[go: up one dir, main page]

login
A128229
A natural number transform, inverse of signed A094587.
17
1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1
OFFSET
1,5
COMMENTS
Signed version of the transform (with -1, -2, -3, ... in the subdiagonal) gives A094587 having row sums A000522: (1, 2, 5, 16, 65, 236, ...). Unsigned inverse gives signed A094587 (with alternate signs); giving row sums = a signed variation of A094587 as follows: (1, 0, 1, -2, 9, -44, 265, -1854, ...). Binomial transform of the triangle = A093375.
Eigensequence of the triangle = A000085 starting (1, 2, 4, 10, 26, 76, ...). - Gary W. Adamson, Dec 29 2008
FORMULA
Infinite lower triangular matrix with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal.
T(n,n)=1, T(n,n-1)=n-1 and T(n,k)=0 for 1<=k<=n, 1<=n. - Hartmut F. W. Hoft, Jun 10 2017
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 0, 4, 1;
0, 0, 0, 0, 5, 1;
0, 0, 0, 0, 0, 6, 1;
0, 0, 0, 0, 0, 0, 7, 1;
...
MATHEMATICA
a128229[n_] := Table[Which[r==q, 1, r-1==q, q, True, 0], {r, 1, n}, {q, 1, r}]
Flatten[a128229[13]] (* data *)
TableForm[a128229[8]] (* triangle *)
(* Hartmut F. W. Hoft, Jun 10 2017 *)
PROG
(Python)
def T(n, k): return 1 if n==k else n - 1 if k==n - 1 else 0
for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 10 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 19 2007
STATUS
approved