后将定型的纳米纤维置于冷冻干燥机中干燥1~3 d,得到纳米纤维气凝胶。 4. The electrospinning construction method of carbon nanofiber airgel according to claim 1, characterized in that the specific step of step c) is to freeze the fully dispersed nanofiber solution in liquid nitrogen for 10- 60 min, or freeze in a refrigerator at -4 to -20°C for 1 to 12 hours, and then dry the shaped nanofibers in a freeze dryer for 1 to 3 days to obtain nanofiber aerogels. 5.如权利要求1所述的碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于所述步骤d)的具体步骤为,将所述的纳米纤维气凝胶置于180~350 ℃烘箱中,预氧化10~120 min;然后在马弗炉里,在惰性气体保护下以,1~8 ℃/min 的速率升温至500~700℃后,保持0.5~3 h;接着再以1~8 ℃/min 的速率升温至750 ~1200℃,在活性气体的条件下,活化0.5 ~3 h;最终以1 ~5 ℃/min 的速率降温至室温,得到碳纳米纤维气凝胶。 5. The electrospinning construction method of carbon nanofiber airgel according to claim 1, characterized in that the specific step of step d) is to place the nanofiber airgel at 180-350 °C In the oven, pre-oxidize for 10-120 min; then in the muffle furnace, under the protection of inert gas, the temperature is raised to 500-700 ℃ at a rate of 1-8 ℃/min, and then kept for 0.5-3 h; The temperature is raised to 750-1200 ℃ at a rate of 8 ℃/min, and activated for 0.5-3 h under the condition of active gas; finally, the temperature is cooled to room temperature at a rate of 1-5 ℃/min to obtain carbon nanofiber airgel. 6.如权利要求1所述的碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于可以在步骤b)中的纳米纤维溶液中添加具有强机械性能的物质,或对纳米纤维进行交联剂,以增强碳纳米纤维气凝胶的机械强度。 6. The electrospinning construction method of carbon nanofiber airgel according to claim 1, characterized in that substances with strong mechanical properties can be added to the nanofiber solution in step b), or the nanofibers can be cross-spun Linking agent to enhance the mechanical strength of carbon nanofiber airgel. 7.如权利要求1所述的碳纳米纤维气凝胶的静电纺丝构建方法,其特征在于可用于制备载体材料、吸附材料、贮氢材料、电容材料、电极材料和压力传感器等。 7. The electrospinning construction method of carbon nanofiber airgel according to claim 1, which is characterized in that it can be used to prepare carrier materials, adsorption materials, hydrogen storage materials, capacitor materials, electrode materials and pressure sensors.
CN201510074631.2A 2015-02-12 2015-02-12 Carbon nano fiber aerogel electrostatic spinning construction method Pending CN104674383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510074631.2A CN104674383A (en) 2015-02-12 2015-02-12 Carbon nano fiber aerogel electrostatic spinning construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510074631.2A CN104674383A (en) 2015-02-12 2015-02-12 Carbon nano fiber aerogel electrostatic spinning construction method

Publications (1)

Publication Number Publication Date
CN104674383A true CN104674383A (en) 2015-06-03

Family

ID=53309944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510074631.2A Pending CN104674383A (en) 2015-02-12 2015-02-12 Carbon nano fiber aerogel electrostatic spinning construction method

Country Status (1)

Country Link
CN (1) CN104674383A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882588A (en) * 2015-06-08 2015-09-02 中国工程物理研究院化工材料研究所 Carbon fiber/carbon nanotube composite membrane as well as preparation method and application thereof
CN105161312A (en) * 2015-09-24 2015-12-16 复旦大学 Carbon nano fiber-graphene composite aerogel and cooperative assembly preparation method thereof
CN105304876A (en) * 2015-10-25 2016-02-03 复旦大学 Molybdenum sulfide/graphene/carbon nano fiber composite material and preparation method thereof
CN105923622A (en) * 2016-05-10 2016-09-07 复旦大学 Polyacrylonitrile nanofiber/polyimide-based carbon aerogel adsorption material and preparation method thereof
CN106345053A (en) * 2016-08-23 2017-01-25 孟玲 Electrostatic releaser
CN106552674A (en) * 2016-09-28 2017-04-05 扬州云彩新材料科技有限公司 Aerogel carried nickel-phosphorus alloy catalysis material of a kind of nanofiber and preparation method thereof
CN106567157A (en) * 2016-08-17 2017-04-19 重庆大学 Preparation method of graphene nanoribbon in situ toughened nano carbon fiber
CN106637490A (en) * 2016-09-21 2017-05-10 东莞市联洲知识产权运营管理有限公司 Porous conductive antibacterial fiber on basis of graphene and chitosan oligosaccharides and method for preparing porous conductive antibacterial fiber
CN106854779A (en) * 2016-12-15 2017-06-16 华南理工大学 A kind of carbon nano-tube oriented enhanced carbon fibre composite and preparation method thereof
CN106977763A (en) * 2017-04-20 2017-07-25 哈尔滨工业大学 A kind of preparation method of aramid nano-fiber aeroge
CN108328595A (en) * 2017-01-20 2018-07-27 中国科学院物理研究所 A kind of carbon aerogels and preparation method thereof and pressure sensor
CN108385127A (en) * 2018-02-14 2018-08-10 中氧科技(广州)有限公司 A kind of preparation method for the modification lead dioxide membrane electrode generating ozone
CN108404823A (en) * 2018-05-11 2018-08-17 江南大学 A kind of electrostatic spinning prepares the method and its resulting materials of high water absorption 3D nanofiber aeroges
CN108840656A (en) * 2018-04-26 2018-11-20 东华大学 One kind being based on Static Spinning SiO2Nanofiber aerogel heat-insulating material and its preparation and application
CN109056122A (en) * 2018-07-04 2018-12-21 吉林农业大学 A method of tool three-dimensional structure nanofiber aerogel material is prepared by electrostatic spinning
CN110204776A (en) * 2019-06-05 2019-09-06 东华大学 A kind of polyvinylidene fluoride nanometer fiber aerogel material and preparation method thereof
WO2020224431A1 (en) * 2019-05-07 2020-11-12 清华大学 Aeolotropic layered carbon-fiber-based aerogel material and preparation method therefor
CN115193348A (en) * 2022-07-20 2022-10-18 天津工业大学 A dynamic receiving device for continuous nanofibers and its preparation method for constructing nanofiber aerogels
CN116623320A (en) * 2023-05-29 2023-08-22 辽宁大学 Electrospun carbon nanofiber electrode material with high mass transfer-charge transfer performance and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560889A (en) * 2012-01-05 2012-07-11 黑龙江大学 Method for producing bead-stringed PAN (polyacrylonitrile)-based carbon fiber electrode materials by electrostatic spinning
CN102584211A (en) * 2012-02-24 2012-07-18 西安理工大学 Method for preparing micro/nano porous ceramic fibers by low-temperature electrostatic spinning
CN103265010A (en) * 2013-05-27 2013-08-28 东华大学 Three-dimensional carbon fiber based aerogel material and preparation method thereof
CN103305965A (en) * 2013-06-04 2013-09-18 清华大学深圳研究生院 Silicon-carbon composite material with nano micropores and preparation method as well as application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560889A (en) * 2012-01-05 2012-07-11 黑龙江大学 Method for producing bead-stringed PAN (polyacrylonitrile)-based carbon fiber electrode materials by electrostatic spinning
CN102584211A (en) * 2012-02-24 2012-07-18 西安理工大学 Method for preparing micro/nano porous ceramic fibers by low-temperature electrostatic spinning
CN103265010A (en) * 2013-05-27 2013-08-28 东华大学 Three-dimensional carbon fiber based aerogel material and preparation method thereof
CN103305965A (en) * 2013-06-04 2013-09-18 清华大学深圳研究生院 Silicon-carbon composite material with nano micropores and preparation method as well as application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIRO YOKOYAMA ET AL.: "Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric", 《MATERIALS LETTERS》, vol. 63, 15 April 2009 (2009-04-15), pages 754 - 756 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882588A (en) * 2015-06-08 2015-09-02 中国工程物理研究院化工材料研究所 Carbon fiber/carbon nanotube composite membrane as well as preparation method and application thereof
CN105161312B (en) * 2015-09-24 2017-11-17 复旦大学 A kind of carbon nano-fiber graphene composite aerogel and its collaboration process for assembly preparing
CN105161312A (en) * 2015-09-24 2015-12-16 复旦大学 Carbon nano fiber-graphene composite aerogel and cooperative assembly preparation method thereof
CN105304876A (en) * 2015-10-25 2016-02-03 复旦大学 Molybdenum sulfide/graphene/carbon nano fiber composite material and preparation method thereof
CN105304876B (en) * 2015-10-25 2018-06-08 复旦大学 Molybdenum sulfide/graphene/carbon nano-fiber composite material and preparation method thereof
CN105923622A (en) * 2016-05-10 2016-09-07 复旦大学 Polyacrylonitrile nanofiber/polyimide-based carbon aerogel adsorption material and preparation method thereof
CN105923622B (en) * 2016-05-10 2018-12-11 复旦大学 A kind of polyacrylonitrile nanofiber/polyimide-based carbon aerogels adsorbent material and preparation method thereof
CN106567157A (en) * 2016-08-17 2017-04-19 重庆大学 Preparation method of graphene nanoribbon in situ toughened nano carbon fiber
CN106567157B (en) * 2016-08-17 2022-03-08 重庆大学 A kind of preparation method of graphene nanoribbon in-situ toughening carbon nanofiber
CN106345053A (en) * 2016-08-23 2017-01-25 孟玲 Electrostatic releaser
CN106637490A (en) * 2016-09-21 2017-05-10 东莞市联洲知识产权运营管理有限公司 Porous conductive antibacterial fiber on basis of graphene and chitosan oligosaccharides and method for preparing porous conductive antibacterial fiber
CN106552674A (en) * 2016-09-28 2017-04-05 扬州云彩新材料科技有限公司 Aerogel carried nickel-phosphorus alloy catalysis material of a kind of nanofiber and preparation method thereof
CN106552674B (en) * 2016-09-28 2019-04-16 扬州云彩新材料科技有限公司 A kind of aerogel carried nickel-phosphorus alloy catalysis material of nanofiber and preparation method thereof
CN106854779A (en) * 2016-12-15 2017-06-16 华南理工大学 A kind of carbon nano-tube oriented enhanced carbon fibre composite and preparation method thereof
CN108328595A (en) * 2017-01-20 2018-07-27 中国科学院物理研究所 A kind of carbon aerogels and preparation method thereof and pressure sensor
CN106977763B (en) * 2017-04-20 2019-10-08 哈尔滨工业大学 A kind of preparation method of aramid nano-fiber aeroge
CN106977763A (en) * 2017-04-20 2017-07-25 哈尔滨工业大学 A kind of preparation method of aramid nano-fiber aeroge
CN108385127B (en) * 2018-02-14 2019-09-13 中氧科技(广州)有限公司 A kind of preparation method for the modification lead dioxide membrane electrode generating ozone
CN108385127A (en) * 2018-02-14 2018-08-10 中氧科技(广州)有限公司 A kind of preparation method for the modification lead dioxide membrane electrode generating ozone
CN108840656B (en) * 2018-04-26 2021-02-09 东华大学 SiO based on electrostatic spinning2Nanofiber aerogel heat insulation material and preparation and application thereof
CN108840656A (en) * 2018-04-26 2018-11-20 东华大学 One kind being based on Static Spinning SiO2Nanofiber aerogel heat-insulating material and its preparation and application
CN108404823A (en) * 2018-05-11 2018-08-17 江南大学 A kind of electrostatic spinning prepares the method and its resulting materials of high water absorption 3D nanofiber aeroges
CN108404823B (en) * 2018-05-11 2021-01-05 江南大学 A method for preparing superabsorbent 3D nanofiber aerogels by electrospinning and materials obtained therefrom
CN109056122A (en) * 2018-07-04 2018-12-21 吉林农业大学 A method of tool three-dimensional structure nanofiber aerogel material is prepared by electrostatic spinning
WO2020224431A1 (en) * 2019-05-07 2020-11-12 清华大学 Aeolotropic layered carbon-fiber-based aerogel material and preparation method therefor
CN110204776A (en) * 2019-06-05 2019-09-06 东华大学 A kind of polyvinylidene fluoride nanometer fiber aerogel material and preparation method thereof
CN115193348A (en) * 2022-07-20 2022-10-18 天津工业大学 A dynamic receiving device for continuous nanofibers and its preparation method for constructing nanofiber aerogels
CN115193348B (en) * 2022-07-20 2024-03-22 天津工业大学 A dynamic receiving device for continuous nanofibers and its preparation method for constructing nanofiber aerogels
CN116623320A (en) * 2023-05-29 2023-08-22 辽宁大学 Electrospun carbon nanofiber electrode material with high mass transfer-charge transfer performance and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN104674383A (en) Carbon nano fiber aerogel electrostatic spinning construction method
Joshi et al. Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes
Huang et al. Fabrication of porous fibers via electrospinning: strategies and applications
Atıcı et al. A review on centrifugally spun fibers and their applications
Fan et al. Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors
Cao et al. Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors
CN103225135B (en) Porous carbon fiber and preparation method thereof and application
He et al. Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors
Zhao et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors
CN103882559B (en) High-ratio surface porous carbon fiber and preparation method thereof and application
CN109736092B (en) Conductive polyaniline coated polyimide-based porous organic nano composite fiber membrane
Le et al. Polyimide‐based porous hollow carbon nanofibers for supercapacitor electrode
CN106848314B (en) The lithium-sulfur cell preparation method of double-layer porous carbon nano-fiber and the method for preparing positive electrode using it
Liu et al. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors
CN110170304A (en) A kind of preparation method of spongy porous carbon fiber film
CN104868100B (en) A kind of preparation method of nano composite membrane electrode material
CN113073426B (en) Porous multi-hollow flexible composite nanofiber membrane material and preparation method thereof
CN110136998B (en) A kind of preparation method and application of metal-organic framework carbon fiber composite film
CN105161312A (en) Carbon nano fiber-graphene composite aerogel and cooperative assembly preparation method thereof
CN106098413B (en) A kind of preparation method of flexible super capacitor electrode material
Altin et al. Polyacrylonitrile/polyvinyl alcohol‐based porous carbon nanofiber electrodes for supercapacitor applications
CN107195894A (en) A kind of metal carbon nano-fiber composite material and its preparation method and application
CN105161722A (en) Porous carbon nanofiber membrane for positive electrode material of lithium-sulfur battery and preparation method thereof
Tan et al. Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature
Hu et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150603

RJ01 Rejection of invention patent application after publication