[go: up one dir, main page]

login
A056899
Primes of the form k^2 + 2.
49
2, 3, 11, 83, 227, 443, 1091, 1523, 2027, 3251, 6563, 9803, 11027, 12323, 13691, 15131, 21611, 29243, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203, 131771, 136163, 140627, 149771, 173891
OFFSET
1,1
COMMENTS
Also, primes of the form k^2 - 2k + 3.
Note that all terms after the first two are equal to 11 modulo 72 and that (a(n)-11)/72 is a triangular number, since they have to be 2 more than the square of an odd multiple of 3 to be prime, and if k = 6*m+3 then a(n) = k^2 + 2 = 72*m*(m+1)/2 + 11.
The quotient cycle length is 2 in the continued fraction expansion of sqrt(p) for these primes. E.g.: cfrac(sqrt(6563),6) = 81+1/(81+1/(162+1/(81+1/(162+1/(81+1/(162+`...`)))))). - Labos Elemer, Feb 22 2001
Primes in A059100; except for a(2)=3 a subsequence of A007491 and congruent to 2 modulo 9. For n>2, a(n)=11 (mod 72). - M. F. Hasler, Apr 05 2009
REFERENCES
M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997.
LINKS
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
For n>1, a(n) = 72*A000217(A056900(n-2))+11
a(n) = A067201(n)^2 + 2. - M. F. Hasler, Apr 05 2009
MAPLE
select(isprime, [seq(t^2+2, t = 0..1000)]); # Robert Israel, Sep 03 2015
MATHEMATICA
Select[ Range[0, 500]^2 + 2, PrimeQ] (* Robert G. Wilson v, Sep 03 2015 *)
PROG
(Magma) [n: n in PrimesUpTo(175000) | IsSquare(n-2)]; // Bruno Berselli, Apr 05 2011
(Magma) [ a: n in [0..450] | IsPrime(a) where a is n^2 +2 ]; // Vincenzo Librandi, Apr 06 2011
(PARI) print1("2, 3"); forstep(n=3, 1e4, 6, if(isprime(t=n^2+2), print1(", "t))) \\ Charles R Greathouse IV, Jul 19 2011
CROSSREFS
Intersection of A146327 and A000040; intersection of A059100 and A000040.
Cf. A002496.
Sequence in context: A290512 A042165 A089921 * A347402 A117699 A065378
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 05 2000
STATUS
approved