[go: up one dir, main page]

login
A003586
3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.
334
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2187, 2304, 2592, 2916, 3072, 3456, 3888
OFFSET
1,2
COMMENTS
This sequence is easily confused with A033845, which gives numbers of the form 2^i*3^j with i, j >= 1. Don't simply say "numbers of the form 2^i*3^j", but specify which sequence you mean. - N. J. A. Sloane, May 26 2024
These numbers were once called "harmonic numbers", see Lenstra links. - N. J. A. Sloane, Jul 03 2015
Successive numbers k such that phi(6k) = 2k. - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A088468: A160519(n) = A088468(a(n)). - Reinhard Zumkeller, May 16 2009
Also numbers that are divisible by neither 6k - 1 nor 6k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
Also numbers m such that the rooted tree with Matula-Goebel number m has m antichains. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. The vertices of a rooted tree can be regarded as a partially ordered set, where u<=v holds for two vertices u and v if and only if u lies on the unique path between v and the root. An antichain is a nonempty set of mutually incomparable vertices. Example: m=4 is in the sequence because the corresponding rooted tree is \/=ARB (R is the root) having 4 antichains (A, R, B, AB). - Emeric Deutsch, Jan 30 2012
A204455(3*a(n)) = 3, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
The number of terms less than or equal to n is Sum_{i=0..floor(log_2(n))} floor(log_3(n/2^i) + 1), or Sum_{i=0..floor(log_3(n))} floor(log_2(n/3^i) + 1), which requires fewer terms to compute. - Robert G. Wilson v, Aug 17 2012
Named 3-friables in French. - Michel Marcus, Jul 17 2013
In the 14th century Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1,2), (2,3), (3,4), and (8,9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014
Range of values of A000005(n) (and also A181819(n)) for cubefree numbers n. - Matthew Vandermast, May 14 2014
A036561 is a permutation of this sequence. - L. Edson Jeffery, Sep 22 2014
Also the sorted union of A000244 and A007694. - Lei Zhou, Apr 19 2017
The sum of the reciprocals of the 3-smooth numbers is equal to 3. Brief proof: 1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + ... = (Sum_{k>=0} 1/2^k) * (Sum_{m>=0} 1/3^m) = (1/(1-1/2)) * (1/(1-1/3)) = (2/(2-1)) * (3/(3-1)) = 3. - Bernard Schott, Feb 19 2019
Also those integers k for which, for every prime p > 3, p^(2k) - 1 == 0 (mod 24k). - Federico Provvedi, May 23 2022
For n>1, the exponents’ parity {parity(i), parity(j)} of one out of four consecutive terms is {odd, odd}. Therefore, for n>1, at least one out of every four consecutive terms is a Zumkeller number (A083207). If for the term whose parity is {even, odd}, even also means nonzero, then this term is also a Zumkeller number (as is the case with the last of the four consecutive terms 1296, 1458, 1536, 1728). - Ivan N. Ianakiev, Jul 10 2022
Except the initial terms 2, 3, 4, 8, 9 and 16, these are numbers k such that k^6 divides 6^k. Except the initial terms 2, 3, 4, 6, 8, 9, 16, 18 and 27, these are numbers k such that k^12 divides 12^k. - Mohammed Yaseen, Jul 21 2022
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 654 pp. 85, 287-8, Ellipses Paris 2004.
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.
R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
LINKS
Lei Zhou, Table of n, a(n) for n = 1..10000 (first 501 terms from Franklin T. Adams-Watters)
R. Blecksmith, M. McCallum and J. L. Selfridge, 3-smooth representations of integers, Amer. Math. Monthly, 105 (1998), 529-543.
Thierry Bousch, La Tour de Stockmeyer, Séminaire Lotharingien de Combinatoire 77 (2017), Article B77d.
Natalia da Silva, Serban Raianu, and Hector Salgado, Differences of Harmonic Numbers and the abc-Conjecture, arXiv:1708.00620 [math.NT], 2017.
Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 252. Book's website
H. W. Lenstra Jr., Harmonic Numbers
H. W. Lenstra, Jr., Harmonic Numbers and the ABC-conjecture, Abstract of talk, May 30, 2001 [Annotated scanned copy]
D. J. Mintz, 2,3 sequence as a binary mixture, Fib. Quarterly, Vol. 19, No 4, Oct 1981, pp. 351-360.
I. Peterson, Medieval Harmony
Raphael Schumacher, The Formulas for the Distribution of the 3-Smooth, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv preprint arXiv:1608.06928 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Smooth Number
FORMULA
An asymptotic formula for a(n) is roughly a(n) ~ 1/sqrt(6)*exp(sqrt(2*log(2)*log(3)*n)). - Benoit Cloitre, Nov 20 2001
A061987(n) = a(n + 1) - a(n), a(A084791(n)) = A084789(n), a(A084791(n) + 1) = A084790(n). - Reinhard Zumkeller, Jun 03 2003
Union of powers of 2 and 3 with n such that psi(n) = 2*n, where psi(n) = n*Product_(1 + 1/p) over all prime factors p of n = A001615(n). - Lekraj Beedassy, Sep 07 2004; corrected by Franklin T. Adams-Watters, Mar 19 2009
a(n) = 2^A022328(n)*3^A022329(n). - N. J. A. Sloane, Mar 19 2009
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} moebius(6*n)*x^n/(1 - x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A007694(n+1)/2. - Lei Zhou, Apr 19 2017
MAPLE
A003586 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do numtheory[factorset](a) minus {2, 3} ; if % = {} then return a; end if; end do: end if; end proc: # R. J. Mathar, Feb 28 2011
with(numtheory): for i from 1 to 23328 do if(i/phi(i)=3)then print(i/6) fi od; # Gary Detlefs, Jun 28 2011
MATHEMATICA
a[1] = 1; j = 1; k = 1; n = 100; For[k = 2, k <= n, k++, If[2*a[k - j] < 3^j, a[k] = 2*a[k - j], {a[k] = 3^j, j++}]]; Table[a[i], {i, 1, n}] (* Hai He (hai(AT)mathteach.net) and Gilbert Traub, Dec 28 2004 *)
aa = {}; Do[If[EulerPhi[6 n] == 2 n, AppendTo[aa, n]], {n, 1, 1000}]; aa (* Artur Jasinski, Nov 05 2008 *)
fQ[n_] := Union[ MemberQ[{1, 5}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 6]] == {False}; fQ[1] = True; Select[ Range@ 4000, fQ] (* Robert G. Wilson v, Oct 26 2010 *)
powerOfTwo = 12; Select[Nest[Union@Join[#, 2*#, 3*#] &, {1}, powerOfTwo-1], # < 2^powerOfTwo &] (* Robert G. Wilson v and T. D. Noe, Mar 03 2011 *)
fQ[n_] := n == 3 EulerPhi@ n; Select[6 Range@ 4000, fQ]/6 (* Robert G. Wilson v, Jul 08 2011 *)
mx = 4000; Sort@ Flatten@ Table[2^i*3^j, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
f[n_] := Block[{p2, p3 = 3^Range[0, Floor@ Log[3, n] + 1]}, p2 = 2^Floor[Log[2, n/p3] + 1]; Min[ Select[ p2*p3, IntegerQ]]]; NestList[f, 1, 54] (* Robert G. Wilson v, Aug 22 2012 *)
Select[Range@4000, Last@Map[First, FactorInteger@#] <= 3 &] (* Vincenzo Librandi, Aug 25 2016 *)
Select[Range[4000], Max[FactorInteger[#][[All, 1]]]<4&] (* Harvey P. Dale, Jan 11 2017 *)
PROG
(PARI) test(n)=for(p=2, 3, while(n%p==0, n/=p)); n==1;
for(n=1, 4000, if(test(n), print1(n", ")))
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim\1+.5)\log(3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(PARI) is_A003586(n)=n<5||vecmax(factor(n, 5)[, 1])<5 \\ M. F. Hasler, Jan 16 2015
(PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
(Haskell)
import Data.Set (Set, singleton, insert, deleteFindMin)
smooth :: Set Integer -> [Integer]
smooth s = x : smooth (insert (3*x) $ insert (2*x) s')
where (x, s') = deleteFindMin s
a003586_list = smooth (singleton 1)
a003586 n = a003586_list !! (n-1)
-- Reinhard Zumkeller, Dec 16 2010
(Sage)
def isA003586(n) :
return not any(d != 2 and d != 3 for d in prime_divisors(n))
@CachedFunction
def A003586(n) :
if n == 1 : return 1
k = A003586(n-1) + 1
while not isA003586(k) : k += 1
return k
[A003586(n) for n in (1..55)] # Peter Luschny, Jul 20 2012
(Python)
from itertools import count, takewhile
def aupto(lim):
pows2 = list(takewhile(lambda x: x<lim, (2**i for i in count(0))))
pows3 = list(takewhile(lambda x: x<lim, (3**i for i in count(0))))
return sorted(c*d for c in pows2 for d in pows3 if c*d <= lim)
print(aupto(10**4)) # Michael S. Branicky, Jul 08 2022
(Python)
from sympy import integer_log
def A003586(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1))
return bisection(f, n, n) # Chai Wah Wu, Sep 15 2024
(Python) # faster for initial segment of sequence
import heapq
from itertools import islice
def A003586gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3]
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A003586gen(), 65))) # Michael S. Branicky, Sep 17 2024
(Magma) [n: n in [1..4000] | PrimeDivisors(n) subset [2, 3]]; // Bruno Berselli, Sep 24 2012
CROSSREFS
Cf. A051037, A002473, A051038, A080197, A080681, A080682, A117221, A105420, A062051, A117222, A117220, A090184, A131096, A131097, A186711, A186712, A186771, A088468, A061987, A080683 (p-smooth numbers with other values of p), A025613 (a subsequence).
Cf. also A000244, A007694. - Lei Zhou, Apr 19 2017
Cf. A191475 (successive values of i), A191476 (successive values of j), A022330 (indices of the pure terms 2^i), A022331 (indices of the pure terms 3^j). - N. J. A. Sloane, May 26 2024
Sequence in context: A301704 A083854 A275199 * A114334 A262609 A018690
KEYWORD
nonn,easy,nice
AUTHOR
Paul Zimmermann, Dec 11 1996
EXTENSIONS
Deleted claim that this sequence is union of 2^n (A000079) and 3^n (A000244) sequences -- this does not include the terms which are not pure powers. - Walter Roscello (wroscello(AT)comcast.net), Nov 16 2008
STATUS
approved