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Comnstant-sum arrays

Consider an #m X% rectangular array whose # Tows are permutations
of 1,2, M. Such an array will be called a conslant-suin array if the
<um of the elements in each column is the same (and equal to Lin(n+41)).

An example of a 3X9 constant-sum array 1s

(1)

PSSO |
ot MO W
—_ o ©

1 2 3 4 5 6
8 6 9 3 1 7
6 7 3 8 9 2
le, elements in the same column of a constant-

ill be convenient to assume arrays normalised
anged so that, as in (1), the first Tow

In contrast to a Latin rectang

sum array may be equal. It w
i the cenee that the columns are art

is in the standard order 1,2, -, n.

The combinatorial problem of counting and cl
arrays can be described in a number of ways. One may ap
of partitions and regard each column as a partition of Im(n+-1) into m
parts with no part greater than 7. A constant-sum array 1s obtained from

the partitions by choosing and ordering them so that the rows are per-
The number of partitions when m = 3 and #

assifying constant-sum
peal to the theory

mutations of 1,2, -, 7.
is odd, for example, 1s equal to the greatest Integer not greater than
Lnt1)24-4.

e described as the following ‘‘log

Alternatively the problem can b
problem’”. Tirst consider 7 differently coloured logs cach of length $n(n+1)
units, and then suppose that cach log is cut into 7 pieces of lengths 1,2, %
units. The problem is then to form from the mn pieces # logs of equal
length, each consisting of s differently coloured pieces.

There are no constant-sum arrays with an odd number of TOWS and

olumns. Since most of this paper will be confined to

an even number of ¢
trict the number of columns to

three-rowed arrays, it is convenient to res
be odd and introduce the notion of zero-sum arrays.
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24 B. T. Bennett and R. B. Potts [2]
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Zero-sum arrays

Consider an m X (2n4-1) rectangular array whose 7 rows are per-
mutations of the 2n+1 integers —#n, —n--1,---, n—1, #. Such an array
will be called a zero-sum array if the sum of the elements in each column
is zero. An example of a 3X9 zero-sum array is

T BT AT

. —4 —3 —2 -1 0 1 2 3 4
] (2) 3 1 4 —2 —4 2 —1 —3 0f.
1 2 —2 3 4 —3 —1 0 —4

A zero-sum array will always be assumed to be normalised in the sense that
the first row is in the standard order —#n, —n+41, -+ #n—1, n. From a
zero-sum array a corresponding constant-sum array is obtained by adding
n-1 to each element.

P

For m = 2, a unique 2X (2n+1) zero-sum array is obtained:

- \ R (anf S —1 7|
3 ;
o D

For m = 3, an example of a 3Xx (2n+1) zero-sum array is

—n —n+1l —n4-2 --.- 0 1 2 .- n
(4) 0 1 2 ... w  —n —n1 .-+ —1
n n—2  w—4 - —n n—1 n—3 - —ntl

By combining these 2 and 3 rowed arrays, an m X (2n-+1) zero-sum array
can be obtained for any m, n.

E Three-rowed zero-sum arrays

The enumeration and classification of the zero-sum arrays for any
m, n is exceedingly difficult and it is the purpose of this paper to report
some results for arrays with only three rows. The values of

. R T T Y TN S YT

(5) N(n) = number of 3x (2n-41) zero-sum arrays

have been calculated for small values of # using a CDC3200 computer and
the results are given in the second row of Table 1. Some of the zero-sum
arrays for small # are exhibited in Table 2. As is often the case with com-
binatorial problems, the value of N(n) increases rapidly with # and even
computer evaluation soon becomes prohibitive. :
Permuting the rows of an array or changing the sign of each element

r

It is easy to prove the existence of a zero-sum array for any 1, #n. .

{3]

TaBLE 1. The number N(n) of
N(n) into

n 0 1
R —

N(n) 1 2
—_—

C, (x12) 0

Cy (X 6) 0

Cy (X 8) 0

Ce (x 4) 0

Cs (x 2) 0
Ce (X 2) 1 ‘

TaBLE 2. E:

(a) 2 =10, N(0) = 1.

(b) n=1, N(1) = 2.
—1 0
0 1
1 -1
() =2, N(@) =6
—2 -1 0 1
0 1 2 -2
2 0 —2 1
@
2 -1 0 1
2 0 —2 1
0 1 2 —2
(iii)
-2 —1 0 1
2 —1 1 —2
0 2 —1 1
v)

does not alter the ZEro-sur
the zero-sum array

—4 —3 _o
(6) 0 2 4
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TasLE 1. The number N (1) of different 3 x (2n4-1) zero-sum arrays, and the breakdown of
N(n) into numbers of arrays in classes C; to Cs-

n 0 1 2 3 4 5 6 "7
N(n) 1 2 6 28 244 2,544 35,600 659,632
 —
¢, (x12) 0 0 1 15 200 2,924 54,774
C, (x 6) 0 0 0 1 0 0 26
Cs (x 8) 0 1 2 7 24 80 306
Co (% 4) 0 0 0 2 0 8 82
Cs (X 2) 0 0 1 0 0 0 )
Ce (X 2) 1 0 1 4 0 0 12

TasLE 2. Examples of 3X (2»+1) zero-sum arrays.

(a) # =0, N(0) = L

(b) n=1 N(1) = 2.

|'—1
, 2
L 1
() n =2, N(2) =6
—2 —1 0
0 1 2
2 0 —2

-1 0
—1 1

[m— | — | ——
|
(=3 3 ]
|
— O
|
N DO

(=T I ]

1

:

(@)

e 0
1 S
| o 1
(i)

g =
1 2
S |
i 2001
TREE |
L1 2

—2 —1
0 2
2 —1

{iv)
-1

(vi)

does not alter the zero-sum property. From the array (2), for example,
the zero-sum array

—4
(6) 0
4

—3

2
1

—2 —1
4 —1
—2 2

o 1 2 3
—3 3 1 —2
3 —4 —3 —1

< 2047
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26 B. T. Bennett and R. B. Potts [4]

is obtained by interchanging rows I and IIT (and then normalising), and
the zero-sum array
—4 -3 -2 -1 0 1 2 3 4
7 , 0 3 1 —2 4 2 —4 —1 -3
4 0 1 3 —4 -3 2 —2 —1
is obtained by changing signs throughout (and then normalising). The six
permutations of the three rows I, II, III, together with the sign changes,

allow the possibility of a class of twelve rclated 83X (21+1) zero-sum arrays.
The possible operations are listed in the second column of Table 3, but not

TaBLE 3. Symmetries of a regular hexagon and related operations on a zero-sum array.

symmetry operation
I ( (II)(I1I)
R — (I III 1II)
R2 (I II I11)
R3 — (1) (II)(111)
R4 (T TTT TT)
R® —(I IT IIY)
H — (I TI)(IIT)
HR (I)(II III)
HR? — (I III)(II)
HR? (I II)(11T)
HR? —(I)}(IT III)
HRS (I III)(IX)

all the related arrays need be different. A classification of the 3x (2n--1)
zero-sum arrays is facilitated by interpreting them as solutions to a problem
similar to two classical chess-board problems.

Rook, queen, and brook problem

The solution of the general rook (or queen) problem requires the

determination of the number of ways n rooks (or queens) can be placed
on an 7 X # chess-board so that no rook (or queen) can take any other [1].
Alternatively the rook problem can be described as the enumeration of
the number of ways # objects can be placed on cells of an # X # square lattice
such that no two are in the same row or column. For the queen problem,
no two of the objects can lie in the same row, column or either diagonal.
The rook problem is trivial, as there are simply #! ways of placing the rooks
on the board. The solutions to the problem can be classified using properties
of the dihedral group of order 8 — the group of symmetries of a square [1].

(3]
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The rook problem is not so trivial when the board is restricted by elimination
of some of the squares [2]. The queen problem is as yet unsolved although
the solutions for small # have Dbeen enumerated and classified [1].

For present purposes it is convenient to invent a new chess piece —
the brook — which is able to move on any row or column and also in one’
diagonal direction. The brook might be described as a rook plus a half-
bishop and is intermediate between a rook and a queen. The chess-board is
assumed to be a (2n-+41) X (2n-+1) board which is restricted by excluding
n(n+1) squares from the NE and SW corners (for » = 4, Fig. 1 illustrates
the 9% 9 board restricted by exclusion of the 20 shaded squares). The
brook is free to move N, S, E, W, NW or SE as indicated in Fig. 1 by
the dotted lines. These lines form the dual lattice which when distorted

T—T——7T

@)
//I

Fig. 1. A 9 9 restricted chess board. The ‘brook’ is able to move vertically, horizontally or
in one diagonal direction as indicated by the dotted lines.
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28 B. T. Bennett and R. B. Potts [6]

O 4 -4 2-4 3-4  4-4

Fig. 2. A 4 triboard with a solution to the brook problem.

is seen to be a portion of a triangular lattice bounded by a regular hexagon
with edge of length # units. Such a figure will, for brevity, be called an n
triboard and it is the dual of the so-called # tricolour board used in the game
of tricolour [1]. Fig. 2 illustrates a 4 triboard. The brook problem of placing
brooks on squares of a restricted chess-board is equivalent to the problem
of placing brooks on grid points of a triboard. More precisely, the solution
of the brook problem requires the determination of the number of ways
2n--1 brooks can be placed on the grid points of an wn triboard such that no
two brooks lie on the same straight line. Just as the solutions to the rook
problem can be classified according to the symmetries of a square, so can
the solutions to the brook problem be classified according to the symmetries
of a regular hexagon.

Brook problem and zero-sum arrays

There is a 1-1 correspondence between solutions to the brook problem

and zero-sum arrays. Each grid point of the triboard can be made to
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represent a column of a zero-sum array by using coordinates as indicated
in Fig. 2. For example, the first coordinate may be taken as the second
element in a column, the second coordinate as the third element in the
column, and minus the sum of the coordinates as the first element in the
column. The circled grid points in Fig. 2 then represent a solution to the
brook problem which corresponds to the zero-sum array (2). Note that the
correct normalisation of the array is obtained by starting with the edge
joining 0,4 and 4,0 and proceeding to parallel lines across the diagram,
downwards and to the left.

Classification of solutions

The possibility of obtaining a class of twelve related zero-sum arrays

by row permutations and change of sign can be interpreted in terms of the -

symmetries of a regular hexagon. The twelve symmetries (elements of the
dihedral group of order 12) are listed in the first column of Table 3, R
denoting a rotation anticlockwise through 60° and H a reflection in the
horizontal axis [3]. The corresponding operations on the zero-sum arrrays are
listed in the second column of Table 3. A solution can be classified ac-
cording to the largest subgroup oi the dinedral group under which the solu-
tion is invariant. This classification is given in Table 4, in which solutions
invariant under {I, H} or {I, HR?}, or {{, H R4} have been classed together.

TaBLE 4. Classification of solutions.

number of

class solutions subgroup

C, 12 {1}

C, 6 {1, R%}

C, 6 {I, H}, {{, HR*}, {I, HR*}
Cq 4 {I, Rt R}

Cs 2 {I, R, R% R3% RS R°}

Cq 2 {I, R?, R* H, HR? HR%}

Because no two brooks can lie on the same straight line, it is clear that a
solution cannot be invariant under HR, HR?3, or HR®, which are reflections
in lines perpendicular to opposite edges of the hexagon. The number of
solutions in each class, giving a breakdown of the total number N (x),
have been calculated using a computer and the results are given in Table 1.
The zero-sum array (2) is in class C; as can be verified from the corresponding
brook solution which has no symmetry (see Fig. 2).

T
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Brook polynomials

Computer calculations have enabled the evaluation, for small », of
the generating functions defined by

2n+1

x) = z bnkxk

k=0

B2n+1(

where b,; = the number of ways & brooks can be placed on the grid points
of an # triboard such that no two brooks lie in the same
straight line.

The generating functions may be called brook polynomials by analogy
with the rook polynomials which play a central role in the analysis of the
rook problem [2]. The first five brook polynomials are

B(x) = 14=

By(x) = 14-Tx+ 6224223

R (x) = 14+ 102r L8772 L1153 L 20y8 L RxD

B,(x) = 1437 44172+ 1, 7832342 90224+ 1, 629x5—{—196x6+28x7
By(x) = 14+6124-1,2782*+11, 758234-50,465x%+99 717251 84,3660

+26,836x7 -+ 2,19628 - 24425,

From the definition of b, it is clear that b5,y = N(#) and b, =0
for B > 2n4-1. For small & the following results have been obtained, the
last two expressions being conjectares based on limited numerical values.

bpo =1

b = 3n*+3n4-1

b = 3(Oni4-dn®—n) —

by = (3618 — 60154300144+ 8n2—dn-+1) —F(—1)"

by = (2708 — 14477+ 32278 — 3641+ 19854 — 6013+ 400> — 270 +17)

— (=) (3n2—9n+T).

It has not been found possible to find general formulae for b,
By,.1(x), or N(n). The problem of determining these seems to be somewhere
intermediate between the trivial rook problem and the unsolved queen
problem!

;M. Kraitchik, M

J. Riordan, An I

. W. Ledermann, I
p. 59.
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