[go: up one dir, main page]

login
A026811
Number of partitions of n in which the greatest part is 5.
25
0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765
OFFSET
0,8
COMMENTS
Essentially same as A001401: five zeros followed by A001401.
Also number of partitions of n into exactly 5 parts.
REFERENCES
D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1).
FORMULA
a(n) = round( ((n^4+10*(n^3+n^2)-75*n -45*n*(-1)^n)) / 2880 ). - Washington Bomfim, Jul 03 2012
G.f.: x^5/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). - Joerg Arndt, Jul 04 2012
a(n) = A008284(n,5). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n) = a(2n-1) + a(n+1) + a(n) - a(n-3) - a(n-4);
a(2n+1) = a(2n) + a(n+3) - a(n-5). (End)
From R. J. Mathar, Jun 23 2021: (Start)
a(n) - a(n-5) = A001400(n-5).
a(n) - a(n-4) = A008669(n-5).
a(n) - a(n-3) = A029007(n-5).
a(n) - a(n-2) = A029032(n-5).
a(n) = +a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15). (End)
MATHEMATICA
Table[Count[IntegerPartitions[n], {5, ___}], {n, 0, 55}] (* corrected by Harvey P. Dale, Oct 24 2011 *)
Table[Length[IntegerPartitions[n, {5}]], {n, 0, 55}] (* Eric Rowland, Mar 02 2017 *)
CoefficientList[Series[x^5/Product[1 - x^k, {k, 1, 5}], {x, 0, 65}], x] (* Robert A. Russell, May 13 2018 *)
Drop[LinearRecurrence[{1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1}, Append[Table[0, {14}], 1], 110], 9] (* Robert A. Russell, May 17 2018 *)
PROG
(PARI)
a(n)=round((n^4+10*(n^3+n^2)-75*n-45*(-1)^n*n)/2880);
for(n=0, 10000, print(n, " ", a(n))); /* b-file format */
/* Washington Bomfim, Jul 03 2012 */
(PARI) x='x+O('x^99); concat(vector(5), Vec(x^5/prod(k=1, 5, 1-x^k))) \\ Altug Alkan, May 17 2018
(GAP) List([0..70], n->NrPartitions(n, 5)); # Muniru A Asiru, May 17 2018
CROSSREFS
Cf. A026810, A026812, A026813, A026814, A026815, A026816, A002622 (partial sums), A008667 (first differences).
Sequence in context: A062684 A341912 A033485 * A001401 A373078 A377076
KEYWORD
nonn,easy
EXTENSIONS
More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 inserted by Joerg Arndt, Jul 04 2012
STATUS
approved