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2,3 SEQUENCE AS BINARY MIXTURE 

DONALD J. MINTZ 
Exxon Research and Engineering Company, Linden, NJ 07036 

The integer sequence formed by multiplying integral powers of the numbers 
2 and 3 can be viewed as a binary sequence. The numbers 2 and 3 are the com-
ponent factors of this binary. This paper explores the combination of these 
components to form the properties of the integers in the binary. Properties 
considered are: value, ordinality (position in the sequence), and exponents of 
the factors of each integer in the binary sequence. 

Questions related to the properties of integer sequences with irregular 
nth differences are notoriously hard to answer [1]. The integers in the 2,3 
sequence produce irregular nth differences. These integers can be related to 
the graphs constructed in the study of 2,3 trees [2, 3]. It is shown in this 
paper that the ordinality property of the integers in the 2,3 sequence can be 
derived from the irrational number log 3/log 2. This number also finds appli-
cation in the derivation of a discontinuous spatial pattern found in the study 
of fractal dimension [4]. 

In Table 1, the first fifty-one numbers in the 2,3 sequence are listed ac-
cording to their ordinality with respect to value. Since the 2,3 sequence con-
sists of numbers which are integral multiples of the factors 2 and 3, it is 
convenient to plot the information in Table 1 in the form of a two-dimensional 
lattice, as shown in Figure 1. In this figure, the horizontal axis represents 
integral powers of 2 and the vertical axis represents integral powers of 3. 
The ordinality of each number is printed next to its corresponding lattice 
point. For example, the number 2592 = 2534 and 0rd(253Lf) = 50; therefore, at 
the coordinates 25, 34, the number "50" is printed. 
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TABLE 1. Valuef Cardinality, and Factors of the First 
Fifty-one Numbers in the 2,3 Sequence 

Value 

1 
2 
3 
4 
6 
8 
9 

12 
16 
18 
24 
27 
32 
36 
48 
54 
64 
72 
81 
96 

108 
128 
144 
162 
192 
216 

Ordinali ty 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Factors 

2°3° 
2 i 3 o 

2 ° 3 1 

223° 
2X3X 

23 3° 
2 °3 2 

2 2 3 x 

243° 
2 X 3 2 

2 3 3 x 

2 °3 3 

253° 
2 2 3 2 

2 4 3 x 

2 1 3 3 

263° 
2 3 3 2 

2°3l+ 

2 5 3 i 

2 2 3 3 

173° 
2i>32 

2 1 3 4 

2 6 3 1 

2 3 3 3 

Value 

243 
256 
288 
324 
384 
432 
486 
512 
576 
648 
729 
768 
864 
972 

1024 
1152 
1296 
1458 
1536 
1728 
1944 
2048 
2187 
2304 
2592 

O r d i n a l i t y 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

F a c t o r s 

2 ° 3 5 

283° 
2 5 3 2 

2 2 3 4 

2 7 3 x 

2 4 3 3 

2 i 3 5 

293° 
2 6 3 2 

233'+ 

2 °3 6 

2 8 3 i 

2 5 3 3 

2 2 3 5 

2 1 0 3° 
2 7 3 2 

2*3h 

2 1 3 6 

2 9 3 x 

2 6 3 3 

2 3 3 5 

2 1 1 3° 
2 ° 3 7 

2 8 3 2 

253'* 

48 
0 

o36 

26 
O 

18 

* 11 
O 

6 
O 

2 
O 

o° 

56 
O 

43 
O 

32 
O 

23 
O 

15 
O 

9 
O 

4 
O 

o1 

65 
O 

51 
O 

39 
O 

29 
O 

20 
O 

13 
O 

7 
O 

o3 

74 
O 

59 
O 

46 
O 

35 
O 

25 
O 

17 
O 

10 
o 

5 
0 

o84 

68 
O 

54 
O 

42 
O 

31 
O 

22 
O 

14 
O 

8 
O 

95 
O 

78 
O 

63 
O 

50 

38 
O 

28 
O 

19 
O 

12 

106 
O 

88 
O 

72 
O 

58 
O 

45 
O 

34 
O 

24 
O 

16 
O 

118 
O 

99 
O 

82 
O 

67 
O 

53 
O 

41 
O 

30 
O 

21 
O 

131 
O 

111 
0 

93 
O 

77 
O 

62 
O 

49 
O 

37 
O 

27 
O 

144 
O 

123 
O 

104 
O 

87 
O 

71 
O 

57 
O 

44 
O 

33 
O 

158 
O 

136 
O 

116 
O 

98 
O 

81 
O 

66 
O 

52 
O 

40 
O 

172 
O 

149 
O 

128 
O 

109 
O 

91 
O 

75 
O 

60 
O 

47 
0 

2° 21 22 23 24 2S 26 2? 2 8 29 21 0
 2

11 

FIGURE 1 
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We shall now develop a theorem that will condense the information in Fig-
ure 1. 

IkdOKm 1: Ord(2a3*) = ab + Ord(2a3° ) + Ord(2° 3£). 

This theorem states that the ordinality of any point in the 253 lattice 
can be determined from the exponents of the coordinates of the point, and a 
knowledge of the ordinalities of the projections of the point onto the hori-
zontal and vertical baselines. For example, in the case of the number 253lt, 
this theorem takes the form 

Ord(253tf) = (5) (4) + Ord(253° ) + Ord(2° 3lf). 
50 = 20 + 1 2 + 18 

Point 50 and its projections onto the horizontal and vertical baselines (i.e., 
points 12 and 189 respectively) can be seen in Figure las the blacked-in points. 

Since an ordinality of 50 means there are fifty points of lower value, and 
hence, lower ordinality in the lattice, it will be useful to examine in detail 
the locations of these points. In Figure 2, the three polygons enclose all the 
points with ordinalities less than 50. 

Ord [2a3b] = ab + Ord[2a3°] + Ord[2°3b] 

Ord[2534] = 20+ 12 + 18 = 50 

FIGURE 2 

VolljQOVll 

I. Those points with a < 5 and b < 4 (since both a and b are smaller in 
these points than in point 50, the ordinalities of these points must be 
less than 50). 

II. Those points with ordinalities less than 50, with a < 5 and b _> 4. 

III. Those points with ordinalities less than 50, with b < 4 and a >_ 5. 

Since ordinality is determined with respect to value, the fifty points in poly-
gons I, II, and III must represent numbers whose values are less than 2 3 . 

The reason that the ordinality of point 12 is exactly equal to the number 
of lattice points in polygon II can be seen from Figures 3 and 4, with the help 
of the following discussion. By the definition of "ordinality 12" and the fact 
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that point 12 lies on the horizontal baseline, there must be twelve points of 
lower value west and northwest of point 12 (since there are no points south of 
the horizontal baseline, and all points north, northeast, or east are larger). 
But the relative values of all points in the 2,3 lattice are related to each 
other according to relative position. For example, take any lattice point, the 
point directly above it is three times greater in value, the point directly be-
low it is one-third as great in value, the point directly to the right is twice 
as large in value, and the point directly to the left is half as large in value. 
If we normalize the value of point 12 to the relative value 1, the relative 
value of all points west and northwest that are lower in value can be seen in 
Figure 4. This relative value relationship holds for the points west and north-
west of point 12 in exactly the same way that it holds for the points west and 
northwest of point 50, since the relative values of all points are related to 
each other according to their relative position to each other. Thus, the ordi-
nality of point 12 is identical to the number of points in polygon II and the 
ordinality of point 18 is identical to the number of points in polygon III 
(this can be seen with the help of Figures 5 and 6 ) . 

To the west and northwest of point 12 there are twelve points of 
lower value. And to the west and northwest of point 50 there are 
twelve points of lower value. 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 
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o 

o 

o 

o 

o 

o 

o 

o 

FIGURE 3 

27/32 

9/32 9/16 

3/32 3/16 N 3 / 8 3/4 
o o o-—ov 

Number of fractions in column 

1/32 1/16 1/8 1/4 N 1 / 2 1 
o o- o o o © 
t t t t • 
4 3 2 2 1 

FIGURE 4 
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To the south and southeast of point 18 there are eighteen points 
of lower value. And to the south and southeast of point 50 there 
are eighteen points of lower value. 

FIGURE 5 

Number of fractions in row ' f 

2-^1/3 2 /3 
O - 0 , 

4-*- 1/9 2 /9 N 4 / 9 8/9 
o o o— 

5-*- 1/27 2/27 4/27 8 / 2 7 N 16/27 
O O O O CL 

7-*-1/81 2/81 4 / 8 1 " 8/81 16/81 32/81 64/81 
o-—o-—-o-—o o o o 

FIGURE 6 

If the baseline ordinalities could be computed without recourse to any 
knowledge of non-baseline ordinalities9 a considerable computational effort 
could be saved. A theorem that will allow us to compute baseline ordinalities 
directly will now be developed. However, before this new theorem is presented, 
it will be necessary to expand our nomenclature. 

Up to this point, we have been concerned with only one sequence, the 2,3 
sequence. All ordinalities were of 2,3 sequence numbers with respect to the 
2,3 sequence. However, it is possible to conceive of ordinalities (with respect 
to the 2,3 sequence) of numbers that are not in this sequence. Take the number 
5 as an example. In .Table 1, we see that the 2,3 sequence skips from value 4 
to value 6. The question "What is the ordinality of 5 with respect to the 2,3 
sequence?" is written as: Qrd(5) 2 3 = ? Please note that the subscripts 2, 3 
are written outside of the parentheses, whereas when we previously wrote 
Ord(253lf) there were no subscripts. We could have written 0rd(2534) 2 3 but in 
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order to make the notation more compact, the reference sequence will be speci-
fied only when it is different from the enclosed factors or when an ambiguity 
exists. The convention is also adopted that when the ordinality of a number 
that is not in a sequence is to be determined with respect to the sequence, the 
ordinality of the next highest number in the sequence (with respect to the num-
ber whose ordinality is to be determined) is the ordinality chosen. For exam-
ple, 

Ord(5)2j3 = 0rd(6)2s3 = Ord(2131) = 4 

The ordinality of 5 
with respect to the 
2,3 sequence. 

The next highest number 
in the 2,3 sequence is 
6. That is, 5 "rounds 
up" to 6 in the 2,3 se-
quence. 

And the ordinality of 6 
in the 2,3 sequence is 
4, as found in Table 1. 

But, 0rd(4)2j3 = Ord(2z3u) - 3. 

No round up, since the number 4 is found in the 2,3 sequence. 

Instead of rounding up in the binary 2,3 sequence, as the example above 
illustrates, we shall be concerned with rounding up between the two unary se-
quences: the 2 sequence and the 3 sequence. Thus, from Table 2, we learn that 

0rd(2° \ _ a n-*-̂ /ol\ ._ i n^AfoZ^ 

Ord(25) 

0rd(3lf) 

0, Ord(21)3 

4, Ord(3° )2 

7. 

1, Ord(2z)3 = 2, Ord(23)3 = 2, 0rd(24)3 = 3, 

0, 0rd(31)2 = 2, 0rd(32)2 = 4, Ord(33)2 = 5, 

TABLE 2 

Value 

1 
2 

4 
8 

16 

32 
64 

128 

2 Sequence 

Ordinality 

0 
1 

2 
3 

4 

5 
6 

7 

Factors 

2°  
21 

22 

23 

2" 
2 5 

26 

27 

Value 

1 

3 

9 

27 

81 

3 Sequence 

Ordinality 

0 

1 

2 

3 

4 

Factors 

3°  

31 

32 

33 

3" 

With this nomenclature in mind, we can proceed to the next theorem. 

Tkdotim 2: Ord(2a3° ) =^0Td(2k): 
fe = o 

This theorem states that the ordinality of any point on the horizontal 
baseline of the 2,3 lattice can be determined from a knowledge of the ordinal-
ity of terms in the 3 sequence. And since the ordinality of any term in the 3 
sequence is simply its exponent (as can be seen from Table 2) , the determina-
tion of baseline ordinalities is straightforward. 
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For example9 in the case of the number 253° , this theorem takes the form 

5 

0rd(253° ) = ^ O r d ( 2 k ) 3 . 
k = o 

12 = 0 + 1 + 2 + 2 + 3 + 4 

Table 3 should help clarify this result. 

TABLE 3 

"Rounded Up" to the 
Next Highest Number 

k = 2k = in the 3 Sequence Ord(2k)3 = 

0 1 -* 1 = 3°  0 
1 2 - * - 3 = 31 1 
2 4 -> 9 = 32 2 
3 8 -* 9 = 32 2 
4 16 -> 27 = 33 3 
5 32 -> 81 = 34 __4 

Total = 12 

The origin of this result can also be seen in Figure 4. If we list the 
number of fractions in each column to the left of the blacked-in point, we ob-
tain (going right to left)9 ls 2, 2, 39 4. Since each fraction in these col-
umns is less than one and consists of a numerator that is a power of 3 and a 
denominator that is a power of 29 the question "What is the highest power of 3 
in the numerator, for a given power of 2 in the denominator, consistent with a 
fraction less than one?" can be seen to be related to the question 

Ord(2k)3 = ? 

For example, let k = 5, then, as previously developed, Ord(25)3 = 4. But the 
highest power of 3 in the numerator consistent with 32 in the denominator, and 
a fraction whose overall value is less than one, is 3. That is, 

3 V 2 5 > 1 > 33/25
9 or 34 > 2 > 33. 

Counting 27/32 and the three fractions beneath it in the leftmost column of 
Figure 4 gives 

1 + 3 = 4 fractions: 27/32, 9/32, 3/32, 1/32. 

Thus we see that a numerator power of 3 gives four fractions, since the frac-
tion with the numerator 3°  must be counted. Therefore, "rounding up" counts 
this zero exponent term. 

The next theorem applies to the vertical baseline. 

b 
ThQ.on.rn 3: Ord(2° 3&) = ]Tord(3 k ) 2 . 

fc = o 

This theorem states that the ordinality of any point on the vertical base-
line of the 2,3 lattice can be determined from a knowledge of the ordinality of 
terms in the 2 sequence. And since the ordinality of any term in the 2 sequence 
is simply its exponent (as can be seen from Table 2 ) , the determination of these 
ordinalities is straightforward. 
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For example, in the case of the number 2° 3\ this theorem takes the form 

4 

Ord^S*) = ]£ord(3k)2. 
fc = o 

18 = 0 + 2 + 4 + 5 + 7 

Table 4 should help clarify this result. 

TABLE 4 

"Rounded Up" to the 
Next Highest Number 

k = 3k = in the 2 Sequence Ord(3k)2 = 

0 1 -* 1 = 2°  0 
1 3 -> 4 = 22 2 
2 9 •* 16 = 21* 4 
3 27 -> 32 = 25 5 
4 81 •> 128 = 27 __7 

Total = 18 

The origin of this result can be seen in Figure 6. If we list the number 
of fractions in each row beneath the blacked-in point in Figure 6, we obtain 
(from top to bottom) 2, 4S 5, 7. Since each fraction in these rows is less 
than one and consists of a numerator that is a power of 2 and a denominator 
that is a power of 3, the question "What is the highest power of 2 in the nu-
merator, for a given power of 3 in the denominator, consistent with a fraction 
less than one?" can be seen to be related to the question 

0rd(3k)2 = ? 

For example, let k = 4, then, as previously developed, Ord(3lf)2 = 7. But the 
highest power of 2 in the numerator consistent with 81 in the denominator, and 
a fraction whose overall value is less than one, is 6. That is, 

2713\ > 1 > 26/34, or 27 > 3** > 26. 

Counting 64/81 and the six fractions to its left, in the southmost row of Fig-
ure 6 gives 

1 + 6 = 7 fractions: 64/81, 32/81, 16/81, 8/81, 4/81, 2/81, 1/81. 

Thus we see that a numerator power of 6 gives seven fractions, since the frac-
tion with numerator 2°  must be counted. Therefore "rounding up" counts this 
zero exponent term. 

The combination of Theorems 1-3 gives Theorem 4. 

a b 
TkdOKQjPf{ 41 , Qrd(2a3h) = ab + ^ O r d ( 2 k ) 3 + ] T o r d ( 3 k ) 2 . 

k=0 k=0 

This is the mathematical equivalent of describing a binary mixture in terms of 
its pure components. 

Evaluating Ord(25)3 has been shown to be equivalent to finding the inte-
gral power of 3 (i.e., 3^) such that 

3k+i > 25 > 3fe. 
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The ordinality was then shown to be one more than k (i.e., ordinality= k 4- 1) , 
since the fraction with zero power in the numerator had to be counted. This 
problem can be simplified to a linear problem if the logarithms of the terms 
involved are used. For example, take the above problem. If 25 > 3k, then 

5 log 2 > k log 3 or k < 5 log 2/log 3. 

The term on the right of the last inequality must have an integral and a non-
integral part (since log 2 and log 3 are independent irrationals). To five 
places5 5 log 2/log 3=3.15465. Since 3k + 1 was constrained to be greater than 
25, we can write 

(k + l)log 3 > 5 log 2. 

Also9 since k was specified to be an integer, we evaluate k as the integral part 
of 5 log 2/log 3. Therefore, 1 + integral part of 5 log 2/log 3 is the same as 
the round up of 5 log 2/log 3 to the next positive integer. Since this is also 
k + 1, and k + 1 is equal to the ordinality, we can write Theorem 5. 

Th2.on.rn 5: Ord(2k)3 = Ord(k log 2/log 3) x . 

The subscript 1 in Theorem 5 represents a round up process that rounds up to 
the next highest integer (i.e.. We call the sequence of positive integers the 
1 sequence. In this sequence, the ordinality of an integer is defined to be 
its value). 

Evaluating 0rd(3 ) 2 has been shown to be equivalent to finding the inte-
gral power of 2 (i.e., 2^) such that 

2k+i > 3h > 2kB 

The ordinality was then shown to be one more than k (i.e., ordinality= k + 1), 
since the fraction with zero power in the numerator had to be counted. This 
problem can be simplified to a linear problem if the logarithms of the terms 
involved are used. For example, take the above problem. If 3^ > 2k, then 

4 log 3 > k log 2 or k < 4 log 3/log 2. 

The term on the right of the last inequality must have an integral and non-
integral part (since log 2 and log 3 are independent irrationals). To five 
places, 4 log 3/log 2=6.33985. Since 2k+1 was constrained to be greater than 
34, we can write 

(k + l)log 2 > 4 log 3. 

Also, since k was specified to be an integer, we evaluate k as the integral part 
of 4 log 3/log 2. Therefore, 1 + integral part of 4 log 3/log 2 is the same as 
the round up of 4 log 3/log 2 to the next positive integer. Since this is also 
k + 1, and k + 1 is equal to the ordinality, we can write Theorem 6. 

ThQjotiQJtn 61 0 r d ( 3 k ) 2 = 0rd(7< log 3 / l o g 2 ) 1 . 
The combination of Theorems 4-6 gives Theorem 7. 

Th">**» 7: <*d(2"3»> - ab + | > d ( l o g 3; i q g 2 ) x + go
0 r d(l0g 2/log 3 ) ^ 

The lattice for the 2,3 sequence is not unique to numbers of the form 2a3^, 
a, b integers, a >. 0, b >_ 0. Instead, it represents the ordinality sequence of 
all numbers of the form 

(2x)a (3x)b, a, b Integers, a > 0 , b >_ 0, x > 0. 

2a3fc is seen as the special case in which x = 1. However, the right side of 
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Theorem 7 applies to the ordinality of any number in the 2^,3* sequence, since 

0rd«2-)-(3-)*)2.iS. - ab + £ 0r< 3? 2) 
k=0 & & 1 

h / k 
+ E 0 r d U i o g 2 / ^ l o g 3 ) 1 -

And since the #*s cancel,, we obtain the terms on the right side of the equals 
sign in Theorem 7. 

Therefore, all sequences with component terms of the form (2x)a (3x)b have 
in common the fact that their lattice representations are identical. If a lat-
tice does not uniquely specify a sequence, is there anything that it does spe-
cify uniquely? The answer lies in Theorem 7. From this theorem, we see that 
the number log 3/log 2 (and its reciprocal) are uniquely specified by the lat-
tice representation of the 2^,3* sequence. Therefore, to generate the lattice 
associated with any real number N9 we generalize the results of Theorem 7, to 
give 

ThaoKm 8: Ord(a, b) = ab + X)ord(~) + J2 0rd(l7ii/) ' 

In Theorem 8, Ord(a,&) is defined as the ordinality of the point at coordinates 
a, b. Since Theorem 8 is derived from Theorem 1, we can combine the two theo-
rems to obtain 

IkdOKm 9: Ord(a, b) = ab + Ord(a, 0) + Ord(0, b) . 
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