OFFSET
0,5
COMMENTS
Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.
FORMULA
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015
EXAMPLE
The upper left corner of the infinite array T is
|0| 1 1 1 1 1 1 1 1 1 1 ... A000012
|1| 1 2 4 7 11 16 22 29 37 46 ... A000124
|2| 1 3 7 13 21 31 43 57 73 91 ... A002061
|3| 1 4 10 19 31 46 64 85 109 136 ... A005448
|4| 1 5 13 25 41 61 85 113 145 181 ... A001844
|5| 1 6 16 31 51 76 106 141 181 226 ... A005891
|6| 1 7 19 37 61 91 127 169 217 271 ... A003215
|7| 1 8 22 43 71 106 148 197 253 316 ... A069099
|8| 1 9 25 49 81 121 169 225 289 361 ... A016754
|9| 1 10 28 55 91 136 190 253 325 406 ... A060544
MAPLE
MATHEMATICA
T[n_, m_] := 1 + n m (m + 1)/2;
Table[T[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 23 2020 *)
PROG
(Iverson's J language) Let cfn be the formula above. Then the first 20 rows and columns of T are: T =: cfn / ~ i. 20 where i.
(PARI) T(n, m) = 1 + n*m*(m+1)/2 \\ Charles R Greathouse IV, Jul 28 2016
CROSSREFS
KEYWORD
AUTHOR
Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004
EXTENSIONS
Edited by R. J. Mathar, Oct 21 2009
STATUS
approved