[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a056109 -id:a056109
Displaying 1-10 of 49 results found. page 1 2 3 4 5
     Sort: relevance | references | number | modified | created      Format: long | short | data
A113528 Semiprimes in A056109. +20
8
6, 34, 57, 86, 121, 209, 262, 321, 386, 706, 1241, 1366, 1497, 2582, 2761, 3334, 3746, 3961, 4881, 5377, 6166, 6722, 7009, 7601, 8857, 9862, 10562, 10921, 12417, 13201, 14422, 15697, 17026, 17481, 17942, 18409, 19361, 19846, 20337, 21337, 22361 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Intersection of A056109 and A001358.
LINKS
EXAMPLE
a(1) = 6 because A056109(1) = 3*1^2 + 2*1 + 1 = 6 = 2 * 3 is semiprime.
MATHEMATICA
Select[Array[3 #^2 + 2 # + 1 &, 87], PrimeOmega[#] == 2 &] (* Michael De Vlieger, Mar 17 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 12 2006
STATUS
approved
A122770 Numbers k such that A056109(k) is a square. +20
3
0, 6, 88, 1230, 17136, 238678, 3324360, 46302366, 644908768, 8982420390, 125108976696, 1742543253358, 24270496570320, 338044408731126, 4708351225665448, 65578872750585150, 913395867282526656, 12721963269204788038, 177194089901584505880 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
All terms are even. Sequence is infinite. Corresponding squares are s^2 with s = 1, 11, 153, 2131, 29681, 413403, 5757961, 80198051, 1117014753, 15558008491, 216695104121, 3018173449203, 42037733184721, ... (see A122769).
Numbers m such that the distance from (0,0,-1) to (m,m,m) in R^3 is an integer. - James R. Buddenhagen, Jun 15 2013
Also n such that the sum of the pentagonal numbers P(n) and P(n+1) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 07 2014
LINKS
FORMULA
a(n) = ((b+1)*(7+4*b)^n - (b-1)*(7-4*b)^n - 2)/6, where b = sqrt(3).
a(n) = 14*a(n-1) - a(n-2) + 4, with a(0)=0, a(1)=6.
a(n) = 2*A011916(n) = (A001353(n+1)^2 - A001075(n)^2)/2. - Richard R. Forberg, Aug 26 2013
a(n) = 15*a(n-1)-15*a(n-2)+a(n-3). - Colin Barker, Dec 07 2014
G.f.: 2*x*(x-3) / ((x-1)*(x^2-14*x+1)). - Colin Barker, Dec 07 2014
MATHEMATICA
LinearRecurrence[{15, -15, 1}, {0, 6, 88}, 25] (* Paolo Xausa, Jul 19 2024 *)
PROG
(PARI) concat(0, Vec(2*x*(x-3) / ((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Dec 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Oct 21 2006
EXTENSIONS
More terms from Colin Barker, Dec 07 2014
STATUS
approved
A122769 Numbers k such that k^2 is of the form 3*m^2 + 2*m + 1 (A056109). +20
2
1, 11, 153, 2131, 29681, 413403, 5757961, 80198051, 1117014753, 15558008491, 216695104121, 3018173449203, 42037733184721, 585510091136891, 8155103542731753, 113585939507107651, 1582048049556775361 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
All terms are odd. Sequence is infinite. Corresponding m's are 0, 6, 88, 1230, 17136, 238678, 3324360, 46302366, 644908768, 8982420390, 125108976696, 1742543253358, 24270496570320. s^2 are squares in A056109.
The Diophantine equation A000290(x) = A000326(y) + A000326(y-1) has the solutions x = a(n) and y = (4^n + (1 + sqrt(3))^(4*n - 3) + (1 - sqrt(3))^(4*n - 3))/(3*2^(2*n - 1)). - Bruno Berselli, Mar 04 2013
LINKS
Tanya Khovanova, Recursive Sequences
Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
FORMULA
Alternatively, with a different offset:
a(0) = 1, a(1) = 11, a(n) = 14*a(n-1) - a(n-2), and
a(n) = ((3 - b)*(7 - 4*b)^n + (3 + b)*(7 + 4*b)^n)/6, b = sqrt(3).
G.f.: x*(1 - 3*x)/(1 - 14*x + x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: (1/3)*((9*cosh(4*sqrt(3)*x) - 5*sqrt(3)*sinh(4*sqrt(3)*x))*exp(7*x) - 9). - Franck Maminirina Ramaharo, Jan 07 2019
MATHEMATICA
LinearRecurrence[{14, -1}, {1, 11}, 17] (* Jean-François Alcover, Jan 07 2019 *)
CROSSREFS
Cf. A056109.
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Oct 21 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 28 2006
STATUS
approved
A003215 Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).
(Formerly M4362)
+10
281
1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Crystal ball sequence for A_2 lattice. - Michael Somos, Jun 03 2012
Sixth spoke of hexagonal spiral (cf. A056105-A056109).
Number of ordered integer triples (a,b,c), -n <= a,b,c <= n, such that a+b+c=0. - Benoit Cloitre, Jun 14 2003
Also the number of partitions of 6n into at most 3 parts, A001399(6n). - R. K. Guy, Oct 20 2003
Also, a(n) is the number of partitions of 6(n+1) into exactly 3 distinct parts. - William J. Keith, Jul 01 2004
Number of dots in a centered hexagonal figure with n+1 dots on each side.
Values of second Bessel polynomial y_2(n) (see A001498).
First differences of cubes (A000578). - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
Final digits of Hex numbers (hex(n) mod 10) are periodic with palindromic period of length 5 {1, 7, 9, 7, 1}. Last two digits of Hex numbers (hex(n) mod 100) are periodic with palindromic period of length 100. - Alexander Adamchuk, Aug 11 2006
All divisors of a(n) are congruent to 1, modulo 6. Proof: If p is an odd prime different from 3 then 3n^2 + 3n + 1 = 0 (mod p) implies 9(2n + 1)^2 = -3 (mod p), whence p = 1 (mod 6). - Nick Hobson, Nov 13 2006
For n>=1, a(n) is the side of Outer Napoleon Triangle whose reference triangle is a right triangle with legs (3a(n))^(1/2) and 3n(a(n))^(1/2). - Tom Schicker (tschicke(AT)email.smith.edu), Apr 25 2007
Number of triples (a,b,c) where 0<=(a,b)<=n and c=n (at least once the term n). E.g., for n = 1: (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), so a(1)=7. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Equals the triangular numbers convolved with [1, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Terry Stickels, Dec 07 2009: (Start)
Also the maximum number of viewable cubes from any one static point while viewing a cube stack of identical cubes of varying magnitude.
For example, viewing a 2 X 2 X 2 stack will yield 7 maximum viewable cubes.
If the stack is 3 X 3 X 3, the maximum number of viewable cubes from any one static position is 19, and so on.
The number of cubes in the stack must always be the same number for width, length, height (at true regular cubic stack) and the maximum number of visible cubes can always be found by taking any cubic number and subtracting the number of the cube that is one less.
Examples: 125 - 64 = 61, 64 - 27 = 37, 27 - 8 = 19. (End)
The sequence of digital roots of the a(n) is period 3: repeat [1,7,1]. - Ant King, Jun 17 2012
The average of the first n (n>0) centered hexagonal numbers is the n-th square. - Philippe Deléham, Feb 04 2013
A002024 is the following array A read along antidiagonals:
1, 2, 3, 4, 5, 6, ...
2, 3, 4, 5, 6, 7, ...
3, 4, 5, 6, 7, 8, ...
4, 5, 6, 7, 8, 9, ...
5, 6, 7, 8, 9, 10, ...
6, 7, 8, 9, 10, 11, ...
and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
a(n) is the sum of the terms in the n+1 X n+1 matrices minus those in n X n matrices in an array formed by considering A158405 an array (the beginning terms in each row are 1,3,5,7,9,11,...). - J. M. Bergot, Jul 05 2013
The formula also equals the product of the three distinct combinations of two consecutive numbers: n^2, (n+1)^2, and n*(n+1). - J. M. Bergot, Mar 28 2014
The sides of any triangle ABC are divided into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_2n in side a, and also on the sides b and c cyclically. If A'B'C' is the triangle delimited by AA_n, BB_n and CC_n cevians, we have (ABC)/(A'B'C') = a(n) (see Java applet link). - Ignacio Larrosa Cañestro, Jan 02 2015
a(n) is the maximal number of parts into which (n+1) triangles can intersect one another. - Ivan N. Ianakiev, Feb 18 2015
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = ((2^m-1)(2n+1))^t mod a(n), where m any positive integer, and t = 0(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = a(n) - (((2^m-1)(2n+1))^t mod a(n)), where m any positive integer, and t = 3(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
(3n+1)^(a(n)-1) mod a(n) = (3n+2)^(a(n)-1) mod a(n) = 1. If a(n) not prime, then always strong pseudoprime. - Alzhekeyev Ascar M, Oct 07 2016
Every positive integer is the sum of 8 hex numbers (zero included), at most 3 of which are greater than 1. - Mauro Fiorentini, Jan 01 2018
Area enclosed by the segment of Archimedean spiral between n*Pi/2 and (n+1)*Pi/2 in Pi^3/48 units. - Carmine Suriano, Apr 10 2018
This sequence contains all numbers k such that 12*k - 3 is a square. - Klaus Purath, Oct 19 2021
The continued fraction expansion of sqrt(3*a(n)) is [3n+1; {1, 1, 2n, 1, 1, 6n+2}]. For n = 0, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 12 2022
REFERENCES
M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 18.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. L. Alexanderson and John E. Wetzel, Dissections of a tetrahedron, J. Combinatorial Theory Ser. B 11 (1971), 58--66. MR0303412 (46 #2549). See p. 58.
B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31 (see p. 30).
B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31. [Annotated scanned copy]
Aran Bingham, Commutative n-ary Arithmetic, University of New Orleans Theses and Dissertations, Paper 1959, 2015.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. Gardner & N. J. A. Sloane, Correspondence, 1973-74
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Md. Towhidul Islam, Extending triangle
G. S. Kazandzidis, On a Conjecture of Moessner and a General Problem, Bull. Soc. Math. Grèce, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30 (1961).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
Eric Weisstein's World of Mathematics, Hex Number
Eric Weisstein's World of Mathematics, Nexus Number
Eric Weisstein's World of Mathematics, Outer Napoleon Triangle.
FORMULA
a(n) = 3*n*(n+1) + 1, n >= 0 (see the name).
a(n) = (n+1)^3 - n^3 = a(-1-n).
G.f.: (1 + 4*x + x^2) / (1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = 6*A000217(n) + 1.
a(n) = a(n-1) + 6*n = 2a(n-1) - a(n-2) + 6 = 3*a(n-1) - 3*a(n-2) + a(n-3) = A056105(n) + 5n = A056106(n) + 4*n = A056107(n) + 3*n = A056108(n) + 2*n = A056108(n) + n.
n-th partial arithmetic mean is n^2. - Amarnath Murthy, May 27 2003
a(n) = 1 + Sum_{j=0..n} (6*j). E.g., a(2)=19 because 1+ 6*0 + 6*1 + 6*2 = 19. - Xavier Acloque, Oct 06 2003
The sum of the first n hexagonal numbers is n^3. That is, Sum_{n>=1} (3*n*(n-1) + 1) = n^3. - Edward Weed (eweed(AT)gdrs.com), Oct 23 2003
a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 2 1 0 / 3 3 1]. M^n * [1 1 1] = [1 2n+1 a(n)]. E.g., a(4) = 61, right term in M^4 * [1 1 1], since M^4 * [1 1 1] = [1 9 61] = [1 2n+1 a(4)]. - Gary W. Adamson, Dec 22 2004
Row sums of triangle A130298. - Gary W. Adamson, Jun 07 2007
a(n) = 3*n^2 + 3*n + 1. Proof: 1) If n occurs once, it may be in 3 positions; for the two other ones, n terms are independently possible, then we have 3*n^2 different triples. 2) If the term n occurs twice, the third one may be placed in 3 positions and have n possible values, then we have 3*n more different triples. 3) The term n may occurs 3 times in one way only that gives the formula. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Binomial transform of [1, 6, 6, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = (n-1)*A000166(n) + (n-2)*A000166(n-1) = (n-1)floor(n!*e^(-1)+1) + (n-2)*floor((n-1)!*e^(-1)+1) (with offset 0). - Gary Detlefs, Dec 06 2009
a(n) = A028896(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = integral( (sin((n+1/2)x)/sin(x/2))^3, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Sum_{n>=0} 1/a(n) = Pi/sqrt(3)*tanh(Pi/(2*sqrt(3))) = 1.305284153013581... - Ant King, Jun 17 2012
a(n) = A000290(n) + A000217(2n+1). - Ivan N. Ianakiev, Sep 24 2013
a(n) = A002378(n+1) + A056220(n) = A005408(n) + 2*A005449(n) = 6*A000217(n) + 1. - Ivan N. Ianakiev, Sep 26 2013
a(n) = 6*A000124(n) - 5. - Ivan N. Ianakiev, Oct 13 2013
a(n) = A239426(n+1) / A239449(n+1) = A215630(2*n+1,n+1). - Reinhard Zumkeller, Mar 19 2014
a(n) = A243201(n) / A002061(n + 1). - Mathew Englander, Jun 03 2014
a(n) = A101321(6,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (1 + 6*x + 3*x^2)*exp(x). - Ilya Gutkovskiy, Jul 28 2016
a(n) = (A001844(n) + A016754(n))/2. - Bruce J. Nicholson, Aug 06 2017
a(n) = A045943(2n+1). - Miquel Cerda, Jan 22 2018
a(n) = 3*Integral_{x=n..n+1} x^2 dx. - Carmine Suriano, Apr 10 2018
a(n) = A287326(A000124(n), 1). - Kolosov Petro, Oct 22 2018
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 10*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 2/e. (End)
G.f.: polylog(-3, x)*(1-x)/x. See the Simon Plouffe formula above, and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 08 2021
a(n) = T(n-1)^2 - 2*T(n)^2 + T(n+1)^2, n >= 1, T = triangular number A000217. - Klaus Purath, Oct 11 2021
a(n) = 1 + 2*Sum_{j=n..2n} j. - Klaus Purath, Oct 19 2021
a(n) = A069099(n+1) - A000217(n). - Klaus Purath, Nov 03 2021
From Leo Tavares, Dec 03 2021: (Start)
a(n) = A005448(n) + A140091(n);
a(n) = A001844(n) + A002378(n);
a(n) = A005891(n) + A000217(n);
a(n) = A000290(n) + A000384(n+1);
a(n) = A060544(n-1) + 3*A000217(n);
a(n) = A060544(n-1) + A045943(n).
a(2*n+1) = A154105(n).
(End)
EXAMPLE
G.f. = 1 + 7*x + 19*x^2 + 37*x^3 + 61*x^4 + 91*x^5 + 127*x^6 + 169*x^7 + 217*x^8 + ...
From Omar E. Pol, Aug 21 2011: (Start)
Illustration of initial terms:
.
. o o o o
. o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o
. o o o o
.
. 1 7 19 37
.
(End)
From Klaus Purath, Dec 03 2021: (Start)
(1) a(19) is not a prime number, because besides a(19) = a(9) + P(29), a(19) = a(15) + P(20) = a(2) + P(33) is also true.
(2) a(25) is prime, because except for a(25) = a(12) + P(38) there is no other equation of this pattern. (End)
MAPLE
A003215:=n->3*n*(n+1)+1; seq(A003215(n), n=0..100); # Wesley Ivan Hurt, Mar 28 2014
MATHEMATICA
FoldList[#1 + #2 &, 1, 6 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 7, 19}, 47] (* Robert G. Wilson v, Jul 06 2013 *)
PROG
(PARI) {a(n) = 3*n*(n+1) + 1};
(Haskell)
a003215 n = 3 * n * (n + 1) + 1 -- Reinhard Zumkeller, Oct 22 2011
(Maxima) makelist(3*n*(n+1)+1, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Magma) [3*n*(n+1)+1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
(Python) [3*n*(n+1)+1 for n in range(47)] # Michael S. Branicky, Jan 07 2021
CROSSREFS
Column k=3 of A080853, and column k=2 of A047969.
See also A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A287326(A000124(n), 1).
Cf. A008292.
Cf. A154105.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
A001399 a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.
(Formerly M0518 N0186)
+10
195
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also number of tripods (trees with exactly 3 leaves) on n vertices. - Eric W. Weisstein, Mar 05 2011
Also number of partitions of n+3 into exactly 3 parts; number of partitions of n in which the greatest part is less than or equal to 3; and the number of nonnegative solutions to b + 2c + 3d = n.
Also a(n) gives number of partitions of n+6 into 3 distinct parts and number of partitions of 2n+9 into 3 distinct and odd parts, e.g., 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3. - Jon Perry, Jan 07 2004
Also bracelets with n+3 beads 3 of which are red (so there are 2 possibilities with 5 beads).
More generally, the number of partitions of n into at most k parts is also the number of partitions of n+k into k positive parts, the number of partitions of n+k in which the greatest part is k, the number of partitions of n in which the greatest part is less than or equal to k, the number of partitions of n+k(k+1)/2 into exactly k distinct positive parts, the number of nonnegative solutions to b + 2c + 3d + ... + kz = n and the number of nonnegative solutions to 2c + 3d + ... + kz <= n. - Henry Bottomley, Apr 17 2001
Also coefficient of q^n in the expansion of (m choose 3)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
From Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) for n > 0 is formed by the folding points (including the initial 1). The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
.
a(p) is maximal number of hexagons in a polyhex with perimeter at most 2p + 6. (End)
a(n-3) is the number of partitions of n into 3 distinct parts, where 0 is allowed as a part. E.g., at n=9, we can write 8+1+0, 7+2+0, 6+3+0, 4+5+0, 1+2+6, 1+3+5 and 2+3+4, which is a(6)=7. - Jon Perry, Jul 08 2003
a(n) gives number of partitions of n+6 into parts <=3 where each part is used at least once (subtract 6=1+2+3 from n). - Jon Perry, Jul 03 2004
This is also the number of partitions of n+3 into exactly 3 parts (there is a 1-to-1 correspondence between the number of partitions of n+3 in which the greatest part is 3 and the number of partitions of n+3 into exactly three parts). - Graeme McRae, Feb 07 2005
Apply the Riordan array (1/(1-x^3),x) to floor((n+2)/2). - Paul Barry, Apr 16 2005
Also, number of triangles that can be created with odd perimeter 3,5,7,9,11,... with all sides whole numbers. Note that triangles with even perimeter can be generated from the odd ones by increasing each side by 1. E.g., a(1) = 1 because perimeter 3 can make {1,1,1} 1 triangle. a(4) = 3 because perimeter 9 can make {1,4,4} {2,3,4} {3,3,3} 3 possible triangles. - Bruce Love (bruce_love(AT)ofs.edu.sg), Nov 20 2006
Also number of nonnegative solutions of the Diophantine equation x+2*y+3*z=n, cf. Pólya/Szegő reference.
From Vladimir Shevelev, Apr 23 2011: (Start)
Also a(n-3), n >= 3, is the number of non-equivalent necklaces of 3 beads each of them painted by one of n colors.
The sequence {a(n-3), n >= 3} solves the so-called Reis problem about convex k-gons in case k=3 (see our comment to A032279).
a(n-3) (n >= 3) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with three 1's in every row. (End)
A001399(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w = 2*x+3*y. - Clark Kimberling, Jun 04 2012
Also, for n >= 3, a(n-3) is the number of the distinct triangles in an n-gon, see the Ngaokrajang links. - Kival Ngaokrajang, Mar 16 2013
Also, a(n) is the total number of 5-curve coin patterns (5C4S type: 5 curves covering full 4 coins and symmetry) packing into fountain of coins base (n+3). See illustration in links. - Kival Ngaokrajang, Oct 16 2013
Also a(n) = half the number of minimal zero sequences for Z_n of length 3 [Ponomarenko]. - N. J. A. Sloane, Feb 25 2014
Also, a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of an Octahedral Rotational Energy Surface (cf. Harter & Patterson). - Bradley Klee, Jul 31 2015
Also Molien series for invariants of finite Coxeter groups D_3 and A_3. - N. J. A. Sloane, Jan 10 2016
Number of different distributions of n+6 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) is also the number of partitions of 2*n with <= n parts and no part >= 4. The bijection to partitions of n with no part >= 4 is: 1 <-> 2, 2 <-> 1 + 3, 3 <-> 3 + 3 (observing the order of these rules). The <- direction uses the following fact for partitions of 2*n with <= n parts and no part >=4: for each part 1 there is a part 3, and an even number (including 0) of remaining parts 3. - Wolfdieter Lang, May 21 2019
List of the terms in A000567(n>=1), A049450(n>=1), A033428(n>=1), A049451(n>=1), A045944(n>=1), and A003215(n) in nondecreasing order. List of the numbers A056105(n)-1, A056106(n)-1, A056107(n)-1, A056108(n)-1, A056109(n)-1, and A003215(m) with n >= 1 and m >= 0 in nondecreasing order. Numbers of the forms 3n*(n-1)+1, n*(3n-2), n*(3n-1), 3n^2, n*(3n+1), n*(3n+2) with n >= 1 listed in nondecreasing order. Integers m such that lattice points from 1 through m on a hexagonal spiral starting at 1 forms a convex polygon. - Ya-Ping Lu, Jan 24 2024
REFERENCES
R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Marius A. Burtea, Table of n, a(n) for n = 0..17501 (terms 0..1000 from T. D. Noe, terms 14001 onwards corrected by Sean A. Irvine, April 25 2019)
Hamid Afshar, Branislav Cvetkovic, Sabine Ertl, Daniel Grumiller, and Niklas Johansson, Conformal Chern-Simons holography-lock, stock and barrel, arXiv preprint arXiv:1110.5644 [hep-th], 2011.
C. Ahmed, P. Martin, and V. Mazorchuk, On the number of principal ideals in d-tonal partition monoids, arXiv preprint arXiv:1503.06718 [math.CO], 2015.
Nesrine Benyahia-Tani, Zahra Yahi, and Sadek Bouroubi, Ordered and non-ordered non-congruent convex quadrilaterals inscribed in a regular n-gon, Rostocker Math. Kolloq. 68 (2013), 71-79.
N. Benyahia Tani, Z. Yahi, and S. Bouroubi, Ordered and non-ordered non-isometric convex quadrilaterals inscribed in a regular n-gon, Bulletin du Laboratoire Liforce 01 (2014), 1-9.
Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Chen Rong-si, S. El-Basil, and Zhang Fuji, Polygonal Systems Including the Corannulene and Coronene Homologs: Novel Applications of Pólya's Theorem, Z. Naturforsch., 52a (1997), 867-873.
Lucia De Luca and Gero Friesecke, Classification of particle numbers with unique Heitmann-Radin minimizer, arXiv:1701.07231 [math-ph], 2017.
Nick Fischer and Christian Ikenmeyer, The Computational Complexity of Plethysm Coefficients, arXiv:2002.00788 [cs.CC], 2020.
H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no.8, 964-999.
W. G. Harter and C. W. Patterson, Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators, Journal of Mathematical Physics, 20.7 (1979), 1453-1459. alternate copy
M. D. Hirschhorn and J. A. Sellers, Enumeration of unigraphical partitions, JIS 11 (2008) 08.4.6.
R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy]
J. H. Jordan, R. Walch, and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly 86 (1979), 686-689.
Alexander V. Karpov, An Informational Basis for Voting Rules, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188.
Gerzson Keri and Patric R. J. Östergård, The Number of Inequivalent (2R+3,7)R Optimal Covering Codes, Journal of Integer Sequences 9 (2006), Article 06.4.7.
Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
Axel Kleinschmidt and Valentin Verschinin, Tetrahedral modular graph functions, J. High Energy Phys. 2017, No. 9, Paper No. 155, 38 p. (2017), eq (3.40).
Mathematics Stack Exchange, What does "pcr" stand for. [This is Comtet's notation for "prime circulator". See pp. 109-110.]
M. B. Nathanson, Partitions with parts in a finite set, arXiv:math/0002098 [math.NT], 2000.
Andrew N. Norris, Higher derivatives and the inverse derivative of a tensor-valued function of a tensor, arXiv:0707.0115 [math.SP], 2007; Equation 3.28, p. 10.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Vadim Ponomarenko, Minimal zero sequences of finite cyclic groups, INTEGERS 4 (2004), #A24.
Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math. 35(5) (2004), 629-638.
Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma), arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).
Devansh Singh and S. N. Mishra, Representing K-parts Integer Partitions, Global Journal of Pure and Applied Mathematics (GJPAM), Volume 15 Number 6 (2019), pp. 889-907.
Karl Hermann Struve, Fresnel's Interferenzerscheinungen: Theoretisch und Experimentell Bearbeitet, Dorpat, 1881 (Thesis). [Gives the Round(n^2/12) formula.]
James Tanton, Young students approach integer triangles, FOCUS 22(5) (2002), 4 - 6.
James Tanton, Integer Triangles, Chapter 11 in "Mathematics Galore!" (MAA, 2012).
Richard Vale and Shayne Waldron, The construction of G-invariant finite tight frames, J. Four. Anal. Applic. 22 (2016), 1097-1120.
Eric Weisstein's World of Mathematics, Tripod.
Winston C. Yang, Maximal and minimal polyhexes, 2002.
FORMULA
G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = A008284(n+3, 3), n >= 0.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
a(n) = a(-6 - n) for all n in Z. - Michael Somos, Sep 04 2006
a(6*n) = A003215(n), a(6*n + 1) = A000567(n + 1), a(6*n + 2) = A049450(n + 1), a(6*n + 3) = A033428(n + 1), a(6*n + 4) = A049451(n + 1), a(6*n + 5) = A045944(n + 1).
a(n) = a(n-1) + A008615(n+2) = a(n-2) + A008620(n) = a(n-3) + A008619(n) = A001840(n+1) - a(n-1) = A002620(n+2) - A001840(n) = A000601(n) - A000601(n-1). - Henry Bottomley, Apr 17 2001
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
72*a(n) = 17 + 6*(n+1)*(n+5) + 9*(-1)^n - 8*A061347(n). - Benoit Cloitre, Feb 09 2003
From Jon Perry, Jun 17 2003: (Start)
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
A117220(n) = a(A003586(n)). - Reinhard Zumkeller, Mar 04 2006
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
a(n) = A026820(n,3) for n > 2. - Reinhard Zumkeller, Jan 21 2010
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
a(n) = A005044(2*n + 3) = A005044(2*n + 6). - Michael Somos, Feb 25 2012
a(n) = A000212(n+3) - A002620(n+3). - Richard R. Forberg, Dec 08 2013
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - David Neil McGrath, Feb 14 2015
a(n) = floor((n^2+3)/12) + floor((n+2)/2). - Giacomo Guglieri, Apr 02 2019
From Devansh Singh, May 28 2020: (Start)
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
a(n) = floor(((n+3)^2 + 4)/12). - Vladimír Modrák, Zuzana Soltysova, Dec 08 2020
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
a(6n) = 1+6*A000217(n); Sum_{i=1..n} a(6*i) = A000578(n+1). - David García Herrero, May 05 2024
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - Vladimir Shevelev, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - Ece Uslu, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - Ece Uslu, Esin Becenen, Jan 11 2016
From Gus Wiseman, Apr 15 2019: (Start)
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(311) (222) (322) (71)
(321) (331) (332)
(411) (421) (422)
(511) (431)
(521)
(611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
(3) (31) (32) (33) (322) (332) (333) (3322)
(311) (321) (331) (3221) (3222) (3331)
(3111) (3211) (3311) (3321) (32221)
(31111) (32111) (32211) (33211)
(311111) (33111) (322111)
(321111) (331111)
(3111111) (3211111)
(31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
{} {12} {12,12} {12,12,12} {12,12,12,12} {12,12,12,12,12}
{13,23} {12,13,23} {12,13,23,23} {12,13,13,23,23}
{13,23,23} {13,13,23,23} {12,13,23,23,23}
{13,23,23,23} {13,13,23,23,23}
{13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
(321) (421) (431) (432) (532) (542) (543) (643) (653)
(521) (531) (541) (632) (642) (652) (743)
(621) (631) (641) (651) (742) (752)
(721) (731) (732) (751) (761)
(821) (741) (832) (842)
(831) (841) (851)
(921) (931) (932)
(A21) (941)
(A31)
(B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
(111) (211) (221) (222) (322) (332) (333) (433) (443)
(311) (321) (331) (422) (432) (442) (533)
(411) (421) (431) (441) (532) (542)
(511) (521) (522) (541) (551)
(611) (531) (622) (632)
(621) (631) (641)
(711) (721) (722)
(811) (731)
(821)
(911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
() (1) (2) (3) (22) (32) (33) (322) (332)
(11) (21) (31) (221) (222) (331) (2222)
(111) (211) (311) (321) (2221) (3221)
(1111) (2111) (2211) (3211) (3311)
(11111) (3111) (22111) (22211)
(21111) (31111) (32111)
(111111) (211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
(5,3,1) (7,3,1) (7,5,1) (7,5,3) (9,5,3) (9,7,3) (9,7,5)
(9,3,1) (9,5,1) (9,7,1) (11,5,3) (11,7,3)
(11,3,1) (11,5,1) (11,7,1) (11,9,1)
(13,3,1) (13,5,1) (13,5,3)
(15,3,1) (13,7,1)
(15,5,1)
(17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
(210) (310) (320) (420) (430) (530) (540) (640) (650)
(410) (510) (520) (620) (630) (730) (740)
(321) (610) (710) (720) (820) (830)
(421) (431) (810) (910) (920)
(521) (432) (532) (A10)
(531) (541) (542)
(621) (631) (632)
(721) (641)
(731)
(821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
(321) (3211) (3221) (3321) (32221) (33221) (33321)
(32111) (32211) (33211) (322211) (322221)
(321111) (322111) (332111) (332211)
(3211111) (3221111) (3222111)
(32111111) (3321111)
(32211111)
(321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - Wolfdieter Lang, May 21 2019
MAPLE
A001399 := proc(n)
round( (n+3)^2/12) ;
end proc:
seq(A001399(n), n=0..40) ;
with(combstruct):ZL4:=[S, {S=Set(Cycle(Z, card<4))}, unlabeled]:seq(count(ZL4, size=n), n=0..61); # Zerinvary Lajos, Sep 24 2007
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=3)}, unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
MATHEMATICA
CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ]
Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *)
k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 2, 3, 4, 5}, 70] (* Harvey P. Dale, Jun 21 2012 *)
a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *)
k=3 (* Number of red beads in bracelet problem *); CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2, {x, 0, 50}], x] (* Herbert Kociemba, Nov 04 2016 *)
Table[Length[Select[IntegerPartitions[n, {3}], UnsameQ@@#&]], {n, 0, 30}] (* Gus Wiseman, Apr 15 2019 *)
PROG
(PARI) {a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
(Haskell)
a001399 = p [1, 2, 3] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Feb 28 2013
(Magma) I:=[1, 1, 2, 3, 4, 5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
(Magma) [#RestrictedPartitions(n, {1, 2, 3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
(Magma) [Round((n+3)^2/12): n in [0..70]]; // Marius A. Burtea, Jan 06 2019
(Python) [print(round((n+3)**2/12), end = ', ') for n in range(0, 62)] # Ya-Ping Lu, Jan 24 2024
CROSSREFS
Molien series for finite Coxeter groups D_3 through D_12 are A001399, A051263, A266744-A266751.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Name edited by Gus Wiseman, Apr 15 2019
STATUS
approved
A059100 a(n) = n^2 + 2. +10
74
2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502, 2603 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Let s(n) = Sum_{k>=1} 1/n^(2^k). Then I conjecture that the maximum element in the continued fraction for s(n) is n^2 + 2. - Benoit Cloitre, Aug 15 2002
Binomial transformation yields A081908, with A081908(0)=1 dropped. - R. J. Mathar, Oct 05 2008
1/a(n) = R(n)/r with R(n) the n-th radius of the Pappus chain of the symmetric arbelos with semicircle radii r, r1 = r/2 = r2. See the MathWorld link for Pappus chain (there are two of them, a left and a right one. In this case these two chains are congruent). - Wolfdieter Lang, Mar 01 2013
a(n) is the number of election results for an election with n+2 candidates, say C1, C2, ..., and C(n+2), and with only two voters (each casting a single vote) that have C1 and C2 receiving the same number of votes. See link below. - Dennis P. Walsh, May 08 2013
This sequence gives the set of values such that for sequences b(k+1) = a(n)*b(k) - b(k-1), with initial values b(0) = 2, b(1) = a(n), all such sequences are invariant under this transformation: b(k) = (b(j+k) + b(j-k))/b(j), except where b(j) = 0, for all integer values of j and k, including negative values. Examples are: at n=0, b(k) = 2 for all k; at n=1, b(k) = A005248; at n=2, b(k) = 2*A001541; at n=3, b(k)= A057076; at n=4, b(k) = 2*A023039. This b(k) family are also the transformation results for all related b'(k) (i.e., those with different initial values) including non-integer values. Further, these b(k) are also the bisections of the transformations of sequences of the form G(k+1) = n * G(k) + G(k-1), and those bisections are invariant for all initial values of g(0) and g(1), including non-integer values. For n = 1 this g(k) family includes Fibonacci and Lucas, where the invariant bisection is b(k) = A005248. The applicable bisection for this transformation of g(k) is for the odd values of k, and applies for all n. Also see A000032 for a related family of sequences. - Richard R. Forberg, Nov 22 2014
Also the number of maximum matchings in the n-gear graph. - Eric W. Weisstein, Dec 31 2017
Also the Wiener index of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Numbers of the form n^2+2 have no factors that are congruent to 7 (mod 8). - Gordon E. Michaels, Sep 12 2019
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {n, 2n}]. - Magus K. Chu, Sep 10 2022
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Alexander Soifer, Coffee Hour and the Conway-Soifer Cover-Up, In: How Does One Cut a Triangle? (2009), pp. 147-156. See also here
Dennis P. Walsh, Notes on a tied election.
Eric Weisstein's World of Mathematics, Dipyramidal Graph.
Eric Weisstein's World of Mathematics, Gear Graph.
Eric Weisstein's World of Mathematics, Matching.
Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
Eric Weisstein's World of Mathematics, Near-Square Prime.
Eric Weisstein's World of Mathematics, Pappus Chain.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
G.f.: (2 - 3*x + 3*x^2)/(1 - x)^3. - R. J. Mathar, Oct 05 2008
a(n) = ((n - 2)^2 + 2*(n + 1)^2)/3. - Reinhard Zumkeller, Feb 13 2009
a(n) = A000196(A156798(n) - A000290(n)). - Reinhard Zumkeller, Feb 16 2009
a(n) = 2*n + a(n-1) - 1 with a(0) = 2. - Vincenzo Librandi, Aug 07 2010
a(n+3) = (A166464(n+5) - A166464(n))/20. - Paul Curtz, Nov 07 2012
From Paul Curtz, Nov 07 2012: (Start)
a(3*n) mod 9 = 2.
a(3*n+1) = 3*A056109(n).
a(3*n+2) = 3*A056105(n+1). (End)
Sum_{n >= 1} 1/a(n) = Pi * coth(sqrt(2)*Pi) / 2^(3/2) - 1/4. - Vaclav Kotesovec, May 01 2018
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(2)*Pi*(csch(sqrt(2)*Pi)))/4.
Product_{n>=0} (1 + 1/a(n)) = sqrt(3/2)*csch(sqrt(2)*Pi)*sinh(sqrt(3)*Pi).
Product_{n>=0} (1 - 1/a(n)) = csch(sqrt(2)*Pi)*sinh(Pi)/sqrt(2). (End)
E.g.f.: exp(x)*(2 + x + x^2). - Stefano Spezia, Aug 07 2024
EXAMPLE
For n = 2, a(2) = 6 since there are 6 election results in a 4-candidate, 2-voter election that have candidates c1 and c2 tied. Letting <i,j> denote voter 1 voting for candidate i and voter 2 voting for candidate j, the six election results are <1,2>, <2,1>, <3,3>, <3,4>, <4,3>, and <4,4>. - Dennis P. Walsh, May 08 2013
MAPLE
with(combinat, fibonacci):seq(fibonacci(3, i)+1, i=0..49); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
Table[n^2 + 2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 15 2008 *)
LinearRecurrence[{3, -3, 1}, {2, 3, 6}, 50] (* Vincenzo Librandi, Feb 15 2012 *)
Range[0, 20]^2 + 2 (* Eric W. Weisstein, Dec 31 2017 *)
CoefficientList[Series[(-2 + 3 x - 3 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 31 2017 *)
PROG
(Sage) [lucas_number1(3, n, -2) for n in range(0, 50)] # Zerinvary Lajos, May 16 2009
(PARI) { for (n = 0, 1000, write("b059100.txt", n, " ", n^2+2); ) } \\ Harry J. Smith, Jun 24 2009
(Haskell)
a059100 = (+ 2) . (^ 2)
a059100_list = scanl (+) (2) [1, 3 ..]
-- Reinhard Zumkeller, Feb 09 2015
CROSSREFS
Apart from initial terms, same as A010000.
2nd row/column of A295707.
KEYWORD
nonn,easy,changed
AUTHOR
Henry Bottomley, Feb 13 2001
STATUS
approved
A045944 Rhombic matchstick numbers: a(n) = n*(3*n+2). +10
73
0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the n-th term of the sequence found by reading the line from 0 in the direction 0,5,.... The spiral begins:
.
85--84--83--82--81--80
. \
56--55--54--53--52 79
/ . \ \
57 33--32--31--30 51 78
/ / . \ \ \
58 34 16--15--14 29 50 77
/ / / . \ \ \ \
59 35 17 5---4 13 28 49 76
/ / / / . \ \ \ \ \
60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
Connection to triangular numbers: a(n) = 4*T_n + S_n where T_n is the n-th triangular number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010
Also, second octagonal numbers. - Bruno Berselli, Jan 13 2011
Sequence found by reading the line from 0, in the direction 0, 16, ... and the line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
Let P denote the points from the n X n grid. A(n-1) also coincides with the minimum number of points Q needed to "block" P, that is, every line segment spanned by two points from P must contain one point from Q. - Manfred Scheucher, Aug 30 2018
Also the number of internal edges of an (n+1)*(n+1) "square" of hexagons; i.e., n+1 rows, each of n+1 edge-adjacent hexagons, stacked with minimal overhang. - Jon Hart, Sep 29 2019
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+2; {1, 2n-1, 1, 1, 1, 2n-1, 1, 18n+4}]. - Magus K. Chu, Oct 13 2022
LINKS
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
M. Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
FORMULA
O.g.f.: x*(5+x)/(1-x)^3. - R. J. Mathar, Jan 07 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=5, a(2)=16. - Harvey P. Dale, May 06 2011
a(n) = a(n-1) + 6*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
For n > 0, a(n)^3 + (a(n)+1)^3 + ... + (a(n)+n)^3 + 2*A000217(n)^2 = (a(n) + n + 1)^3 + ... + (a(n) + 2n)^3; see also A033954. - Charlie Marion, Dec 08 2007
a(n) = Sum_{i=0..n-1} A016969(i) for n > 0. - Bruno Berselli, Jan 13 2011
a(n) = A174709(6*n+4). - Philippe Deléham, Mar 26 2013
a(n) = A001082(2*n). - Michael Turniansky, Aug 24 2013
Sum_{n>=1} 1/a(n) = (9 + sqrt(3)*Pi - 9*log(3))/12 = 0.3794906245574721941... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A002378(n) + A014105(n). - J. M. Bergot, Apr 24 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(12) - 3/4. - Amiram Eldar, Jul 03 2020
E.g.f.: exp(x)*x*(5 + 3*x). - Stefano Spezia, Jun 08 2021
From Leo Tavares, Oct 14 2021: (Start)
a(n) = A000290(n) + 4*A000217(n). See Square Stars illustration.
a(n) = A000567(n+2) - A022144(n+1)
a(n) = A005563(n) + A001105(n).
a(n) = A056109(n) - 1. (End)
From Leo Tavares, Oct 06 2022: (Start)
a(n) = A003154(n+1) - A000567(n+1). See Split Stars illustration.
a(n) = A014105(n) + 2*A000217(n). (End)
MATHEMATICA
Table[n*(3n+2), {n, 0, 60}] (* Harvey P. Dale, May 05 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 5, 16}, 60] (* Harvey P. Dale, Jan 19 2016 *)
CoefficientList[Series[x*(5 + x)/(1 - x)^3, {x, 0, 60}], x] (* Stefano Spezia, Sep 01 2018 *)
PROG
(PARI) a(n)=n*(3*n+2) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [n*(3*n+2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 24 2017
CROSSREFS
Bisection of A001859. See Comments of A135713.
Cf. second n-gonal numbers: A005449, A014105, A147875, A179986, A033954, A062728, A135705.
Cf. A056109.
Cf. A003154.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A056107 Third spoke of a hexagonal spiral. +10
46
1, 4, 13, 28, 49, 76, 109, 148, 193, 244, 301, 364, 433, 508, 589, 676, 769, 868, 973, 1084, 1201, 1324, 1453, 1588, 1729, 1876, 2029, 2188, 2353, 2524, 2701, 2884, 3073, 3268, 3469, 3676, 3889, 4108, 4333, 4564, 4801, 5044, 5293, 5548, 5809, 6076, 6349 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n+1) is the number of lines crossing n cells of an n X n X n cube. - Lekraj Beedassy, Jul 29 2005
Equals binomial transform of [1, 3, 6, 0, 0, 0, ...]. - Gary W. Adamson, May 03 2008
Each term a(n), with n>1 represents the area of the right trapezoid with bases whose values are equal to hex number A003215(n) and A003215(n+1)and height equal to 1. The right trapezoid is formed by a rectangle with the sides equal to A003215(n) and 1 and a right triangle whose area is 3*n with the greater cathetus equal to the difference A003215(n+1)-A003215(n). - Giacomo Fecondo, Jun 11 2010
2*a(n)^2 is of the form x^4+y^4+(x+y)^4. In fact, 2*a(n)^2 = (n-1)^4+(n+1)^4+(2n)^4. - Bruno Berselli, Jul 16 2013
Numbers m such that m+(m-1)+(m-2) is a square. - César Aguilera, May 26 2015
After 4, twice each term belongs to A181123: 2*a(n) = (n+1)^3 - (n-1)^3. - Bruno Berselli, Mar 09 2016
This is a subsequence of A003136: a(n) = (n-1)^2 + (n-1)*(n+1) + (n+1)^2. - Bruno Berselli, Feb 08 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n X n torus grid graph. - Eric W. Weisstein, Nov 30 2017
REFERENCES
Edward J. Barbeau, Murray S. Klamkin and William O. J. Moser, Five Hundred Mathematical Challenges, MAA, Washington DC, 1995, Problem 444, pp. 42 and 195.
Ben Hamilton, Brainteasers and Mindbenders, Fireside, 1992, p. 107.
LINKS
A. J. C. Cunningham, Factorisation of N and N' = (x^n -+ y^n) / (x -+ y) [when x-y=n], Messenger Math., 54 (1924), 17-21 [Incomplete annotated scanned copy]
Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2.
A. L. Rubinoff and Leo Moser, Solution to Problem E773, The American Mathematical Monthly, Vol. 55, No. 2 (Feb., 1948), p. 99.
Eric Weisstein's World of Mathematics, Clique.
Eric Weisstein's World of Mathematics, Torus Grid Graph.
FORMULA
a(n) = 3*n^2 + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1+x+4*x^2)/(1-x)^3.
a(n) = a(n-1) + 6*n - 3 for n>0.
a(n) = 2*a(n-1) - a(n-2) + 6 for n>1.
a(n) = A056105(n) + 2*n = A056106(n) + n.
a(n) = A056108(n) - n = A056109(n) - 2*n = A003215(n) - 3*n.
a(n) = (A000578(n+1) - A000578(n-1))/2. - Lekraj Beedassy, Jul 29 2005
a(n) = A132111(n+1,n-1) for n>1. - Reinhard Zumkeller, Aug 10 2007
E.g.f.: (1 + 3*x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(3))*coth(Pi/sqrt(3)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(3))*csch(Pi/sqrt(3)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(3))*sinh(sqrt(2/3)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(3))*csch(Pi/sqrt(3)). (End)
MAPLE
seq(3*n^2+1, n=0..46); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
Table[3 n^2 + 1, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 4, 13}, 47] (* Michael De Vlieger, Feb 08 2017 *)
CoefficientList[Series[(1 + x + 4 x^2)/(1 - x)^3, {x, 0, 46}], x] (* Michael De Vlieger, Feb 08 2017 *)
1 + 3 Range[0, 20]^2 (* Eric W. Weisstein, Nov 30 2017 *)
PROG
(PARI) for(n=0, 1000, if(issquare(n+(n-1)+(n-2)), print1(n", "))); \\ César Aguilera, May 26 2015
(PARI) a(n) = 3*n^2 + 1; \\ Altug Alkan, Feb 08 2017
(Magma) [3*n^2 + 1: n in [0..40]]; // G. C. Greubel, Dec 02 2018
(Sage) [3*n^2 + 1 for n in range(40)] # G. C. Greubel, Dec 02 2018
(GAP) List([0..40], n -> 3*n^2 + 1); # G. C. Greubel, Dec 02 2018
CROSSREFS
Cf. A002648 (prime terms), A201053.
Other spirals: A054552.
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 09 2000
STATUS
approved
A056105 First spoke of a hexagonal spiral. +10
45
1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Also the number of (not necessarily maximal) cliques in the n X n grid graph. - Eric W. Weisstein, Nov 29 2017
LINKS
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Grid Graph
FORMULA
a(n) = 3*n^2 - 2*n + 1.
a(n) = a(n-1) + 6*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056106(n) - n = A056107(n) - 2*n.
a(n) = A056108(n) - 3*n = A056109(n) - 4*n = A003215(n) - 5*n.
A008810(3*n-1) = A056109(-n) = a(n). - Michael Somos, Aug 03 2006
G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
From Robert G. Wilson v, Jul 05 2014: (Start)
Each of the 6 primary spokes or rays has a generating formula as stated here:
1st: 90 degrees A056105 3n^2 - 2n + 1
2nd: 30 degrees A056106 3n^2 - n + 1
3rd: 330 degrees A056107 3n^2 + 1
4th: 270 degrees A056108 3n^2 + n + 1
5th: 210 degrees A056109 3n^2 + 2n + 1
6th: 150 degrees A003215 3n^2 + 3n + 1
Each of the 6 secondary spokes or rays has a generating formula as stated here:
1st: 60 degrees 12n^2 - 27n + 16
2nd: 360 degrees 12n^2 - 25n + 14
3rd: 300 degrees 12n^2 - 23n + 12
4th: 240 degrees 12n^2 - 21n + 10
5th: 180 degrees 12n^2 - 19n + 8
6th: 120 degrees 12n^2 - 17n + 6 = A033577(n+1)
(End)
a(n) = 1 + A000567(n). - Omar E. Pol, Apr 26 2017
a(n) = A000290(n-1) + 2*A000290(n), n >= 1. - J. M. Bergot, Mar 03 2018
E.g.f.: (1 + x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018
EXAMPLE
The spiral begins:
49--48--47--46--45
/ \
50 28--27--26--25 44
/ / \ \
51 29 13--12--11 24 43
/ / / \ \ \
52 30 14 4---3 10 23 42 67
/ / / / \ \ \ \ \
53 31 15 5 1===2===9==22==41==66==>
\ \ \ \ / / / /
54 32 16 6---7---8 21 40 65
\ \ \ / / /
55 33 17--18--19--20 39 64
\ \ / /
56 34--35--36--37--38 63
\ /
57--58--59--60--61--62
MAPLE
A056105:=n->3*n^2 - 2*n + 1: seq(A056105(n), n=0..50); # Wesley Ivan Hurt, Jul 06 2014
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 2, 9}, 50] (* Harvey P. Dale, Nov 02 2011 *)
Table[3 n^2 - 2 n + 1, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[(-1 + x - 6 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
PROG
(PARI) a(n)=3*n^2-2*n+1 /* Michael Somos, Aug 03 2006 */
(Magma) [3*n^2-2*n+1: n in [0..50]]; // Wesley Ivan Hurt, Jul 06 2014
(Sage) [3*n^2-2*n+1 for n in range(50)] # G. C. Greubel, Dec 02 2018
(GAP) List([0..50], n -> 3*n^2-2*n+1); # G. C. Greubel, Dec 02 2018
CROSSREFS
Cf. A285792 (prime terms), A113519 (semiprime terms).
Other spirals: A054552.
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 09 2000
STATUS
approved
A056108 Fourth spoke of a hexagonal spiral. +10
38
1, 5, 15, 31, 53, 81, 115, 155, 201, 253, 311, 375, 445, 521, 603, 691, 785, 885, 991, 1103, 1221, 1345, 1475, 1611, 1753, 1901, 2055, 2215, 2381, 2553, 2731, 2915, 3105, 3301, 3503, 3711, 3925, 4145, 4371, 4603, 4841, 5085, 5335, 5591, 5853, 6121, 6395 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) = sum of (n+1)-th row terms of triangle A134234. - Gary W. Adamson, Oct 14 2007
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals binomial transform of [1, 4, 6, 0, 0, 0, ...] - Gary W. Adamson, Apr 30 2008
From A.K. Devaraj, Sep 18 2009: (Start)
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod(f(x)); here n belongs to N.
There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z.
However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x.
The present sequence is the integer part when the polynomial is x^2 + x + 1 and x = sqrt(2),
f(x+n*f(x))/f(x) = a(n) + A005563(n)*sqrt(2).
Equals triangle A128229 as an infinite lower triangular matrix * A016777 as a vector, where A016777 = (3n+1).
(End)
Numbers of the form ((-h^2+h+1)^2+(h^2-h+1)^2+(h^2+h-1)^2)/(h^2+h+1) for h=n+1. - Bruno Berselli, Mar 13 2013
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
a(n) = 3*n^2 + n + 1.
a(n) = a(n-1) + 6*n - 2 = 2*a(n-1) - a(n-2) + 6
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056105(n) + 3*n = A056106(n) + 2*n = A056107(n) + n = A056109(n) - n = A003215(n) - 2*n.
a(n) = A096777(3n+1) . - Reinhard Zumkeller, Dec 29 2007
a(n) = 6*n+a(n-1)-2 with n>0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1+2*x+3*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(-n) = A056106(n). - Bruno Berselli, Mar 13 2013
E.g.f.: (3*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jul 19 2017
MATHEMATICA
Table[3 n^2 + n + 1, {n, 0, 50}] (* Bruno Berselli, Mar 13 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 5, 15}, 50] (* Harvey P. Dale, Dec 26 2023 *)
PROG
(Magma) [3*n^2+n+1: n in [0..50]]; // Bruno Berselli, Mar 13 2013
(PARI) a(n)=3*n^2+n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Other spirals: A054552.
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 09 2000
STATUS
approved
page 1 2 3 4 5

Search completed in 0.036 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 06:09 EDT 2024. Contains 375510 sequences. (Running on oeis4.)