CN104674383A - Carbon nano fiber aerogel electrostatic spinning construction method - Google Patents
Carbon nano fiber aerogel electrostatic spinning construction method Download PDFInfo
- Publication number
- CN104674383A CN104674383A CN201510074631.2A CN201510074631A CN104674383A CN 104674383 A CN104674383 A CN 104674383A CN 201510074631 A CN201510074631 A CN 201510074631A CN 104674383 A CN104674383 A CN 104674383A
- Authority
- CN
- China
- Prior art keywords
- nanofiber
- airgel
- electrospinning
- solution
- construction method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002134 carbon nanofiber Substances 0.000 title claims abstract description 37
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000004964 aerogel Substances 0.000 title claims abstract description 12
- 238000010276 construction Methods 0.000 title claims abstract description 12
- 238000010041 electrostatic spinning Methods 0.000 title 1
- 239000002121 nanofiber Substances 0.000 claims abstract description 51
- 238000001523 electrospinning Methods 0.000 claims abstract description 22
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 230000003213 activating effect Effects 0.000 claims abstract description 3
- 238000010000 carbonizing Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- -1 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 2
- 230000008014 freezing Effects 0.000 claims description 2
- 238000007710 freezing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000011232 storage material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 2
- 239000002105 nanoparticle Substances 0.000 claims 2
- 239000002033 PVDF binder Substances 0.000 claims 1
- 239000004952 Polyamide Substances 0.000 claims 1
- 239000004695 Polyether sulfone Substances 0.000 claims 1
- 239000004793 Polystyrene Substances 0.000 claims 1
- 239000003990 capacitor Substances 0.000 claims 1
- 239000002041 carbon nanotube Substances 0.000 claims 1
- 229910021393 carbon nanotube Inorganic materials 0.000 claims 1
- 239000012876 carrier material Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 239000011261 inert gas Substances 0.000 claims 1
- 150000002484 inorganic compounds Chemical class 0.000 claims 1
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 claims 1
- 229920002492 poly(sulfone) Polymers 0.000 claims 1
- 229920002647 polyamide Polymers 0.000 claims 1
- 229920001707 polybutylene terephthalate Polymers 0.000 claims 1
- 229920000515 polycarbonate Polymers 0.000 claims 1
- 239000004417 polycarbonate Substances 0.000 claims 1
- 229920006393 polyether sulfone Polymers 0.000 claims 1
- 229920000139 polyethylene terephthalate Polymers 0.000 claims 1
- 239000005020 polyethylene terephthalate Substances 0.000 claims 1
- 229920000193 polymethacrylate Polymers 0.000 claims 1
- 229920002223 polystyrene Polymers 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 239000004814 polyurethane Substances 0.000 claims 1
- 229920003226 polyurethane urea Polymers 0.000 claims 1
- 229920000915 polyvinyl chloride Polymers 0.000 claims 1
- 239000004800 polyvinyl chloride Substances 0.000 claims 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims 1
- 239000002243 precursor Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 4
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 239000004966 Carbon aerogel Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000009987 spinning Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910003471 inorganic composite material Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000007783 nanoporous material Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明提供一种碳纳米纤维气凝胶的静电纺丝构建方法,属于纳米材料技术领域。具体步骤如下:步骤a)配制静电纺丝液;步骤b)选择适当的溶剂直接接收静电纺丝纳米纤维,得到纳米纤维溶液;步骤c)将纳米纤维溶液定型冷冻,然后置于冷冻干燥机中干燥,得到纳米纤维气凝胶;步骤d)将所述的纳米纤维气凝胶进行预氧化、碳化和活化,得到碳纳米纤维气凝胶。本发明提供的碳纳米纤维气凝胶的静电纺丝构建方法不仅简单易行,重复性好,且所制备的碳纳米纤维气凝胶组成和结构易控,可构建结构多样的复合碳纳米纤维气凝胶,以满足实际应用中的不同需求。The invention provides an electrospinning construction method of carbon nanofiber airgel, which belongs to the technical field of nanomaterials. The specific steps are as follows: Step a) Prepare the electrospinning solution; Step b) Select an appropriate solvent to directly receive the electrospun nanofibers to obtain a nanofiber solution; Step c) Freeze the nanofiber solution, and then place it in a freeze dryer drying to obtain nanofiber aerogel; step d) preoxidizing, carbonizing and activating the nanofiber aerogel to obtain carbon nanofiber aerogel. The electrospinning construction method of carbon nanofiber airgel provided by the present invention is not only simple and easy to implement, but also has good repeatability, and the composition and structure of the prepared carbon nanofiber airgel are easy to control, and composite carbon nanofibers with various structures can be constructed Aerogels to meet different needs in practical applications.
Description
技术领域 technical field
本发明涉及纳米材料技术领域,尤其涉及碳纳米纤维气凝胶的静电纺丝构建方法。 The invention relates to the technical field of nanomaterials, in particular to an electrospinning construction method of carbon nanofiber airgel.
背景技术 Background technique
碳气凝胶是由美国Pekblb首先发现的一种新型轻质纳米多孔材料,其基本特点为孔隙率高,比表面积大和密度变化范围广,在电学、热学和光学等方面具有特殊性能,有着广泛的应用前景。例如可以用作超级电容、催化剂载体、贮氢材料、电极材料、吸收剂以及气体检测器等。其中质轻和含掺杂的碳气凝胶更是有着极大的应用前景。例如,超轻的氮掺杂的石墨烯结构用作吸收剂和超级电容器电极,展示出极大的吸收容量和特殊电容。掺杂金属的碳气凝胶具有更高的贮氢性能。 Carbon airgel is a new lightweight nanoporous material first discovered by Pekblb in the United States. Its basic characteristics are high porosity, large specific surface area and wide range of density changes. It has special properties in electrical, thermal and optical aspects, and has a wide range of applications. application prospects. For example, it can be used as supercapacitor, catalyst carrier, hydrogen storage material, electrode material, absorbent and gas detector, etc. Among them, light weight and doped carbon aerogels have great application prospects. For example, ultralight nitrogen-doped graphene structures are used as absorbers and supercapacitor electrodes, exhibiting extremely large absorption capacity and special capacitance. Carbon aerogels doped with metals have higher hydrogen storage performance.
现有技术公开了多种制备碳气凝胶的方法,但是大多数方法难于一步法、简便制备含有多种组分掺杂的碳气凝胶,且不易于调控碳气凝胶的结构。因此,限制了更其广泛的应用。 The prior art discloses a variety of methods for preparing carbon aerogels, but most of the methods are difficult to prepare carbon aerogels doped with multiple components in one step, and it is not easy to control the structure of carbon aerogels. Therefore, its wider application is limited.
静电纺丝纳米纤维是通过使聚合物溶液带上高压静电,当电场力足够大时,聚合物液滴克服表面张力形成喷射细流,聚合物射流拉伸细化,同时弯曲、劈裂,溶剂蒸发或固化,沉积于接收板上而形成纳米纤维。静电纺丝纳米纤维技术可以将多种组分共同集成在同一根纤维中,从而制备复合纳米纤维,可以实现聚合物/聚合物、聚合物/无机物及无机物/无机物复合纤维的制备。此外,通过改变制备参数(如改变喷头结构、控制实验条件等),静电纺丝技术可制备出结构多样的纳米纤维材料(如实心、空心、核-壳结构的超细纤维或是蜘蛛网状结构的二维纤维膜等)。目前,大多数静电纺丝技术以金属材料作为接收器。因此,所得到一般是纳米纤维膜,要获得纳米纤维溶液必须再次将纳米纤维膜分散到适当溶剂里。这不仅耗时,而且纤维膜难于分散均匀,且在分散中易于断裂。 Electrospinning nanofibers is to charge the polymer solution with high-voltage static electricity. When the electric field force is large enough, the polymer droplets overcome the surface tension to form a fine jet stream, and the polymer jet is stretched and thinned, while bending and splitting. Evaporate or solidify and deposit on a receiver plate to form nanofibers. Electrospinning nanofiber technology can integrate multiple components into the same fiber to prepare composite nanofibers, which can realize the preparation of polymer/polymer, polymer/inorganic and inorganic/inorganic composite fibers. In addition, by changing the preparation parameters (such as changing the nozzle structure, controlling the experimental conditions, etc.), electrospinning technology can prepare nanofiber materials with various structures (such as solid, hollow, core-shell structure microfibers or spider webs). structure of two-dimensional fiber membrane, etc.). Currently, most electrospinning techniques use metallic materials as receivers. Therefore, the result is generally a nanofiber film, and to obtain a nanofiber solution, the nanofiber film must be dispersed in an appropriate solvent again. This is not only time-consuming, but also the fiber membrane is difficult to disperse uniformly and is easy to break during dispersion.
发明内容 Contents of the invention
解决目前碳气凝胶制备方法中,难于一步法、简便制备多组分掺杂,结构可控的碳气凝胶的技术问题,本发明公布了一种碳纳米纤维气凝胶的静电纺丝构建方法,该方法能简单、快速制备多组分,结构多样化的碳纳米纤维气凝胶,显著提高碳纳米纤维气凝胶的性能,满足现实中不同需求,扩大其应用前景。 To solve the technical problem of difficult one-step and simple preparation of carbon aerogel with multi-component doping and controllable structure in the current carbon aerogel preparation method, the present invention discloses a kind of electrospinning of carbon nanofiber aerogel A construction method, the method can simply and quickly prepare multi-component, structurally diverse carbon nanofiber airgel, significantly improve the performance of the carbon nanofiber airgel, meet different needs in reality, and expand its application prospects.
为了达到上述目的,本发明采用的以下步骤: In order to achieve the above object, the following steps that the present invention adopts:
步骤a)配制静电纺丝液; Step a) preparing an electrospinning solution;
步骤b)选择适当的溶剂直接接收静电纺丝纳米纤维,得到纳米纤维溶液; Step b) selecting an appropriate solvent to directly receive the electrospun nanofibers to obtain a nanofiber solution;
步骤c)将纳米纤维溶液定型冷冻,然后置于冷冻干燥机中干燥,得到纳米纤维气凝胶; Step c) freezing the nanofiber solution in a fixed shape, and then placing it in a freeze dryer to dry to obtain the nanofiber airgel;
步骤d)将所述的纳米纤维气凝胶进行预氧化、碳化和活化,得到碳纳米纤维气凝胶。 Step d) Preoxidizing, carbonizing and activating the nanofiber airgel to obtain the carbon nanofiber airgel.
本发明的优点是The advantages of the present invention are
1)以适当的溶剂直接接收静电纺丝纳米纤维,实现了一步法得到分散均一的纳米纤维溶液,且纳米纤维不会断裂,保持良好连续性,有利于提高碳纳米纤维气凝胶性能。 1) The electrospun nanofibers are directly received by an appropriate solvent, and a uniformly dispersed nanofiber solution can be obtained in one step, and the nanofibers will not break and maintain good continuity, which is conducive to improving the performance of carbon nanofiber airgel.
2)本方法制备的碳纳米纤维气凝胶,其原料来源广泛,不仅可以是高分子材料,也可以是多种有机/无机复合材料。 2) The carbon nanofiber airgel prepared by this method has a wide range of raw materials, not only polymer materials, but also various organic/inorganic composite materials.
3)本方法制备的碳纳米纤维气凝胶,其纳米纤维是由静电纺丝技术制备而成。因此,能轻易将多种组分共同集成在同一根纤维中,从而制备复合纳米纤维,有效地提高碳纳米纤维气凝胶性能。 3) The carbon nanofiber airgel prepared by this method is prepared by electrospinning technology. Therefore, multiple components can be easily integrated into the same fiber to prepare composite nanofibers, which can effectively improve the performance of carbon nanofiber airgel.
4)本方法制备的碳纳米纤维气凝胶结构可控(如纤维是否中空、纤维直径、比表面积和密度等),因此可以根据不同需求,制备最佳结构的碳纳米纤维气凝胶。 4) The structure of carbon nanofiber airgel prepared by this method is controllable (such as whether the fiber is hollow, fiber diameter, specific surface area and density, etc.), so carbon nanofiber airgel with the best structure can be prepared according to different needs.
附图说明 Description of drawings
图1为实施例一条件下,碳纳米纤维气凝胶的光学图。 Figure 1 is an optical diagram of the carbon nanofiber airgel under the conditions of Example 1.
图2为实施例一条件下,碳纳米纤维气凝胶的扫描电镜图(SEM)。 Fig. 2 is a scanning electron micrograph (SEM) of the carbon nanofiber airgel under the conditions of Example 1.
具体实施方式 Detailed ways
现结合附图和具体实施方式对本发明进一步说明。 The present invention will be further described in conjunction with the accompanying drawings and specific embodiments.
实施例一 Embodiment one
1) 纺丝液的配制:称取2 g的聚丙烯晴(PAN)粉末和0.3 g氧化石墨烯(GO),加入到含有20 g 二甲基甲酰胺(DMF)溶剂的100 mL锥形瓶中,置于60 ℃水浴中加热搅拌至溶解,配置成PAN-GO混合溶液。 1) Preparation of spinning solution: Weigh 2 g of polyacrylonitrile (PAN) powder and 0.3 g of graphene oxide (GO) into a 100 mL Erlenmeyer flask containing 20 g of dimethylformamide (DMF) solvent placed in a water bath at 60 °C, heated and stirred until dissolved, and configured as a PAN-GO mixed solution.
2)纳米纤维的制备:将步骤1)中的电纺丝液置于10 ml注射器中,以盛水的塑料容器作为纳米纤维的接收器收集纳米纤维。纺丝参数为:电压15 kV,喷丝口内径0.6 mm,纺丝液流速0.9 mL/h,喷丝头到接收水面的距离为15 cm,接收时间3 h,环境条件:温度30±5 ℃,相对湿度50±5%,接收器来回移动速度0.5 cm/s。 2) Preparation of nanofibers: The electrospinning solution in step 1) was placed in a 10 ml syringe, and the nanofibers were collected using a plastic container filled with water as a nanofiber receiver. Spinning parameters are: voltage 15 kV, spinneret inner diameter 0.6 mm, spinning solution flow rate 0.9 mL/h, distance from spinneret to receiving water surface 15 cm, receiving time 3 h, environmental conditions: temperature 30±5 ℃ , the relative humidity is 50±5%, and the receiver moves back and forth at a speed of 0.5 cm/s.
3)纳米纤维气凝胶的制备:将步骤2中的收集的纳米纤维溶液,根据所需密度和形状,进行定型,然后置于-4 ℃冰箱中冷冻5 h;接着将冷冻成型的纳米纤维置于冷冻干燥机中干燥2 d,得到纳米纤维气凝胶。 3) Preparation of nanofiber airgel: shape the nanofiber solution collected in step 2 according to the required density and shape, and then freeze it in a -4 °C refrigerator for 5 h; then freeze the formed nanofiber Dry in a freeze dryer for 2 days to obtain nanofiber airgel.
4)碳纳米纤维气凝胶的制备:将步骤3中的纳米纤维气凝胶置于280 ℃烘箱中,预氧化60 min;然后在管式马弗炉里,在N2保护下以,5 ℃/min 的速率升温至600℃后,保持0.5 h;接着再以5 ℃/min 的速率升温至900 ℃,在CO2环境下,活化0.5 h,最终以5 ℃/min 的速率降温到室温,得到含有石墨烯的碳纳米纤维气凝胶。 4) Preparation of carbon nanofiber airgel: place the nanofiber airgel in step 3 in an oven at 280 °C for 60 min; then in a tubular muffle furnace, under the protection of N 2 , After heating up to 600℃ at the rate of ℃/min, keep it for 0.5 h; then raise the temperature to 900 ℃ at the rate of 5 ℃/min, activate for 0.5 h in the CO 2 environment, and finally cool down to room temperature at the rate of 5 ℃/min , to obtain carbon nanofiber aerogels containing graphene.
5)碳纳米纤维气凝胶的电容性能测试:将步骤4中的碳纳米纤维气凝胶作为工作电极。用Ag/AgCl电极作参比电极,铂丝作对电极,在1 mol/L KOH电解液中,采用经典的三电极体系,在电化学工作站进行循环伏安及充放电测试。 5) Capacitance performance test of carbon nanofiber aerogel: the carbon nanofiber aerogel in step 4 was used as the working electrode. The Ag/AgCl electrode was used as the reference electrode, and the platinum wire was used as the counter electrode. In 1 mol/L KOH electrolyte, the classic three-electrode system was used to conduct cyclic voltammetry and charge-discharge tests at the electrochemical workstation.
实施例二 Embodiment two
1)纺丝液的配制:称取2 g的聚丙烯晴(PAN)粉末和0.1 g 氯化铁(FeCl3),加入到含有20 g 二甲基甲酰胺(DMF)溶剂的100 mL锥形瓶中,置于60℃水浴中加热搅拌至溶解,配置成PAN-FeCl3混合溶液。 1) Preparation of spinning solution: Weigh 2 g of polyacrylonitrile (PAN) powder and 0.1 g of ferric chloride (FeCl 3 ), add them into a 100 mL conical tube containing 20 g of dimethylformamide (DMF) solvent Place in a 60°C water bath, heat and stir until dissolved, and configure it as a PAN-FeCl 3 mixed solution.
2)纳米纤维的制备:将步骤1)中的电纺丝液置于10 ml注射器中,以盛水的塑料容器作为纳米纤维的接收器收集纳米纤维。纺丝参数为:电压15 kV,喷丝口内径0.6 mm,纺丝液流速0.9 mL/h,喷丝头到接收水面的距离为15 cm,接收时间3 h,环境条件:温度30±5 ℃,相对湿度50±5%,接收器来回移动速度0.5 cm/s。 2) Preparation of nanofibers: The electrospinning solution in step 1) was placed in a 10 ml syringe, and the nanofibers were collected using a plastic container filled with water as a nanofiber receiver. Spinning parameters are: voltage 15 kV, spinneret inner diameter 0.6 mm, spinning solution flow rate 0.9 mL/h, distance from spinneret to receiving water surface 15 cm, receiving time 3 h, environmental conditions: temperature 30±5 ℃ , the relative humidity is 50±5%, and the receiver moves back and forth at a speed of 0.5 cm/s.
3)纳米纤维气凝胶的制备:将步骤2中的收集的纳米纤维溶液,根据所需密度和形状,进行定型,然后置于-4 ℃冰箱中冷冻5 h;接着将冷冻成型的纳米纤维块置于冷冻干燥机中进行干燥2 d,得到纳米纤维气凝胶。 3) Preparation of nanofiber airgel: shape the nanofiber solution collected in step 2 according to the required density and shape, and then freeze it in a -4 °C refrigerator for 5 h; then freeze the formed nanofiber The blocks were dried in a freeze dryer for 2 days to obtain nanofiber airgel.
4)碳纳米纤维气凝胶的制备:将步骤3中的纳米纤维气凝胶置于管式马弗炉里,在N2保护下以,5 ℃/min 的速率升温至600℃后,保持0.5 h;接着再以5 ℃/min 的速率升温至800 ℃,在水蒸气环境下,活化0.5 h,最终以3 ℃/min 的速率降温到室温,得到掺杂铁的碳纳米纤维气凝胶。 4) Preparation of carbon nanofiber airgel: place the nanofiber airgel in step 3 in a tubular muffle furnace, heat up to 600°C at a rate of 5°C/min under the protection of N 2 , and keep 0.5 h; then heated up to 800 °C at a rate of 5 °C/min, activated for 0.5 h in a water vapor environment, and finally cooled to room temperature at a rate of 3 °C/min to obtain iron-doped carbon nanofiber airgel .
5)碳纳米纤维气凝胶的电容性能测试:将步骤4中的碳纳米纤维气凝胶作为工作电极。用Ag/AgCl电极作参比电极,铂丝作对电极,在1 mol/L KOH电解液中,采用经典的三电极体系,在电化学工作站进行循环伏安及充放电测试。 5) Capacitance performance test of carbon nanofiber aerogel: the carbon nanofiber aerogel in step 4 was used as the working electrode. The Ag/AgCl electrode was used as the reference electrode, and the platinum wire was used as the counter electrode. In 1 mol/L KOH electrolyte, the classic three-electrode system was used to conduct cyclic voltammetry and charge-discharge tests at the electrochemical workstation.
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。 Although the present invention has been particularly shown and described in conjunction with preferred embodiments, it will be understood by those skilled in the art that changes in form and details may be made to the present invention without departing from the spirit and scope of the invention as defined by the appended claims. Making various changes is within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510074631.2A CN104674383A (en) | 2015-02-12 | 2015-02-12 | Carbon nano fiber aerogel electrostatic spinning construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510074631.2A CN104674383A (en) | 2015-02-12 | 2015-02-12 | Carbon nano fiber aerogel electrostatic spinning construction method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104674383A true CN104674383A (en) | 2015-06-03 |
Family
ID=53309944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510074631.2A Pending CN104674383A (en) | 2015-02-12 | 2015-02-12 | Carbon nano fiber aerogel electrostatic spinning construction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104674383A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104882588A (en) * | 2015-06-08 | 2015-09-02 | 中国工程物理研究院化工材料研究所 | Carbon fiber/carbon nanotube composite membrane as well as preparation method and application thereof |
CN105161312A (en) * | 2015-09-24 | 2015-12-16 | 复旦大学 | Carbon nano fiber-graphene composite aerogel and cooperative assembly preparation method thereof |
CN105304876A (en) * | 2015-10-25 | 2016-02-03 | 复旦大学 | Molybdenum sulfide/graphene/carbon nano fiber composite material and preparation method thereof |
CN105923622A (en) * | 2016-05-10 | 2016-09-07 | 复旦大学 | Polyacrylonitrile nanofiber/polyimide-based carbon aerogel adsorption material and preparation method thereof |
CN106345053A (en) * | 2016-08-23 | 2017-01-25 | 孟玲 | Electrostatic releaser |
CN106552674A (en) * | 2016-09-28 | 2017-04-05 | 扬州云彩新材料科技有限公司 | Aerogel carried nickel-phosphorus alloy catalysis material of a kind of nanofiber and preparation method thereof |
CN106567157A (en) * | 2016-08-17 | 2017-04-19 | 重庆大学 | Preparation method of graphene nanoribbon in situ toughened nano carbon fiber |
CN106637490A (en) * | 2016-09-21 | 2017-05-10 | 东莞市联洲知识产权运营管理有限公司 | Porous conductive antibacterial fiber on basis of graphene and chitosan oligosaccharides and method for preparing porous conductive antibacterial fiber |
CN106854779A (en) * | 2016-12-15 | 2017-06-16 | 华南理工大学 | A kind of carbon nano-tube oriented enhanced carbon fibre composite and preparation method thereof |
CN106977763A (en) * | 2017-04-20 | 2017-07-25 | 哈尔滨工业大学 | A kind of preparation method of aramid nano-fiber aeroge |
CN108328595A (en) * | 2017-01-20 | 2018-07-27 | 中国科学院物理研究所 | A kind of carbon aerogels and preparation method thereof and pressure sensor |
CN108385127A (en) * | 2018-02-14 | 2018-08-10 | 中氧科技(广州)有限公司 | A kind of preparation method for the modification lead dioxide membrane electrode generating ozone |
CN108404823A (en) * | 2018-05-11 | 2018-08-17 | 江南大学 | A kind of electrostatic spinning prepares the method and its resulting materials of high water absorption 3D nanofiber aeroges |
CN108840656A (en) * | 2018-04-26 | 2018-11-20 | 东华大学 | One kind being based on Static Spinning SiO2Nanofiber aerogel heat-insulating material and its preparation and application |
CN109056122A (en) * | 2018-07-04 | 2018-12-21 | 吉林农业大学 | A method of tool three-dimensional structure nanofiber aerogel material is prepared by electrostatic spinning |
CN110204776A (en) * | 2019-06-05 | 2019-09-06 | 东华大学 | A kind of polyvinylidene fluoride nanometer fiber aerogel material and preparation method thereof |
WO2020224431A1 (en) * | 2019-05-07 | 2020-11-12 | 清华大学 | Aeolotropic layered carbon-fiber-based aerogel material and preparation method therefor |
CN115193348A (en) * | 2022-07-20 | 2022-10-18 | 天津工业大学 | A dynamic receiving device for continuous nanofibers and its preparation method for constructing nanofiber aerogels |
CN116623320A (en) * | 2023-05-29 | 2023-08-22 | 辽宁大学 | Electrospun carbon nanofiber electrode material with high mass transfer-charge transfer performance and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560889A (en) * | 2012-01-05 | 2012-07-11 | 黑龙江大学 | Method for producing bead-stringed PAN (polyacrylonitrile)-based carbon fiber electrode materials by electrostatic spinning |
CN102584211A (en) * | 2012-02-24 | 2012-07-18 | 西安理工大学 | Method for preparing micro/nano porous ceramic fibers by low-temperature electrostatic spinning |
CN103265010A (en) * | 2013-05-27 | 2013-08-28 | 东华大学 | Three-dimensional carbon fiber based aerogel material and preparation method thereof |
CN103305965A (en) * | 2013-06-04 | 2013-09-18 | 清华大学深圳研究生院 | Silicon-carbon composite material with nano micropores and preparation method as well as application thereof |
-
2015
- 2015-02-12 CN CN201510074631.2A patent/CN104674383A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560889A (en) * | 2012-01-05 | 2012-07-11 | 黑龙江大学 | Method for producing bead-stringed PAN (polyacrylonitrile)-based carbon fiber electrode materials by electrostatic spinning |
CN102584211A (en) * | 2012-02-24 | 2012-07-18 | 西安理工大学 | Method for preparing micro/nano porous ceramic fibers by low-temperature electrostatic spinning |
CN103265010A (en) * | 2013-05-27 | 2013-08-28 | 东华大学 | Three-dimensional carbon fiber based aerogel material and preparation method thereof |
CN103305965A (en) * | 2013-06-04 | 2013-09-18 | 清华大学深圳研究生院 | Silicon-carbon composite material with nano micropores and preparation method as well as application thereof |
Non-Patent Citations (1)
Title |
---|
YOSHIRO YOKOYAMA ET AL.: "Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric", 《MATERIALS LETTERS》, vol. 63, 15 April 2009 (2009-04-15), pages 754 - 756 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104882588A (en) * | 2015-06-08 | 2015-09-02 | 中国工程物理研究院化工材料研究所 | Carbon fiber/carbon nanotube composite membrane as well as preparation method and application thereof |
CN105161312B (en) * | 2015-09-24 | 2017-11-17 | 复旦大学 | A kind of carbon nano-fiber graphene composite aerogel and its collaboration process for assembly preparing |
CN105161312A (en) * | 2015-09-24 | 2015-12-16 | 复旦大学 | Carbon nano fiber-graphene composite aerogel and cooperative assembly preparation method thereof |
CN105304876A (en) * | 2015-10-25 | 2016-02-03 | 复旦大学 | Molybdenum sulfide/graphene/carbon nano fiber composite material and preparation method thereof |
CN105304876B (en) * | 2015-10-25 | 2018-06-08 | 复旦大学 | Molybdenum sulfide/graphene/carbon nano-fiber composite material and preparation method thereof |
CN105923622A (en) * | 2016-05-10 | 2016-09-07 | 复旦大学 | Polyacrylonitrile nanofiber/polyimide-based carbon aerogel adsorption material and preparation method thereof |
CN105923622B (en) * | 2016-05-10 | 2018-12-11 | 复旦大学 | A kind of polyacrylonitrile nanofiber/polyimide-based carbon aerogels adsorbent material and preparation method thereof |
CN106567157A (en) * | 2016-08-17 | 2017-04-19 | 重庆大学 | Preparation method of graphene nanoribbon in situ toughened nano carbon fiber |
CN106567157B (en) * | 2016-08-17 | 2022-03-08 | 重庆大学 | A kind of preparation method of graphene nanoribbon in-situ toughening carbon nanofiber |
CN106345053A (en) * | 2016-08-23 | 2017-01-25 | 孟玲 | Electrostatic releaser |
CN106637490A (en) * | 2016-09-21 | 2017-05-10 | 东莞市联洲知识产权运营管理有限公司 | Porous conductive antibacterial fiber on basis of graphene and chitosan oligosaccharides and method for preparing porous conductive antibacterial fiber |
CN106552674A (en) * | 2016-09-28 | 2017-04-05 | 扬州云彩新材料科技有限公司 | Aerogel carried nickel-phosphorus alloy catalysis material of a kind of nanofiber and preparation method thereof |
CN106552674B (en) * | 2016-09-28 | 2019-04-16 | 扬州云彩新材料科技有限公司 | A kind of aerogel carried nickel-phosphorus alloy catalysis material of nanofiber and preparation method thereof |
CN106854779A (en) * | 2016-12-15 | 2017-06-16 | 华南理工大学 | A kind of carbon nano-tube oriented enhanced carbon fibre composite and preparation method thereof |
CN108328595A (en) * | 2017-01-20 | 2018-07-27 | 中国科学院物理研究所 | A kind of carbon aerogels and preparation method thereof and pressure sensor |
CN106977763B (en) * | 2017-04-20 | 2019-10-08 | 哈尔滨工业大学 | A kind of preparation method of aramid nano-fiber aeroge |
CN106977763A (en) * | 2017-04-20 | 2017-07-25 | 哈尔滨工业大学 | A kind of preparation method of aramid nano-fiber aeroge |
CN108385127B (en) * | 2018-02-14 | 2019-09-13 | 中氧科技(广州)有限公司 | A kind of preparation method for the modification lead dioxide membrane electrode generating ozone |
CN108385127A (en) * | 2018-02-14 | 2018-08-10 | 中氧科技(广州)有限公司 | A kind of preparation method for the modification lead dioxide membrane electrode generating ozone |
CN108840656B (en) * | 2018-04-26 | 2021-02-09 | 东华大学 | SiO based on electrostatic spinning2Nanofiber aerogel heat insulation material and preparation and application thereof |
CN108840656A (en) * | 2018-04-26 | 2018-11-20 | 东华大学 | One kind being based on Static Spinning SiO2Nanofiber aerogel heat-insulating material and its preparation and application |
CN108404823A (en) * | 2018-05-11 | 2018-08-17 | 江南大学 | A kind of electrostatic spinning prepares the method and its resulting materials of high water absorption 3D nanofiber aeroges |
CN108404823B (en) * | 2018-05-11 | 2021-01-05 | 江南大学 | A method for preparing superabsorbent 3D nanofiber aerogels by electrospinning and materials obtained therefrom |
CN109056122A (en) * | 2018-07-04 | 2018-12-21 | 吉林农业大学 | A method of tool three-dimensional structure nanofiber aerogel material is prepared by electrostatic spinning |
WO2020224431A1 (en) * | 2019-05-07 | 2020-11-12 | 清华大学 | Aeolotropic layered carbon-fiber-based aerogel material and preparation method therefor |
CN110204776A (en) * | 2019-06-05 | 2019-09-06 | 东华大学 | A kind of polyvinylidene fluoride nanometer fiber aerogel material and preparation method thereof |
CN115193348A (en) * | 2022-07-20 | 2022-10-18 | 天津工业大学 | A dynamic receiving device for continuous nanofibers and its preparation method for constructing nanofiber aerogels |
CN115193348B (en) * | 2022-07-20 | 2024-03-22 | 天津工业大学 | A dynamic receiving device for continuous nanofibers and its preparation method for constructing nanofiber aerogels |
CN116623320A (en) * | 2023-05-29 | 2023-08-22 | 辽宁大学 | Electrospun carbon nanofiber electrode material with high mass transfer-charge transfer performance and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104674383A (en) | Carbon nano fiber aerogel electrostatic spinning construction method | |
Joshi et al. | Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes | |
Huang et al. | Fabrication of porous fibers via electrospinning: strategies and applications | |
Atıcı et al. | A review on centrifugally spun fibers and their applications | |
Fan et al. | Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors | |
Cao et al. | Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors | |
CN103225135B (en) | Porous carbon fiber and preparation method thereof and application | |
He et al. | Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors | |
Zhao et al. | Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors | |
CN103882559B (en) | High-ratio surface porous carbon fiber and preparation method thereof and application | |
CN109736092B (en) | Conductive polyaniline coated polyimide-based porous organic nano composite fiber membrane | |
Le et al. | Polyimide‐based porous hollow carbon nanofibers for supercapacitor electrode | |
CN106848314B (en) | The lithium-sulfur cell preparation method of double-layer porous carbon nano-fiber and the method for preparing positive electrode using it | |
Liu et al. | PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors | |
CN110170304A (en) | A kind of preparation method of spongy porous carbon fiber film | |
CN104868100B (en) | A kind of preparation method of nano composite membrane electrode material | |
CN113073426B (en) | Porous multi-hollow flexible composite nanofiber membrane material and preparation method thereof | |
CN110136998B (en) | A kind of preparation method and application of metal-organic framework carbon fiber composite film | |
CN105161312A (en) | Carbon nano fiber-graphene composite aerogel and cooperative assembly preparation method thereof | |
CN106098413B (en) | A kind of preparation method of flexible super capacitor electrode material | |
Altin et al. | Polyacrylonitrile/polyvinyl alcohol‐based porous carbon nanofiber electrodes for supercapacitor applications | |
CN107195894A (en) | A kind of metal carbon nano-fiber composite material and its preparation method and application | |
CN105161722A (en) | Porous carbon nanofiber membrane for positive electrode material of lithium-sulfur battery and preparation method thereof | |
Tan et al. | Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature | |
Hu et al. | Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150603 |
|
RJ01 | Rejection of invention patent application after publication |