[go: up one dir, main page]

login
A080853
Square array of generalized polygonal numbers, read by antidiagonals.
8
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 7, 1, 1, 5, 16, 19, 11, 1, 1, 6, 25, 37, 33, 16, 1, 1, 7, 36, 61, 67, 51, 22, 1, 1, 8, 49, 91, 113, 106, 73, 29, 1, 1, 9, 64, 127, 171, 181, 154, 99, 37, 1, 1, 10, 81, 169, 241, 276, 265, 211, 129, 46, 1, 1, 11, 100, 217, 323, 391, 406, 365, 277
OFFSET
0,5
FORMULA
T(n, k)=C(k, 0)+C(k, 1)n+C(k, 2)n^2=(n^2*k^2-(n^2-2n)*k+2)/2 =(k(k-1)*n^2+2k*n+2)/2
Row n has g.f. (1+(n-2)x+(n^2-n+1)x^2)/(1-x)^3.
Column k has g.f. (C(k-1, 0)+(C(k+1, 2)-2)*x+C(k-1, 2)*x^2)/(1-x)^3.
Diagonals are given by (n^4+(2k-1)*n^3+((k-1)^2+1)*n^2+(1-(k-1)^2)*n+2)/2.
Antidiagonal sums are 1, 2, 4, 9, 22, 53, 119,... = (d+1)*(2*d^4-7*d^3+27*d^2-22*d+120)/120 = sum_{k=0..d} T(d-k,k), first differences in A116701, d>=0. - R. J. Mathar, Oct 01 2021
EXAMPLE
Rows begin with n>=0, k>=0
1 1 1 1 1 ...
1 2 4 7 11 ...
1 3 9 19 33 ...
1 4 16 37 67 ...
1 5 25 61 113 ...
MAPLE
A080853 := proc(n, k)
binomial(k, 0)+n*binomial(k, 1)+n^2*binomial(k, 2) ;
end proc:
seq( seq(A080853(d-k, k), k=0..d), d=0..12) ; # R. J. Mathar, Oct 01 2021
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 23 2003
STATUS
approved