WO2024157860A1 - 硬化性組成物の製造方法 - Google Patents
硬化性組成物の製造方法 Download PDFInfo
- Publication number
- WO2024157860A1 WO2024157860A1 PCT/JP2024/001165 JP2024001165W WO2024157860A1 WO 2024157860 A1 WO2024157860 A1 WO 2024157860A1 JP 2024001165 W JP2024001165 W JP 2024001165W WO 2024157860 A1 WO2024157860 A1 WO 2024157860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- curable composition
- organic polymer
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/057—Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
- C08K5/19—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/10—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
Definitions
- the present invention relates to a method for producing a curable composition containing an organic polymer having a silicon group (hereinafter also referred to as a "reactive silicon group”) that has a hydroxyl group or a hydrolyzable group bonded to a silicon atom and that can form a crosslink by forming a siloxane bond.
- a reactive silicon group an organic polymer having a silicon group that has a hydroxyl group or a hydrolyzable group bonded to a silicon atom and that can form a crosslink by forming a siloxane bond.
- Organic polymers with reactive silicon groups are known to have the property of crosslinking through the formation of siloxane bonds accompanied by hydrolysis of silyl groups due to moisture, etc., even at room temperature, resulting in a rubber-like cured product.
- Such organic polymers with reactive silicon groups are already being produced industrially, and are widely used in applications such as sealants, adhesives, paints, and waterproofing materials.
- curable compositions containing organic polymers with reactive silicon groups usually contain a curing catalyst (also called a silanol condensation catalyst) such as an organotin compound with a carbon-tin bond, such as dibutyltin bis(acetylacetonate).
- a curing catalyst also called a silanol condensation catalyst
- organotin compound with a carbon-tin bond such as dibutyltin bis(acetylacetonate
- Patent Document 1 describes the use of a titanium compound, such as a titanium alkoxide or a titanium chelate compound, in combination with an amine compound, such as DBU (1,8-diazabicyclo[5.4.0]-7-undecene), as a curing catalyst for an organic polymer having a reactive silicon group.
- an amine compound such as DBU (1,8-diazabicyclo[5.4.0]-7-undecene
- Patent Document 2 also describes the combined use of titanium alkoxide and ammonium hydroxide as a curing catalyst.
- Paragraph [0070] of the document also describes the preparation of a composition by blending the various components and kneading them together.
- the present invention aims to provide a method for producing a curable composition that can improve the curability of a curable composition that contains a reactive silicon group-containing organic polymer, a curing catalyst containing a titanium compound and an amine compound, and an amino group-containing silane compound.
- the present inventors discovered that the curability of a curable composition can be improved by first mixing the reactive silicon group-containing organic polymer with the titanium compound and the amine compound, and then adding and mixing the amino group-containing silane compound, rather than adding a titanium compound, an amine compound, and an amino group-containing silane compound to the reactive silicon group-containing organic polymer and then mixing them all at once, and thus completed the present invention.
- the present invention relates to a compound represented by the following general formula (1): -SiR 1 3-a X a (1)
- R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a triorganosiloxy group represented by R 0 3 SiO-.
- the three R 0 's may be the same or different and represent a hydrocarbon group having 1 to 20 carbon atoms.
- X represents a hydroxyl group or a hydrolyzable group.
- a represents 1, 2, or 3.
- a curing catalyst (B) and a silane compound (C) having a molecular weight of 100 to 1500 and having a hydrolyzable silicon group and an amino group comprising:
- R 2 , R 3 , and the two R 4s may be bonded to form a cyclic structure.
- R 5 , R 6 , R 7 , and R 8 are the same or different and each represents a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms.
- R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
- Y represents a chelate coordination compound
- d represents 0 or an integer of 1 to 4.
- a condensate thereof (b2) The present invention relates to a method for producing a curable composition, the method including a step of mixing the organic polymer (A) and the curing catalyst (B) to
- the present invention provides a method for producing a curable composition that can improve the curability of a curable composition that contains a reactive silicon group-containing organic polymer, a curing catalyst containing a titanium compound and an amine compound, and an amino group-containing silane compound.
- a curable composition exhibiting good curability can be obtained without reducing the amount of the amino group-containing silane compound.
- a larger amount of the amino group-containing silane compound can be blended, thereby achieving both good curability and the desired physical properties (e.g., adhesiveness) of the amino group-containing silane compound.
- a curable composition that exhibits good storage stability by suppressing the progression of curing delay and thickening due to storage.
- a curable composition having good adhesiveness can be provided.
- the reactive silicon group-containing organic polymer (A) has a polymer skeleton (also called a main chain structure) and a polymer chain end bonded to the polymer skeleton.
- the polymer skeleton is a structure in which a plurality of monomer units are continuously formed by bonding a plurality of monomers by polymerization, condensation, etc.
- the monomer may be one type, or a mixture of a plurality of types may be bonded.
- the polymer chain end refers to the portion located at the end of the reactive silicon group-containing organic polymer (A).
- the number of polymer chain ends of the reactive silicon group-containing organic polymer (A) is 2 when the polymer skeleton is entirely linear, and is 3 or more when the polymer skeleton is entirely branched. In addition, when the polymer skeleton is a mixture of linear and branched chains, the number can be between 2 and 3 on average.
- the reactive silicon groups of the organic polymer (A) may be present in the polymer backbone and/or at the polymer chain end. Two or more reactive silicon groups may also be present at one polymer chain end.
- the curable composition according to the present disclosure is used as an adhesive, a sealant, an elastic coating agent, a pressure sensitive adhesive, or the like, it is preferable that the reactive silicon groups are contained at the polymer chain end of the organic polymer (A).
- the organic polymer (A) has a reactive silicon group represented by the following general formula (1). -SiR 1 3-a X a (1)
- R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a triorganosiloxy group represented by R 0 3 SiO-.
- the three R 0 's may be the same or different and represent a hydrocarbon group having 1 to 20 carbon atoms.
- X represents a hydroxyl group or a hydrolyzable group.
- a represents 1, 2, or 3. When a plurality of R 1's or X's are present, they may be the same or different.
- R 1 in the general formula (1) examples include alkyl groups such as methyl and ethyl groups; alkyl groups having a hetero-containing group such as chloromethyl, methoxymethyl, and 3,3,3-trifluoropropyl; cycloalkyl groups such as cyclohexyl; aryl groups such as phenyl; aralkyl groups such as benzyl; and triorganosiloxy groups represented by R 0 3 SiO-, where R 0 is a methyl group, phenyl group, or the like.
- alkyl groups or alkyl groups having a hetero-containing group more preferably methyl, ethyl, chloromethyl, and methoxymethyl groups, even more preferably methyl and ethyl groups, and particularly preferably methyl groups.
- R 1 When there are a plurality of R 1 , they may be the same as or different from each other.
- X in general formula (1) represents a hydroxyl group or a hydrolyzable group.
- the hydrolyzable group is not particularly limited and may be a known hydrolyzable group, such as a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
- an alkoxy group, an acyloxy group, a ketoximate group, and an alkenyloxy group are preferred.
- an alkoxy group is more preferred, a methoxy group and an ethoxy group are even more preferred, and a methoxy group is particularly preferred.
- Xs there are multiple Xs, they may be the same or different from each other.
- a is 1, 2, or 3. a is preferably 2 or 3. From the viewpoint of better curability, a is particularly preferably 3.
- the reactive silicon group represented by the general formula (1) is not particularly limited, but examples thereof include trimethoxysilyl group, triethoxysilyl group, tris(2-propenyloxy)silyl group, triacetoxysilyl group, dimethoxymethylsilyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group, dimethoxyphenylsilyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl)dimethoxysilyl group, and (N,N-diethylaminomethyl)diethoxysilyl group.
- the dimethoxymethylsilyl group and the trimethoxysilyl group are preferred because they are easy to synthesize.
- the trimethoxysilyl group and the methoxymethyldimethoxysilyl group are preferred because they provide high curing properties.
- the trimethoxysilyl group and the triethoxysilyl group are preferred because they provide a cured product that exhibits a high recovery rate and low water absorption.
- the main chain structure (also referred to as polymer skeleton) of the reactive silicon group-containing organic polymer (A) is not particularly limited, and various main chain structures can be used.
- polyoxyalkylene polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymers, and polyoxypropylene-polyoxybutylene copolymers; hydrocarbon polymers such as ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, and hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; polyolefins obtained by condensation of dibasic acids such as adipic acid with glycols, or ring-opening polymerization of lactones; Examples of such polymers include ester polymers, (meth)acrylic acid ester polymers obtained by radical polymerization of (meth)acrylic acid ester monomers such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl
- saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth)acrylic acid ester polymers are preferred because they have relatively low glass transition temperatures and the resulting cured products have excellent cold resistance. Only one of these may be used, or two or more may be used in combination.
- Polyoxyalkylene polymers and (meth)acrylic acid ester polymers are particularly preferred because they have high moisture permeability, excellent deep curing properties when made into a one-component curable composition, and excellent adhesion. Polyoxyalkylene polymers are more preferred, and polyoxypropylene is even more preferred.
- (Meth)acrylic acid ester polymers are useful because by combining various monomer compositions that make up the polymer, it is possible to obtain effects such as improving adhesion, improving heat resistance and weather resistance, and reducing the water absorption of the cured product obtained by curing the curable composition.
- the polyoxyalkylene polymer is preferably a polymer having a repeating unit represented by -R-O- (wherein R is a linear or branched alkylene group having 1 to 14 carbon atoms). It is more preferable that R is a linear or branched alkylene group having 2 to 4 carbon atoms.
- R is a linear or branched alkylene group having 2 to 4 carbon atoms.
- Specific examples of the repeating unit represented by -R-O- include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 ) O-, -CH 2 CH(C 2 H 5 )O-, -CH 2 C(CH 3 )(CH 3 )O-, and -CH 2 CH 2 CH 2 CH 2 O-.
- the main chain structure of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
- a polyoxypropylene-based polymer having oxypropylene repeat units in an amount of 50% by weight or more, more preferably 80% by weight or more, of the polymer main chain structure is preferred because it is amorphous and has a relatively low viscosity.
- the main chain structure of the polyoxyalkylene polymer may be linear or may have a branched chain.
- the number of branches is preferably 1 to 6 (i.e., the number of terminal hydroxyl groups is 3 to 8), more preferably 1 to 4 (i.e., the number of terminal hydroxyl groups is 3 to 6), and most preferably 1 (i.e., the number of terminal hydroxyl groups is 3).
- the polymer has a branched chain and the reactive silicon group is a trimethoxysilyl group, it is possible to obtain a cured product with a particularly low water absorption rate.
- the polyoxyalkylene polymer is preferably one obtained by a ring-opening polymerization reaction of a cyclic ether compound using a polymerization catalyst in the presence of an initiator.
- cyclic ether compounds examples include ethylene oxide, propylene oxide, butylene oxide, tetramethylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more. Among the cyclic ether compounds, it is particularly preferable to use propylene oxide, since it gives an amorphous polyether polymer with a relatively low viscosity.
- initiators include alcohols such as butanol, ethylene glycol, propylene glycol, propylene glycol monoalkyl ether, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, trimethylolmethane, trimethylolpropane, pentaerythritol, and sorbitol; and hydroxyl-terminated polyoxyalkylene polymers having a number average molecular weight of 300 to 4,000, such as polyoxypropylene diol, polyoxypropylene triol, polyoxyethylene diol, and polyoxyethylene triol.
- alcohols such as butanol, ethylene glycol, propylene glycol, propylene glycol monoalkyl ether, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glyco
- Methods for synthesizing polyoxyalkylene polymers include, but are not limited to, a polymerization method using an alkaline catalyst such as KOH, a polymerization method using a transition metal compound-porphyrin complex catalyst such as the complex obtained by reacting an organoaluminum compound with porphyrin as shown in JP-A-61-215623, a polymerization method using a composite metal cyanide complex catalyst as shown in JP-B-46-27250, JP-B-59-15336, U.S. Pat. No. 3,278,457, U.S. Pat. No. 3,278,458, U.S. Pat. No. 3,278,459, U.S. Pat. No. 3,427,256, U.S. Pat.
- a polyoxyalkylene polymer containing other bonds such as urethane bonds and urea bonds in the main chain structure may be used as long as it does not significantly impair the effects of the invention.
- a specific example of such a polymer is a polyurethane prepolymer.
- Polyurethane prepolymers can be obtained by known methods, for example, by reacting a polyol compound with a polyisocyanate compound.
- polyol compounds include polyether polyols, polyester polyols, polycarbonate polyols, and polyether polyester polyols.
- polyisocyanate compound examples include diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, methylene-bis(cyclohexyl isocyanate), isophorone diisocyanate, and hexamethylene diisocyanate.
- the polyurethane prepolymer may be one having either a hydroxyl group or an isocyanate group at the end.
- the reactive silicon group-containing organic polymer (A) is a polyoxyalkylene polymer that does not contain a urethane bond, a urea bond, an ester bond, or an amide bond in the main chain structure.
- the reactive silicon group-containing organic polymer (A) is preferably obtained by introducing reactive silicon groups into a polymer by any one of the following methods (a) to (d).
- examples of the terminal carbon-carbon unsaturated group include a vinyl group, an allyl group, a methallyl group, an allenyl group, and a propargyl group.
- the reactive silicon group-containing organic polymer (A) obtained using a silane compound in which W is a methylene group is preferred because it exhibits extremely high curability.
- Method (a) is preferred because it tends to give a reactive silicon group-containing organic polymer (A) with good storage stability.
- Methods (b), (c) and (d) are preferred because they give a high conversion rate in a relatively short reaction time.
- Examples include those proposed in JP-A-61-197631, JP-A-61-215622, JP-A-61-215623, and JP-A-61-218632, which introduce reactive silicon groups by hydrosilylation or the like into polyoxypropylene polymers with a high molecular weight and narrow molecular weight distribution, with a number average molecular weight of 6,000 or more and Mw/Mn of 1.6 or less, and those proposed in JP-A-3-72527.
- the molecular weight distribution (Mw/Mn) of the reactive silicon group-containing organic polymer (A) is not particularly limited, but is preferably 1.6 or less, more preferably 1.5 or less, and particularly preferably 1.4 or less. From the viewpoint of improving various mechanical properties such as durability and elongation of the cured product, a molecular weight distribution of 1.2 or less is preferable.
- the number average molecular weight of the reactive silicon group-containing organic polymer (A), as calculated as polystyrene equivalent molecular weight by GPC, is preferably 3,000 to 100,000, more preferably 5,000 to 50,000, and particularly preferably 8,000 to 35,000.
- the mechanical properties of the cured product are excellent, and since the amount of reactive silicon groups introduced is appropriate, it is possible to obtain an organic polymer (A) that exhibits good curability, has a manageable viscosity, and is excellent in workability while keeping production costs within an appropriate range.
- the molecular weight of the reactive silicon group-containing organic polymer (A) can also be expressed as the end group molecular weight calculated by directly measuring the end group concentration using titration analysis based on the principles of the hydroxyl value measurement method in JIS K 1557 and the iodine value measurement method specified in JIS K 0070, and taking into account the structure of the organic polymer (degree of branching determined by the polymerization initiator used).
- the end group converted molecular weight of the organic polymer (A) can also be calculated by creating a calibration curve of the number average molecular weight calculated by general GPC measurement of the polymer precursor and the above end group converted molecular weight, and converting the number average molecular weight calculated by GPC of the organic polymer (A) into the end group converted molecular weight.
- the reactive silicon groups of the organic polymer (A) are present at the polymer chain end. Since this shows good curability and is likely to exhibit rubber elastic behavior, the number of reactive silicon groups per polymer chain end of the organic polymer (A) is preferably 0.5 or more on average, more preferably 0.6 or more, even more preferably 0.7 or more, and particularly preferably 0.8 or more.
- the number of polymer chain ends per molecule of the organic polymer (A) is preferably 2 to 8, more preferably 2 to 4, and particularly preferably 2 or 3.
- the number of reactive silicon groups in one molecule of the organic polymer (A) is preferably from 1 to 7 on average, more preferably from 1 to 3.4, and particularly preferably from 1 to 2.6.
- the reactive silicon group-containing organic polymer (A) When the reactive silicon group-containing organic polymer (A) is branched, the reactive silicon group may be at the end of the main chain of the organic polymer, at the end of a side chain (branched chain), or both. In particular, when the reactive silicon group is at the end of the main chain, the molecular weight between crosslinking points becomes longer, which is preferable because it makes it easier to obtain a rubber-like cured product that has high strength, high elongation, and a low elastic modulus.
- an organic polymer having two or more carbon-carbon unsaturated bonds at one polymer chain end is used, and the organic polymer (A) obtained by the above methods (a) and (c) has two or more reactive silicon groups at one polymer chain end.
- Such an organic polymer (A) exhibits high curability, and the obtained cured product is expected to have high strength and high recovery.
- reactive silicon group-containing organic polymers (A) include various reactive silicon group-containing polyoxypropylene products under the trade names Kaneka MS Polymer or Kaneka Silyl, Kaneka TA Polymer, Kaneka XMAP, and other reactive silicon group-containing poly(meth)acrylic acid esters, and Kaneka EPION, and other reactive silicon group-containing polyisobutylenes.
- the curable composition according to the present disclosure contains a curing catalyst (B) used to form a cured product by hydrolyzing and condensing the reactive silicon groups contained in the organic polymer (A).
- the curing catalyst (B) contains an amidine structure-containing compound (b1e) or an ammonium hydroxide compound (b1f) and a titanium compound or its condensate (b2).
- (b1e) or (b1f) and (b2) may exist independently of each other.
- the curing catalyst (B) may be a mixture of both components or a complex of both components.
- amidine structure-containing compound (b1e) The amidine structure-containing compound (b1e) can be represented by the following general formula (2).
- R 2 N CR 3 -NR 4 2 (2)
- R 2 , R 3 , and R 4 are the same or different and each represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
- Two R 4s may be the same. Any two or more of R 2 , R 3 and the two R 4 may be bonded to form a cyclic structure.
- R2 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms in order to enhance the curability of the curable composition, and more preferably a hydrocarbon group in which the carbon atom adjacent to the nitrogen atom (the carbon atom at the ⁇ -position) does not have an unsaturated bond.
- the number of carbon atoms in R2 is preferably 1 to 10, more preferably 1 to 6, in order to be easily available.
- R 3 is preferably a hydrogen atom or an organic group represented by -NR 10 2 , and more preferably an organic group represented by -NR 10 2 , in order to enhance the curability of the curable composition.
- each of the two R 10 independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
- the compound represented by general formula (2) is called a guanidine compound.
- R 11 , R 12 and the two R 13 each independently represent a hydrogen atom or an organic group having 1 to 6 carbon atoms.
- the two R 14 and the two R 15 each independently represent a hydrogen atom or an organic group having 1 to 6 carbon atoms.
- the compound represented by general formula (2) is called a biguanide compound.
- the two R4s preferably represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and more preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, because these are easily available and enhance the curability of the curable composition.
- the number of carbon atoms contained in the amidine structure-containing compound is preferably 2 or more, more preferably 6 or more, and particularly preferably 7 or more. There is no particular upper limit to the number of carbon atoms, but it is preferably 10,000 or less.
- the molecular weight of the amidine structure-containing compound is preferably 60 or more, more preferably 120 or more, and particularly preferably 130 or more. There is no particular upper limit to the molecular weight, but it is preferably 100,000 or less.
- amidine structure-containing compound (b1e) is not particularly limited, and examples thereof include pyrimidine compounds such as pyrimidine, 2-aminopyrimidine, 6-amino-2,4-dimethylpyrimidine, 2-amino-4,6-dimethylpyrimidine, 1,4,5,6-tetrahydropyrimidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-ethyl-2-methyl-1,4,5,6-tetrahydropyrimidine, 1,2-diethyl-1,4,5,6-tetrahydropyrimidine, 1-n-propyl-2-methyl-1,4,5,6-tetrahydropyrimidine, 2-hydroxy-4,6-dimethylpyrimidine, 1,3-diazanaphthalene, and 2-hydroxy-4-aminopyrimidine; Imidazoline compounds such as 2-imidazoline, 2-methyl-2-imidazoline, 2-ethyl-2-imidazoline, 2-propyl-2-imidazoline,
- the amidine structure-containing compound (b1e) is preferably an amidine compound or a guanidine compound, since this improves the curing properties, more preferably DBU, DBA-DBU, DBN, or phenylguanidine, even more preferably DBU, DBA-DBU, or DBN, and particularly preferably DBU or DBN.
- ammonium hydroxide compound (b1f) The ammonium hydroxide compound (b1f) can be represented by the following general formula (3).
- R 5 , R 6 , R 7 , and R 8 are the same or different and each represents a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms.
- R 5 , R 6 , R 7 , and R 8 are each bonded to the nitrogen atom shown in formula (3) above.
- the substituted or unsubstituted hydrocarbon groups represented by R 5 , R 6 , R 7 , and R 8 are preferably substituted or unsubstituted aliphatic or aromatic hydrocarbon groups, more preferably aliphatic hydrocarbon groups.
- As the aliphatic hydrocarbon group a linear or branched alkyl group is preferred.
- the number of carbon atoms in the hydrocarbon group is preferably 1 to 8, more preferably 1 to 6, and even more preferably 1 to 4.
- Examples of the aliphatic hydrocarbon group include saturated hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, and an octyl group, and unsaturated hydrocarbon groups such as a vinyl group, an allyl group, a prenyl group, a crotyl group, and a cyclopentadienyl group, and preferably a methyl group, an ethyl group, and a butyl group.
- Examples of the aromatic hydrocarbon group include a phenyl group, a tolyl group, and a benzyl group.
- Examples of the substituents that the hydrocarbon group may have include a methoxy group, an ethoxy group, a hydroxyl group, and an acetoxy group.
- Examples of the hydrocarbon group having a substituent include an alkoxyalkyl group such as a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, and an ethoxyethyl group, a hydroxyalkyl group such as a hydroxymethyl group, a hydroxyethyl group, and a 3-hydroxypropyl group, and a 2-acetoxyethyl group.
- ammonium hydroxides represented by the general formula (3) include tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, benzyltriethylammonium hydroxide, trimethylphenylammonium hydroxide, and tris(2-hydroxyethyl)methylammonium hydroxide.
- tetraalkylammonium hydroxides are preferred, and tetrabutylammonium hydroxide is more preferred. Only one type of ammonium hydroxide may be used, or two or more types may be used in combination.
- titanium compound or condensate thereof (b2)
- the titanium compound (b2) is represented by the following general formula (4).
- Ti (OR 9 ) d Y 4-d (4) (In the formula, R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, Y represents a chelate coordination compound, and d represents 0 or an integer of 1 to 4.)
- a condensation product of a titanium compound represented by the general formula (4) can also be used as (b2).
- the condensation product can be obtained by adding water to a titanium compound and reacting it.
- (b2) is a condensation product of a titanium compound.
- a titanium compound and a condensation product of a titanium compound may be used in combination.
- the substituted or unsubstituted hydrocarbon group represented by R9 is preferably a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and is preferably an aliphatic hydrocarbon group.
- the aliphatic hydrocarbon group include saturated or unsaturated hydrocarbon groups.
- the saturated hydrocarbon group include linear or branched alkyl groups.
- the number of carbon atoms in the hydrocarbon group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
- Examples of the hydrocarbon group represented by R9 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, and decyl.
- Examples of the substituent that the hydrocarbon group may have include a methoxy group, an ethoxy group, a hydroxyl group, and an acetoxy group. When a plurality of R9s are present, they may be the same or different.
- the chelate coordination compound represented by Y may be a known compound that is known to coordinate to titanium. It is not particularly limited, but examples thereof include 1-aryl-1,3-butanediones such as 2,4-pentanedione, 2,4-hexanedione, 2,4-pentadecanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, 1-phenyl-1,3-butanedione, and 1-(4-methoxyphenyl)-1,3-butanedione, 1,3-diphenyl-1,3-propanedione, 1,3-bis(2-pyridyl)-1,3-propanedione, and 1,3-bis(4-methoxyphenyl)-1,3-propanedione, and 3-benzyl
- the diketones include 2,4-pentanedione; ketoesters such as methyl acetoacetate, ethyl
- d represents 0 or an integer from 1 to 4. Since the curable composition according to the present disclosure exhibits better curability and can exhibit large elongation after curing, d preferably represents 0 or an integer from 1 to 3, more preferably an integer from 1 to 3, and particularly preferably 2.
- titanium compounds represented by general formula (4) or condensates thereof include tetramethoxytitanium, trimethoxyethoxytitanium, trimethoxyisopropoxytitanium, trimethoxybutoxytitanium, dimethoxydiethoxytitanium, dimethoxydiisopropoxytitanium, dimethoxydibutoxytitanium, methoxytriethoxytitanium, methoxytriisopropoxytitanium, methoxytributoxytitanium, tetraethoxytitanium, triethoxyisopropoxytitanium, triethoxybutoxytitanium, diethoxydiisopropoxytitanium, and diethoxydi
- the titanium alkoxide condensates include butoxytitanium, ethoxytriisopropoxytitanium, ethoxytributoxytitanium, tetraisopropoxytitan
- the titanium compound represented by general formula (4) is preferably a compound containing a chelate coordination compound represented by Y, since it can provide good curing properties and exhibit large elongation after curing.
- Y a chelate coordination compound represented by Y
- diisopropoxytitanium bis(acetylacetonate), diisopropoxytitanium bis(ethylacetoacetate), and diisobutoxytitanium bis(ethylacetoacetate) are particularly preferred.
- the content of the curing catalyst (B) can be appropriately determined according to the desired curability, but may be, for example, about 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 0.75 to 10 parts by weight, and even more preferably 1 to 8 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the amount of the amidine structure-containing compound (b1e) or ammonium hydroxide compound (b1f) contained in the curable composition according to the present disclosure can be adjusted appropriately within the above range, but since the bleed-out suppression effect of (b1e) or (b1f) is improved, it is preferably 2 parts by weight or less, more preferably 1 part by weight or less, and even more preferably 0.7 parts by weight or less, relative to 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the lower limit of the amount of (b1e) or (b1f) is preferably 0.1 parts by weight or more, more preferably 0.3 parts by weight or more, even more preferably 0.4 parts by weight or more, and particularly preferably 0.5 parts by weight or more.
- the ratio of the amidine structure-containing compound (b1e) or ammonium hydroxide compound (b1f) to the titanium compound or its condensate (b2) used in the curing catalyst (B) can be set appropriately, but the weight ratio of (b2)/(b1e) or (b2)/(b1f) may be, for example, about 0.1 to 20, preferably 0.5 to 15, more preferably 0.8 to 12, and even more preferably 1.0 to 10. Since the effect of improving the curing property is particularly excellent, the upper limit of the weight ratio is preferably 9 or less, more preferably 6 or less, even more preferably 5 or less, and particularly preferably 4 or less. In addition, since the bleed-out suppression effect of (b1e) or (b1f) is better, the lower limit of the weight ratio is preferably 1.5 or more, more preferably 2 or more, and even more preferably 2.6 or more.
- the curable composition according to the present disclosure may contain a curing catalyst other than the curing catalyst (B).
- a curing catalyst include organotin compounds, metal salts of carboxylates, amine compounds other than (b1e) and (b1f), carboxylic acids, titanium compounds or their condensates, metal alkoxides other than (b2), inorganic acids, etc.
- the content of the curing catalyst other than the curing catalyst (B) is not particularly limited and may be set appropriately, but may be, for example, 0 to 10 parts by weight, 0 to 5 parts by weight, 0 to 3 parts by weight, or 0 to 1 part by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the curable composition according to the present disclosure contains a silane compound (C) having a hydrolyzable silicon group and an amino group and a molecular weight of 100 to 1500.
- the composition may further contain a silane compound (D) having a hydrolyzable silicon group and no amino group and a molecular weight of 100 to 1500.
- silane compounds are also known as silane coupling agents.
- the adhesiveness of the curable composition to various substrates can be improved.
- a silane compound (D) By adding a silane compound (C), the adhesiveness to various substrates can be further improved and the storage stability of the curable composition can be improved.
- a curable composition containing a curing catalyst including an amidine structure-containing compound (b1e) or an ammonium hydroxide compound (b1f) and a titanium compound or a condensate thereof (b2), and an amino group-containing silane compound (C) it has been found that the amino group-containing silane compound (C) is a major factor in reducing the curability of the curable composition.
- the curability of the resulting curable composition can be improved by mixing the organic polymer (A) with the curing catalyst (B) and then mixing the amino group-containing silane compound (C). Therefore, a curable composition that exhibits good curability can be produced without reducing the amount of the amino group-containing silane compound (C) used. It becomes possible to mix a larger amount of the amino group-containing silane compound (C), and a curable composition that combines good curability and adhesion can be produced.
- the hydrolyzable silicon group contained in the amino group-containing silane compound (C) and the amino group-free silane compound (D) refers to a silicon atom-containing group to which a hydrolyzable group is bonded, and can also be represented by the general formula (1) described above for the reactive silicon group contained in the organic polymer (A).
- the hydrolyzable group contained in the hydrolyzable silicon group is not particularly limited, and examples thereof include a hydrogen atom, a halogen atom, an alkoxy group, an aryloxy group, an alkenyloxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, etc.
- alkoxy groups such as a methoxy group and an ethoxy group are more preferred, and a methoxy group and an ethoxy group are particularly preferred, because they are mildly hydrolyzable and easy to handle.
- the number of hydrolyzable groups bonded to silicon atoms in the amino group-containing silane compound (C) or the amino group-free silane compound (D) may be preferably 3 in order to ensure good adhesion, and may be preferably 2 in order to ensure storage stability of the curable composition.
- the molecular weight of the amino group-containing silane compound (C) or the amino group-free silane compound (D) may be within the range of 100 to 1,500.
- the lower limit of the molecular weight may be 150 or more.
- the upper limit may be 1,000 or less, or 500 or less.
- the amino group-containing silane compound (C) is a compound having a hydrolyzable silicon group and a substituted or unsubstituted amino group, and is sometimes called aminosilane. It has been used as an adhesion imparting agent in curable compositions containing reactive silicon group-containing organic polymers.
- the substituents of the substituted amino group are not particularly limited, and examples thereof include alkyl groups, aralkyl groups, and aryl groups.
- amino group-containing silane compounds (C) include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldiethoxysilane, ⁇ -(2-(2-aminoethyl)aminoethyl)aminopropyltrimethoxysilane, ⁇ -(6-aminohexyl)aminopropyltrimethoxysilane,
- partial hydrolysis condensation products of the amino group-containing silanes and partial hydrolysis condensation products of the amino group-containing silanes and other alkoxysilanes for example, reaction products of the amino group-containing silanes and the epoxy group-containing silanes, reaction products of the amino group-containing silanes and the (meth)acrylic group-containing silanes
- reaction products of the amino group-containing silanes and the epoxy group-containing silanes, reaction products of the amino group-containing silanes and the (meth)acrylic group-containing silanes can also be used.
- Only one type of amino group-containing silane compound (C) can be used, or two or more types can be used in combination.
- the amino group-containing silane compound (C) is preferably ⁇ -aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, or ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane.
- Silane coupling agents obtained by partially condensing hydrolyzable silicon groups to form oligomers can be used favorably in terms of safety and stability.
- the silane coupling agents to be condensed may be of one type or of multiple types. Examples of oligomerized silane coupling agents include Dynasylan 1146 from Evonik.
- ⁇ -aminopropyltrimethoxysilane and ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane are preferred.
- the silane compound (D) having a hydrolyzable silicon group and no amino group may be a compound having a hydrolyzable silicon group and a reactive group other than an amino group, or may be a compound having no reactive groups other than a hydrolyzable silicon group.
- non-amino group-containing silane compound (D) examples include epoxy group-containing silanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane; Isocyanate group-containing silanes such as ⁇ -isocyanate propyl trimethoxy silane, ⁇ -isocyanate propyl triethoxy silane, ⁇ -isocyanate propyl methyl diethoxy silane, ⁇ -isocyanate propyl methyl dimethoxy silane, (isocyanate methyl) trimethoxy silane, and (isocyanate methyl) dimethoxy silane;
- non-amino group-containing silane compound (D) Only one type of non-amino group-containing silane compound (D) may be used, or two or more types may be used in combination.
- partial hydrolysis condensates of the silane compounds listed above may also be used.
- Dynasylan 6490 and Dynasylan 6498 from Evonik Corporation may be used.
- the non-amino group-containing silane compound (D) is preferably ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, or ⁇ -glycidoxypropylmethyldimethoxysilane.
- the amino group-free silane compound (D) is preferably vinyltrimethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, or (methoxymethyl)trimethoxysilane, more preferably vinyltrimethoxysilane or (methoxymethyl)trimethoxysilane, and particularly preferably vinyltrimethoxysilane.
- the amount of the amino group-containing silane compound (C) is not particularly limited and can be set appropriately depending on the desired adhesiveness, but it is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, and even more preferably 1 to 8 parts by weight, per 100 parts by weight of the organic polymer (A).
- the curable composition according to the present disclosure has improved curability by setting the mixing order of each component, so that it is possible to incorporate a large amount of the amino group-containing silane compound (C), which was a factor in reducing the curability of conventional curable compositions.
- the amount of the amino group-containing silane compound (C) incorporated is preferably 2 parts by weight or more, more preferably 3 parts by weight or more, and even more preferably 4 parts by weight or more, per 100 parts by weight of the organic polymer (A). It may be 5 parts by weight or more.
- the amount of the non-amino group-containing silane compound (D) is not particularly limited and can be set appropriately depending on the desired physical properties of the silane compound (D), but is preferably 0 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, and even more preferably 1 to 8 parts by weight, per 100 parts by weight of the organic polymer (A).
- a large amount of the non-amino group-containing silane compound (D) can also be incorporated.
- the amount of the silane compound (D) may be 3 parts by weight or more, 4 parts by weight or more, or 5 parts by weight or more, per 100 parts by weight of the organic polymer (A).
- the total content of the amino group-containing silane compound (C) and the amino group-free silane compound (D) is preferably 5 to 20 parts by weight, more preferably 6 to 15 parts by weight, and even more preferably 7 to 12 parts by weight, per 100 parts by weight of the organic polymer (A).
- the curable composition according to the present disclosure can be produced by mixing an organic polymer (A) and a curing catalyst (B) to obtain an intermediate mixture, and then mixing the intermediate mixture with an amino group-containing silane compound (C). This can improve the curability of the produced curable composition. According to this method, it is presumed that before the amino group-containing silane compound (C) is mixed, the amidine structure-containing compound (b1e) or the ammonium hydroxide compound (b1f) interacts with the titanium compound or its condensate (b2), thereby improving the catalytic activity.
- the titanium compound or its condensate (b2) reacts with the amino group-containing silane compound (C), which inhibits the interaction between the titanium compound or its condensate (b2) and the amidine structure-containing compound (b1e) or the ammonium hydroxide compound (b1f), which is thought to result in a decrease in catalytic activity.
- the method for mixing the organic polymer (A) with the curing catalyst (B) or the intermediate mixture with the amino group-containing silane compound (C) is not particularly limited as long as it can achieve uniform mixing, and can be carried out using a conventionally known device.
- the temperature during mixing is not particularly limited, and may be room temperature.
- each component of the curing catalyst (B) is not particularly limited. After mixing the amidine structure-containing compound (b1e) or the ammonium hydroxide compound (b1f) with the organic polymer (A), the titanium compound or its condensate (b2) may be added and mixed. Alternatively, after mixing (b2) with the organic polymer (A), (b1e) or (b1f) may be added and mixed. Alternatively, both (b1e) or (b1f) and (b2) may be added to the organic polymer (A) and then mixed. Since this is particularly effective in improving the curing properties, it is preferable to mix (b1e) or (b1f) with (b2) and add the resulting mixture to the organic polymer (A) and mix it.
- the amino group-free silane compound (D) is unlikely to be a factor in reducing the curability of the curable composition. Therefore, the mixing order of the amino group-free silane compound (D) is not particularly limited, and the organic polymer (A) and the amino group-free silane compound (D) may be mixed and then the curing catalyst (B) may be added and mixed, or the organic polymer (A) and the curing catalyst (B) may be mixed and then the amino group-free silane compound (D) may be added and mixed. However, from the viewpoint of further improving the curability, the latter mixing order is preferred.
- the mixing order of the amino group-containing silane compound (C) and the amino group-free silane compound (D) is not particularly limited, and the intermediate mixture and the amino group-containing silane compound (C) may be mixed, and then the amino group-free silane compound (D) may be added and mixed, or the intermediate mixture and the amino group-free silane compound (D) may be mixed, and then the amino group-containing silane compound (C) may be added and mixed. Also, the amino group-containing silane compound (C) and the amino group-free silane compound (D) may be added to the intermediate mixture, and then mixed.
- the order in which the other compounding ingredients described below are mixed is not particularly limited, and may be the same as in the case of the non-amino group-containing silane compound (D). However, it is preferable to mix the organic polymer (A) and the other compounding ingredients, then mix the curing catalyst (B), and further mix the amino group-containing silane compound (C).
- the curable composition according to the present disclosure may contain, as necessary, a plasticizer, a filler, a physical property adjuster, an anti-sagging agent (a thixotropy imparting agent), a stabilizer, and the like.
- the curable composition according to the present disclosure may contain a plasticizer.
- a plasticizer makes it possible to adjust the viscosity and slump of the curable composition, and the mechanical properties such as the tensile strength and elongation of the cured product obtained by curing the curable composition.
- plasticizers include phthalate ester compounds such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butyl benzyl phthalate; terephthalate compounds such as bis(2-ethylhexyl)-1,4-benzenedicarboxylate (specifically, product name: EASTMAN 168 (manufactured by EASTMAN CHEMICAL)); non-phthalate ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester (specifically, product name: Hexamoll DINCH (manufactured by BASF)); dioctyl adipate, sebaceous acid ester compounds such as terephthalate, ...
- phthalate ester compounds such as dibutyl phthalate, diisononyl
- Such compounds include aliphatic polycarboxylic acid ester compounds such as dioctyl succinate, dibutyl sebacate, diisodecyl succinate, and tributyl acetyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetyl ricinoleate; alkylsulfonic acid phenyl esters (specifically, trade name: Mesamoll (manufactured by LANXESS)); phosphate compounds such as tricresyl phosphate and tributyl phosphate; trimellitic acid ester compounds; chlorinated paraffin; hydrocarbon oils such as alkyl diphenyls and partially hydrogenated terphenyls; process oils; epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl stearate.
- aliphatic polycarboxylic acid ester compounds such as dioctyl succinate, dibutyl sebacate,
- polymeric plasticizers can be used.
- the initial physical properties can be maintained for a long period of time compared to when low molecular weight plasticizers, which are plasticizers that do not contain polymer components in the molecule, are used.
- the drying properties can be improved when an alkyd paint is applied to the cured product.
- polymer plasticizers include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid, and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and dipropylene glycol; polyethers such as polyether polyols having a number average molecular weight of 500 or more, and even 1,000 or more, polytetramethylene glycol, and derivatives in which the hydroxyl groups of these polyether polyols are converted to ester groups, ether groups, and the like; polystyrenes such as polystyrene and poly- ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene
- polyethers and vinyl polymers are preferred.
- acrylic polymers and/or methacrylic polymers are preferred, and acrylic polymers such as polyacrylic acid alkyl esters are more preferred.
- the living radical polymerization method is preferred because it has a narrow molecular weight distribution and can be made low viscosity, and the atom transfer radical polymerization method is more preferred. Furthermore, it is preferred to use a polymer obtained by the so-called SGO process, which is obtained by continuous bulk polymerization of acrylic acid alkyl ester monomers at high temperature and high pressure as described in JP-A-2001-207157.
- the number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, even more preferably 1,000 to 8,000, and particularly preferably 1,000 to 5,000. It is most preferably 1,000 to 3,000. If the molecular weight is too low, the plasticizer will flow out over time due to heat or rain, and the initial physical properties will not be able to be maintained over the long term. Furthermore, if the molecular weight is too high, the viscosity will increase, making it difficult to work with.
- the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow, and is preferably less than 1.80. It is more preferably 1.70 or less, even more preferably 1.60 or less, even more preferably 1.50 or less, particularly preferably 1.40 or less, and most preferably 1.30 or less.
- the number average molecular weight of polymer plasticizers is measured by the GPC method for vinyl polymers and by the end group analysis method for polyether polymers.
- the molecular weight distribution (Mw/Mn) is measured by the GPC method (polystyrene equivalent).
- the polymer plasticizer may or may not have a reactive silicon group. If it has a reactive silicon group, it acts as a reactive plasticizer and can prevent the plasticizer from migrating from the cured product. If it has a reactive silicon group, the number of reactive silicon groups per molecule is preferably 1 or less, more preferably 0.8 or less. When using a plasticizer having a reactive silicon group, particularly a polyether polymer having a reactive silicon group, it is desirable for the number average molecular weight to be lower than that of the reactive silicon group-containing organic polymer (A).
- the amount of plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, and even more preferably 20 to 100 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A). In such a range, the effect of the plasticizer can be exerted while maintaining the mechanical strength of the cured product.
- the plasticizer may be used alone or in combination of two or more kinds. A low molecular weight plasticizer and a polymeric plasticizer may also be used in combination. These plasticizers can also be mixed during the production of the polymer.
- the curable composition according to the present disclosure may contain a filler.
- fillers include reinforcing fillers such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc oxide, PVC powder, PMMA powder, and other resin powders; and fibrous fillers such as asbestos, glass fiber, and filaments.
- the amount used is preferably 1 to 300 parts by weight, more preferably 10 to 200 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- fillers selected from fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic acid anhydride, hydrated silicic acid, carbon black, surface-treated fine calcium carbonate, calcined clay, clay, and activated zinc oxide can be preferably used.
- Fillers selected from fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic acid anhydride, hydrated silicic acid, carbon black, surface-treated fine calcium carbonate, calcined clay, clay, and activated zinc oxide can be preferably used.
- Favorable results can be obtained by using 1 to 200 parts by weight per 100 parts by weight of reactive silicon group-containing organic polymer (A).
- the curable composition according to the present disclosure may contain spherical hollow bodies such as balloons for the purpose of reducing the weight (specific gravity) of the composition.
- a balloon is a spherical filler with a hollow interior.
- balloon materials include inorganic materials such as glass, silas, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, saran, and acrylonitrile, but are not limited to these.
- Inorganic and organic materials can be combined, or laminated to form multiple layers. Inorganic or organic balloons, or combinations of these, can be used.
- the balloons used may be the same or may be a mixture of multiple types of balloons made of different materials.
- the balloons may be surface-processed or coated, or may be surface-treated with various surface treatment agents.
- organic balloons may be coated with calcium carbonate, talc, titanium oxide, or inorganic balloons may be surface-treated with a silane coupling agent.
- the particle size of the balloons is preferably 3 to 200 ⁇ m, and particularly preferably 10 to 110 ⁇ m. If the particle size is less than 3 ⁇ m, it will be necessary to add a large amount because the contribution to weight reduction will be small, and if it is 200 ⁇ m or more, the surface of the hardened sealant will tend to become uneven and the elongation will tend to decrease.
- the amount of spherical hollow bodies used is preferably 0.01 to 30 parts by weight per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the lower limit is more preferably 0.1 parts by weight, and the upper limit is more preferably 20 parts by weight. Within this range, the elongation and breaking strength of the cured product can be maintained while improving workability.
- the curable composition according to the present disclosure may contain a physical property adjuster to adjust the tensile properties of the cured product, if necessary.
- the physical property adjuster is not particularly limited, but examples thereof include alkyl alkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; alkyl isopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, and ⁇ -glycidoxypropylmethyldiisopropenoxysilane; alkoxysilanes having functional groups such as ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxysilane, ⁇ -aminopropyltrimethoxysilane
- the hardness of the cured product obtained by curing the curable composition can be increased, or conversely, the hardness can be decreased and the breaking elongation can be increased.
- the physical property adjusters may be used alone or in combination of two or more kinds.
- compounds that generate a compound having a monovalent silanol group in the molecule upon hydrolysis have the effect of reducing the modulus of the cured product without increasing the stickiness of the surface of the cured product.
- compounds that generate trimethylsilanol are preferred.
- Examples of compounds that generate a compound having a monovalent silanol group in the molecule upon hydrolysis include the compounds described in JP-A-5-117521.
- Other examples include compounds that generate silicon compounds that are derivatives of alkyl alcohols such as hexanol, octanol, and decanol and generate trialkylsilanols such as trimethylsilanol upon hydrolysis, and compounds that generate silicon compounds that are derivatives of polyhydric alcohols having three or more hydroxyl groups such as trimethylolpropane, glycerin, pentaerythritol, and sorbitol and generate trialkylsilanols such as trimethylsilanol upon hydrolysis, as described in JP-A-11-241029. Specific examples include phenoxytrimethylsilane, tris((trimethylsiloxy)methyl)propane, etc.
- the property adjusting agent is preferably used in an amount of 0.1 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the curable composition according to the present disclosure may contain an anti-sagging agent, if necessary, to prevent sagging and improve workability.
- the anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; and metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sagging agents may be used alone or in combination of two or more types.
- the anti-sagging agent is preferably used in the range of 0.1 to 20 parts by weight per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the curable composition according to the present disclosure may contain an antioxidant (anti-aging agent).
- an antioxidant can improve the weather resistance of the cured product.
- antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred. Examples include Irganox 245, Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1135, Irganox 1330, Irganox 1520 (all manufactured by BASF); SONGNOX 1076 (manufactured by SONGWON), and BHT.
- hindered amine light stabilizers such as TINUVIN 622LD, TINUVIN 144, TINUVIN 292, CHIMASSORB 944LD, CHIMASSORB 119FL (all manufactured by BASF); ADK STAB LA-57, ADK STAB LA-62, ADK STAB LA-67, ADK STAB LA-63, ADK STAB LA-68 (all manufactured by ADEKA Corporation); SANOL LS-2626, SANOL LS-1114, SANOL LS-744 (all manufactured by Sankyo Lifetech Co., Ltd.); and NOCRAC CD (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) can also be used.
- antioxidants such as SONGNOX 4120, Nauguard 445, and OKABEST CLX050 can also be used. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
- the amount of antioxidant used is preferably 0.1 to 10 parts by weight, and more preferably 0.2 to 5 parts by weight, per 100 parts by weight of reactive silicon group-containing organic polymer (A).
- the curable composition according to the present disclosure may contain a light stabilizer.
- a light stabilizer can prevent photo-oxidative deterioration of the cured product.
- Examples of light stabilizers include benzotriazole-based, hindered amine-based, and benzoate-based compounds, with hindered amine-based compounds being particularly preferred. Specific examples of light stabilizers are also described in JP-A-9-194731.
- the amount of light stabilizer used is preferably 0.1 to 10 parts by weight, and more preferably 0.2 to 5 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- a photocurable substance is blended with the curable composition according to the present disclosure, particularly when an unsaturated acrylic compound is used, it is preferable to use a tertiary amine-containing hindered amine-based light stabilizer as the hindered amine-based light stabilizer in order to improve the storage stability of the composition, as described in JP-A-5-70531.
- tertiary amine-containing hindered amine-based light stabilizers include TINUVIN 123, TINUVIN 144, TINUVIN 249, TINUVIN 292, TINUVIN 312, TINUVIN 622LD, TINUVIN 765, TINUVIN 770, TINUVIN 880, TINUVIN 5866, TINUVIN B97, CHIMASSORB 119FL, and CHIMASSORB 944LD (all manufactured by BASF); ADK STAB LA-57, LA-62, LA-63, LA-67, and LA-68 (all manufactured by BASF).
- Examples of light stabilizers include SANOL LS-292, LS-2626, LS-765, LS-744, LS-1114 (all manufactured by Sankyo Lifetech Co., Ltd.), SABOSTAB UV91, SABOSTAB UV119, SONGSORB CS5100, SONGSORB CS622, SONGSORB CS944 (all manufactured by SONGWON), and NOCRAC CD (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.).
- the curable composition according to the present disclosure may contain an ultraviolet absorber.
- an ultraviolet absorber can improve the surface weather resistance of the cured product.
- ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, triazine-based, substituted acrylonitrile-based, and metal chelate-based compounds, with benzotriazole-based compounds being particularly preferred.
- triazine compounds examples include TINUVIN 400, TINUVIN 405, TINUVIN 477, and TINUVIN 1577ED (all manufactured by BASF); SONGSORB CS400 and SONGSORB 1577 (manufactured by SONGWON).
- benzophenone compounds examples include SONGSORB 8100 (manufactured by SONGWON).
- the amount of UV absorber used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A). It is preferable to use a phenol or hindered phenol antioxidant in combination with a hindered amine light stabilizer and a benzotriazole UV absorber.
- Addworks IBC760 (manufactured by Clariant) can also be used as a product that contains a mixture of antioxidants, light stabilizers, and UV absorbers.
- the curable composition according to the present disclosure may contain an epoxy resin.
- a composition containing an epoxy resin is particularly preferred as an adhesive, particularly as an adhesive for exterior wall tiles.
- epoxy resins include bisphenol A type epoxy resins and novolac type epoxy resins.
- the ratio of organic polymer (A) to epoxy resin is not particularly limited, but it is preferable that the weight ratio of organic polymer (A)/epoxy resin is in the range of 100/1 to 1/100.
- the curable composition according to the present disclosure is preferably used in combination with a curing agent that cures the epoxy resin.
- a curing agent that cures the epoxy resin.
- the epoxy resin curing agent there are no particular limitations on the epoxy resin curing agent that can be used, and any commonly used epoxy resin curing agent can be used.
- the amount used is preferably in the range of 0.1 to 300 parts by weight per 100 parts by weight of the epoxy resin.
- the curable composition according to the present disclosure may contain various additives as necessary for the purpose of adjusting the various physical properties of the curable composition or the cured product.
- additives include flame retardants, curability regulators, radical inhibitors, metal deactivators, antiozone agents, phosphorus-based peroxide decomposers, lubricants, pigments, foaming agents, solvents, and antifungal agents.
- flame retardants include aluminum hydroxide and magnesium hydroxide.
- additives other than those listed in this specification are described in, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-64-22904, and JP-A-2001-72854.
- the curable composition according to the present disclosure can be prepared as a one-component curable composition in which all ingredients are mixed in advance, sealed, and stored, and then cured by moisture in the air after application. It is also possible to prepare a two-component curable composition in which a curing agent containing ingredients such as a curing catalyst, filler, plasticizer, and water is prepared separately from a base agent containing a reactive silicon group-containing organic polymer (A), and the base agent and curing agent are mixed together before use.
- a curing agent containing ingredients such as a curing catalyst, filler, plasticizer, and water
- the curable composition When the curable composition is of one component type, all the ingredients are mixed in advance, so it is preferable to dehydrate the ingredients containing water before use, or to dehydrate them by reducing pressure during mixing.
- the curable composition When the curable composition is of two component type, there is no need to mix a curing catalyst into the base agent containing the reactive silicon group-containing organic polymer (A), so even if the ingredients contain a small amount of water, there is little risk of gelation, but it is preferable to dehydrate them when long-term storage stability is required.
- a dehydration method a heat drying method is suitable for solid substances such as powders, and a reduced pressure dehydration method or a dehydration method using synthetic zeolite, activated alumina, silica gel, etc. is suitable for liquid substances.
- an isocyanate compound may be mixed to react the isocyanate group with water to dehydrate it.
- storage stability can be further improved by adding lower alcohols such as methanol and ethanol; or alkoxysilane compounds such as methyltrimethoxysilane, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, phenyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, and ⁇ -glycidoxypropyltrimethoxysilane.
- partially condensed silane compounds such as Evonik's Dynasylan 6490 can also be used preferably from the standpoint of safety and stability.
- the amount of the dehydrating agent, particularly a silicon compound that can react with water such as vinyltrimethoxysilane, is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, per 100 parts by weight of the reactive silicon group-containing organic polymer (A).
- the curable composition according to the present disclosure can be used as a construction sealant, industrial adhesive, waterproof coating, adhesive raw material, etc. It can also be used as a sealant for buildings, ships, automobiles, roads, etc. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, and resin moldings, either alone or with the aid of a primer, it can also be used as various types of sealing compositions and adhesive compositions. In addition to being used as a normal adhesive, it can also be used as a contact adhesive. It is also useful as a food packaging material, cast rubber material, molding material, and paint.
- a curing catalyst (B) and a silane compound (C) having a molecular weight of 100 to 1500 and having a hydrolyzable silicon group and an amino group comprising:
- the curing catalyst (B) is a compound having an amidine structure (b1e) represented by the general formula (2) or an ammonium hydroxide compound (b1f) represented by the general formula (3),
- the method for producing a curable composition includes a step of mixing the organic polymer (A) and the curing catalyst (B) to obtain an intermediate mixture, and then mixing the intermediate mixture with the silane compound (C).
- [Item 2] 2. The method for producing a curable composition according to item 1, wherein the main chain structure of the organic polymer (A) contains a polyoxyalkylene polymer, a saturated hydrocarbon polymer, or a (meth)acrylic acid ester polymer. [Item 3] 3. The method for producing a curable composition according to item 2, wherein the main chain structure of the organic polymer (A) contains a polyoxyalkylene polymer. [Item 4] 4. The method for producing a curable composition according to any one of items 1 to 3, wherein a in the general formula (1) represents 3. [Item 5] 5. The method for producing a curable composition according to any one of items 1 to 4, wherein d in the general formula (4) is 0 or an integer of 1 to 3.
- Item 9 Item 9. The method for producing a curable composition according to item 8, further comprising the step of mixing the organic polymer (A) and the curing catalyst (B) to obtain an intermediate mixture, and then adding and mixing the silane compound (D).
- the content of the silane compound (C) is 1 to 8 parts by weight based on 100 parts by weight of the organic polymer (A).
- the number average molecular weight in the examples is a GPC molecular weight measured under the following conditions.
- Liquid delivery system Tosoh HLC-8120GPC Column: Tosoh TSKgel Super H series Solvent: THF Molecular weight: polystyrene equivalent Measurement temperature: 40°C
- the average number of silyl groups per terminal or per molecule of the polymer shown in the examples was calculated by H-NMR (measured in CDCl 3 solvent using AVANCE III HD-500 manufactured by Bruker).
- Unreacted allyl chloride was removed by volatilization under reduced pressure.
- 100 parts by weight of the obtained unpurified allyl-terminated polypropylene oxide were mixed and stirred with 300 parts by weight of n-hexane and 300 parts by weight of water, and the water was removed by centrifugation.
- the obtained hexane solution was further mixed and stirred with 300 parts by weight of water, and the water was removed again by centrifugation, and the hexane was removed by volatilization under reduced pressure.
- a bifunctional polypropylene oxide having an allyl group at the end and a number average molecular weight of about 28,500 was obtained.
- trimethoxysilyl-terminated polyoxypropylene (A-1) 100 parts by weight of the obtained allyl-terminated polypropylene oxide was reacted with 0.8 molar equivalent of trimethoxysilane relative to the allyl groups of the allyl-terminated polypropylene oxide at 90° C. for 5 hours using 150 ppm of a 2-propanol solution of a platinum vinylsiloxane complex with a platinum content of 3 wt % as a catalyst to obtain trimethoxysilyl-terminated polyoxypropylene (A-1).
- the number of trimethoxysilyl groups per polymer chain end was about 0.8.
- trimethoxysilyl-terminated polyoxypropylene (A-2) The number of trimethoxysilyl groups per polymer chain end was about 0.9.
- Example 1 To 100 parts by weight of the organic polymer (A-1) having a reactive silicon group, colloidal calcium carbonate (Shiraishi Calcium Co., Ltd., product name: Hakuenka CCR), heavy calcium carbonate (Shiraishi Calcium Co., Ltd., product name: Whiten SB), plasticizer (BASF Corporation, product name: Hexamoll DINCH), pigment (Ishihara Sangyo Kaisha, Ltd., product name: Typen R820), thixotropic agent (ARKEMA Corporation, product name: Crayvallac SLT), antioxidant (BASF Corporation, product name: Irganox 1010), ultraviolet absorber (BASF Corporation, product name: Tinuvin 326), and light stabilizer (BASF Corporation, product name: Tinuvin 770) were added in the amounts (parts by weight) shown in Table 1, respectively, and mixed using a spatula, and then the mixture was passed through a three-roll mill three times to be dispersed.
- colloidal calcium carbonate Shiraishi Calcium Co.,
- Tyzor KE-6 titanium diisobutoxybis(ethylacetoacetate), manufactured by Dorf Ketal
- DBU amidine structure-containing compound (b1e): 1,8-diazabicyclo[5.4.0]-7-undecene, manufactured by Tokyo Chemical Industry Co., Ltd.
- Dynasylan AMMO silane compound (C): ⁇ -aminopropyltrimethoxysilane, manufactured by Evonik
- Example 2 A curable composition was obtained in the same manner as in Example 1, except that the order of adding and mixing Tyzor KE-6 and DBU was reversed, and DBU (amidine structure-containing compound (b1e)) was added and mixed, and then Tyzor KE-6 (titanium compound (b2)) was added and mixed.
- DBU amidine structure-containing compound (b1e)
- Tyzor KE-6 titanium compound (b2)
- Example 3 A curable composition was obtained in the same manner as in Example 1, except that Tyzor KE-6 (titanium compound (b2)) and DBU (amidine structure-containing compound (b1e)) were added separately and then mixed, rather than adding and mixing Tyzor KE-6 and then mixing DBU.
- Tyzor KE-6 titanium compound (b2)
- DBU amidine structure-containing compound (b1e)
- Example 4 A curable composition was obtained in the same manner as in Example 1 except that Tyzor KE-6 (titanium compound (b2)) and DBU (amidine structure-containing compound (b1e)) were first added to the base material and then mixed, and then Dynasylan VTMO (silane compound (D)) was added and mixed, and finally Dynasylan AMMO (silane compound (C)) was added and mixed.
- Tyzor KE-6 titanium compound (b2)
- DBU amidine structure-containing compound (b1e)
- Example 1 A curable composition was obtained in the same manner as in Example 1, except that first, Dynasylan VTMO (silane compound (D)) was added to the base material and mixed, then Dynasylan AMMO (silane compound (C)) was added and mixed, then Tyzor KE-6 (titanium compound (b2)) was added and mixed, and finally, DBU (amidine structure-containing compound (b1e)) was added and mixed.
- Dynasylan VTMO silane compound (D)
- Dynasylan AMMO silane compound (silane compound (C)
- Tyzor KE-6 titanium compound (b2)
- DBU amidine structure-containing compound (b1e)
- Example 2 A curable composition was obtained in the same manner as in Example 1, except that Dynasylan VTMO (silane compound (D)) was first added to the base material and mixed, then Dynasylan AMMO (silane compound (C)) was added and mixed, then DBU (amidine structure-containing compound (b1e)) was added and mixed, and finally Tyzor KE-6 (titanium compound (b2)) was added and mixed.
- Dynasylan VTMO silane compound (D)
- Dynasylan AMMO silane compound (silane compound (C)
- DBU amidine structure-containing compound (b1e)
- Tyzor KE-6 titanium compound (b2)
- Example 3 A curable composition was obtained in the same manner as in Example 1, except that Dynasylan VTMO (silane compound (D)), Dynasylan AMMO (silane compound (C)), DBU (amidine structure-containing compound (b1e)), and Tyzor KE-6 (titanium compound (b2)) were each added to the base material and then mixed together.
- Dynasylan VTMO silane compound (D)
- Dynasylan AMMO silane compound (s)
- DBU amidine structure-containing compound (b1e)
- Tyzor KE-6 titanium compound (b2)
- Example 5 A curable composition was obtained in the same manner as in Example 1, except that the amount of DBU (amidine structure-containing compound (b1e)) or Dynasylan AMMO (silane compound (C)) was changed, and the skinning time (curability) was measured in the same manner. The results are shown in Table 2.
- DBU amidine structure-containing compound (b1e)
- Dynasylan AMMO silane compound (C)
- Example 10 to 13 A curable composition was obtained in the same manner as in Example 1, except that a titanium compound shown in Table 3 (details of each compound are given below) was used as the titanium compound (b2) instead of Tyzor KE-6, and the skinning time (curability) was measured in the same manner. The results are shown in Table 3.
- Ti(OBu) 4 titanium tetrabutoxide, manufactured by Tokyo Chemical Industry Co., Ltd.
- Tyzor 9000 titanium tetratertiary butoxide, manufactured by Dorf Ketal Ti(O i Pr) 4 : titanium tetraisopropoxide, manufactured by Tokyo Chemical Industry Co., Ltd.
- TC-750 titanium diisopropoxybis(ethylacetoacetate), manufactured by Matsumoto Fine Chemical Co., Ltd.
- Comparative Examples 4 to 8 As the titanium compound (b2), a titanium compound shown in Table 3 was used instead of Tyzor KE-6, and further, in Comparative Example 8, the amount of Dynasylan AMMO (silane compound (C)) was changed. In the same manner as in Comparative Example 1, a curable composition was obtained, and the skinning time (curability) was measured in the same manner. The results are shown in Table 3.
- Example 14 to 17 A curable composition was obtained in the same manner as in Example 1, except that DBN (1,5-diazabicyclo[4.3.0]-5-nonene, manufactured by San-Apro Co., Ltd.) was used instead of DBU as the amidine structure-containing compound (b1e), and a compound shown in Table 4 was used as the titanium compound (b2). The skinning time (curability) was measured in the same manner. The results are shown in Table 4.
- Example 18 to 21 A curable composition was obtained in the same manner as in Example 1, except that 2 parts by weight of TBAOH (ammonium hydroxide compound (b1f): 37% methanol solution of tetrabutylammonium hydroxide, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of DBU (amidine structure-containing compound (b1e)) and a titanium compound (b2) shown in Table 5 was used, and the skinning time (curability) was measured in the same manner. The results are shown in Table 5.
- TBAOH ammonium hydroxide compound (b1f): 37% methanol solution of tetrabutylammonium hydroxide, manufactured by Tokyo Chemical Industry Co., Ltd.
- DBU amidine structure-containing compound (b1e)
- a titanium compound (b2) shown in Table 5 was used, and the skinning time (curability) was measured in the same manner. The results are shown in Table 5.
- Example 22 to 24 A curable composition was obtained in the same manner as in Example 1, except that 1 part by weight of TBAOH (ammonium hydroxide compound (b1f)) was used instead of DBU (amidine structure-containing compound (b1e)) and a titanium compound (b2) shown in Table 6 was used, and the skinning time (curability) was measured in the same manner. The results are shown in Table 6.
- TBAOH ammonium hydroxide compound (b1f)
- DBU amidine structure-containing compound (b1e)
- a titanium compound (b2) shown in Table 6 was used, and the skinning time (curability) was measured in the same manner. The results are shown in Table 6.
- Example 25 A curable composition was obtained in the same manner as in Example 1, except that the organic polymer (A-2) was used instead of the organic polymer (A-1), and the skinning time (curability) was measured in the same manner. The results are shown in Table 7.
- Comparative Example 20 A curable composition was obtained in the same manner as in Comparative Example 1, except that the organic polymer (A-2) was used instead of the organic polymer (A-1), and the skinning time (curability) was measured in the same manner. The results are shown in Table 7.
- Dynasylan VTMO was added as the silane compound (D) and mixed.
- the titanium compound (b2) was added and mixed, and then the amidine structure-containing compound (b1e) or the ammonium hydroxide compound (b1f) was added and mixed.
- Dynasylan AMMO was added as the silane compound (C) and mixed, and then the mixture was filled into a cartridge, which is a moisture-proof container, to obtain a one-component curable composition.
- each curable composition was formed into a sheet using a spatula on a cardboard board, and the surface was smoothed. After 7 days, the surface of the curable composition was touched with a fingertip to confirm whether or not the liquid compound derived from DBU had bled onto the surface of the cured product.
- Table 8 The results are shown in Table 8.
- Each curable composition was filled into a sheet-shaped mold having a thickness of 3 mm under constant temperature and humidity conditions of 23° C. and 50% relative humidity. After curing for 3 days at 23° C. and 50% RH, the composition was aged in a dryer at 50° C. for 4 days to obtain a sheet-shaped cured product. The resulting cured product was punched out into a No. 3 dumbbell shape in accordance with JIS K 6251, and a tensile test was carried out using an autograph (tensile speed: 200 mm/min) to measure the stress at 50% elongation, stress at 100% elongation, stress at break, and elongation at break. The results are shown in Table 8.
- Example 28 70 parts by weight of an organic polymer (A-1) having a reactive silicon group, 4 parts by weight of Ancamine K54 (2,4,6-tris(dimethylaminomethyl)phenol, manufactured by Evonik) as an epoxy resin curing agent, 1 part by weight of Dynasylan VTMO as a silane compound (D), 1 part by weight of DBU as an amidine structure-containing compound (b1e), and 2 parts by weight of TC-750 as a titanium compound (b2) were mixed, and finally, 2 parts by weight of Dynasylan AMMO as a silane compound (C) was mixed to obtain agent A.
- Ancamine K54 2,4,6-tris(dimethylaminomethyl)phenol, manufactured by Evonik
- Agent B was obtained by mixing 30 parts by weight of jER828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) as epoxy resin (D) and 0.5 parts by weight of water. After thoroughly mixing the components A and B, the skinning time (curing property) was measured by the method described above. The results are shown in Table 9.
- Example 29 100 parts by weight of the organic polymer (A-1) having a reactive silicon group, 1 part by weight of Dynasylan VTMO, 1 part by weight of DBU, and 2 parts by weight of TC-750 were mixed, and finally 2 parts by weight of Dynasylan AMMO were mixed to obtain agent A.
- Agent B was obtained by mixing 30 parts by weight of Acclaim 12200 (a polyether polyol plasticizer, manufactured by Covestro) as a plasticizer and 0.5 parts by weight of water.
- the skinning time (curing property) was measured in the same manner as in Example 28. The results are shown in Table 9.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
式:-SiR1 3-aXaで表わされる反応性ケイ素基を有する有機重合体(A)、硬化触媒(B)、及び、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する硬化性組成物の製造方法。硬化触媒(B)が、式:R2N=CR3-NR4 2で表されるアミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)と、式:Ti(OR9)dY4-dで表されるチタン化合物又はその縮合体(b2)とを含む。前記製造方法が、有機重合体(A)と硬化触媒(B)を混合して中間混合物を得た後、該中間混合物とシラン化合物(C)を混合する工程、を含む。
Description
本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋を形成し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を有する有機重合体を含む硬化性組成物の製造方法に関する。
反応性ケイ素基を有する有機重合体は、室温においても湿分等によるシリル基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状硬化物が得られるという性質を有することが知られている。このような反応性ケイ素基を有する有機重合体は既に工業的に生産され、シーリング材、接着剤、塗料、防水材などの用途に広く使用されている。
短時間で硬化反応を進行させるため、反応性ケイ素基を有する有機重合体を含有する硬化性組成物には、通常、ジブチル錫ビス(アセチルアセトナート)に代表される、炭素-錫結合を有する有機錫化合物などの硬化触媒(シラノール縮合触媒ともいう)が配合されている。しかし、環境に対する安全性の観点から、有機錫化合物の使用には注意が必要である。
このため、有機錫化合物以外の硬化触媒が検討されている。特許文献1では、反応性ケイ素基を有する有機重合体に対する硬化触媒として、チタニウムアルコキドやチタニウムキレート化合物等のチタン化合物と、DBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)等のアミン化合物を併用することが記載されている。該文献の段落[0220]では、反応性ケイ素基を有する有機重合体に対し、チタン化合物とアミン化合物をそれぞれ添加した後、一括して混合することが記載されている。
また、特許文献2では、硬化触媒として、チタンアルコキシドとアンモニウムヒドロキシドの併用が記載されている。該文献の段落[0070]でも、各成分を配合し、一括して混錬して組成物を調製したことが記載されている。
一方、反応性ケイ素基を有する有機重合体を含む硬化性組成物に対して、加水分解性ケイ素基と、アミノ基やビニル基等の反応性基とを有する低分子量シラン化合物(いわゆるシランカップリング剤)を配合することで、各種被着体に対する接着性や、貯蔵安定性を改善することが知られている。
特許文献1又は2で開示されているチタン化合物とアミン化合物を含む硬化触媒を、アミノ基含有低分子量シラン化合物と併用した硬化性組成物においては、硬化性が低下する傾向があり、硬化するまでに長時間を要する傾向があった。
このような硬化性の低下を回避するため、アミノ基含有シラン化合物の配合量を削減することは考えられるが、削減してしまうと、アミノ基含有シラン化合物の目的とする物性(例えば接着性)が不十分となる。
そのため、アミノ基含有シラン化合物の配合量を削減せずに硬化性を改善することが求められる。
このような硬化性の低下を回避するため、アミノ基含有シラン化合物の配合量を削減することは考えられるが、削減してしまうと、アミノ基含有シラン化合物の目的とする物性(例えば接着性)が不十分となる。
そのため、アミノ基含有シラン化合物の配合量を削減せずに硬化性を改善することが求められる。
本発明は、上記現状に鑑み、反応性ケイ素基含有有機重合体、チタン化合物とアミン化合物を含む硬化触媒、及びアミノ基含有シラン化合物を含む硬化性組成物において硬化性の改善が可能な、硬化性組成物の製造方法を提供することを目的とする。
本発明者は、前記課題を解決するために鋭意検討した結果、反応性ケイ素基含有有機重合体にチタン化合物、アミン化合物、及びアミノ基含有シラン化合物をそれぞれ添加した後に一括して混合するのではなく、まず、反応性ケイ素基含有有機重合体とチタン化合物とアミン化合物を混合した後に、アミノ基含有シラン化合物を添加し混合することで、硬化性組成物の硬化性が改善されることを見いだし、本発明を完成するに至った。
すなわち本発明は、下記一般式(1):
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表わされる反応性ケイ素基を有する有機重合体(A)、硬化触媒(B)、及び、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する硬化性組成物の製造方法であって、
前記硬化触媒(B)が、下記一般式(2):
R2N=CR3-NR4 2 (2)
(式中、R2、R3、及びR4は、同一又は異なって、水素原子、又は、置換若しくは非置換の炭素数1~20の炭化水素基を表す。2つのR4は同じでもよく、異なっていてもよい。R2、R3、及び、2つのR4のうち任意の2つ以上が結合して環状構造を形成していてもよい。)
で表されるアミジン構造含有化合物(b1e)又は下記一般式(3):
(式中、R5、R6、R7、及びR8は、同一又は異なって、置換又は非置換の炭素数1~10の炭化水素基を表す。)
で表されるアンモニウムヒドロキシド化合物(b1f)と、
下記一般式(4):
Ti(OR9)dY4-d (4)
(式中、R9は、置換又は非置換の炭素数1~20の炭化水素基を表す。Yは、キレート配位化合物を表す。dは、0、又は、1~4の整数を示す。)
で表されるチタン化合物又はその縮合体(b2)とを含み、
前記製造方法が、前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、該中間混合物と前記シラン化合物(C)を混合する工程、を含む、硬化性組成物の製造方法に関する。
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表わされる反応性ケイ素基を有する有機重合体(A)、硬化触媒(B)、及び、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する硬化性組成物の製造方法であって、
前記硬化触媒(B)が、下記一般式(2):
R2N=CR3-NR4 2 (2)
(式中、R2、R3、及びR4は、同一又は異なって、水素原子、又は、置換若しくは非置換の炭素数1~20の炭化水素基を表す。2つのR4は同じでもよく、異なっていてもよい。R2、R3、及び、2つのR4のうち任意の2つ以上が結合して環状構造を形成していてもよい。)
で表されるアミジン構造含有化合物(b1e)又は下記一般式(3):
(式中、R5、R6、R7、及びR8は、同一又は異なって、置換又は非置換の炭素数1~10の炭化水素基を表す。)
で表されるアンモニウムヒドロキシド化合物(b1f)と、
下記一般式(4):
Ti(OR9)dY4-d (4)
(式中、R9は、置換又は非置換の炭素数1~20の炭化水素基を表す。Yは、キレート配位化合物を表す。dは、0、又は、1~4の整数を示す。)
で表されるチタン化合物又はその縮合体(b2)とを含み、
前記製造方法が、前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、該中間混合物と前記シラン化合物(C)を混合する工程、を含む、硬化性組成物の製造方法に関する。
本発明によると、反応性ケイ素基含有有機重合体、チタン化合物とアミン化合物を含む硬化触媒、及びアミノ基含有シラン化合物を含む硬化性組成物において硬化性の改善が可能な、硬化性組成物の製造方法を提供することができる。
本発明の好適な態様によると、アミノ基含有シラン化合物の配合量を削減しなくても、良好な硬化性を示す硬化性組成物を得ることができる。アミノ基含有シラン化合物をより多く配合することができ、それによって、良好な硬化性と、アミノ基含有シラン化合物の目的とする物性(例えば接着性)とを両立することができる。
本発明の一態様によると、貯蔵による硬化遅延や増粘の進行が抑制され、良好な貯蔵安定性を示す硬化性組成物を提供することができる。
また、本発明の一態様によると、接着性が良好な硬化性組成物を提供することができる。
さらに、本発明の一態様によると、硬化によって得られた硬化物表面における配合物のブリードアウトが抑制された硬化性組成物を提供することができる。
さらにまた、本発明の一態様によると、硬化後に良好な引張物性を示す硬化性組成物を提供することができる。
また、本発明の一態様によると、接着性が良好な硬化性組成物を提供することができる。
さらに、本発明の一態様によると、硬化によって得られた硬化物表面における配合物のブリードアウトが抑制された硬化性組成物を提供することができる。
さらにまた、本発明の一態様によると、硬化後に良好な引張物性を示す硬化性組成物を提供することができる。
以下、本発明の実施形態を詳細に説明する。
(反応性ケイ素基含有有機重合体(A))
反応性ケイ素基含有有機重合体(A)は、重合体骨格(主鎖構造ともいう)と、該重合体骨格に結合した高分子鎖末端を有する。前記重合体骨格は、複数のモノマーが重合や縮合などにより結合して複数のモノマー単位が連続して形成された構造のことである。モノマーは1種類であってもよいし、複数種類が混在して結合してもよい。
反応性ケイ素基含有有機重合体(A)は、重合体骨格(主鎖構造ともいう)と、該重合体骨格に結合した高分子鎖末端を有する。前記重合体骨格は、複数のモノマーが重合や縮合などにより結合して複数のモノマー単位が連続して形成された構造のことである。モノマーは1種類であってもよいし、複数種類が混在して結合してもよい。
前記高分子鎖末端とは、反応性ケイ素基含有有機重合体(A)の末端に位置する部位を指す。反応性ケイ素基含有有機重合体(A)の高分子鎖末端の数は、重合体骨格が全て直鎖状の場合、2となり、重合体骨格が全て分岐鎖状の場合、3又はそれ以上となる。また、重合体骨格が直鎖状と分岐鎖状の混合物である場合には、平均して2と3の間の数値にもなり得る。
有機重合体(A)が有する反応性ケイ素基は、重合体骨格中および/または高分子鎖末端中に存在しうる。また、1つの高分子鎖末端中に2個以上の反応性ケイ素基が存在することもある。本開示に係る硬化性組成物を接着剤、シーリング材、弾性コーティング剤や粘着剤等に使用する場合には、前記反応性ケイ素基は、有機重合体(A)の高分子鎖末端中に含まれることが好ましい。
有機重合体(A)は、以下の一般式(1)で表される反応性ケイ素基を有する。
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
一般式(1)中のR1としては、例えば、メチル基、エチル基などのアルキル基;クロロメチル基、メトキシメチル基、3,3,3-トリフルオロプロピルなどのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基;R0がメチル基、フェニル基等であるR0
3SiO-で示されるトリオルガノシロキシ基等が挙げられる。好ましくはアルキル基、又は、ヘテロ含有基を有するアルキル基であり、より好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、さらに好ましくは、メチル基、エチル基であり、特に好ましくは、メチル基である。R1が複数存在する場合、それらは互いに同一であってもよいし、異なっていてもよい。
一般式(1)中のXは、水酸基または加水分解性基を表す。加水分解性基としては、特に限定されず、公知の加水分解性基であってよく、例えば、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられる。これらの中では、アルコキシ基、アシルオキシ基、ケトキシメート基、およびアルケニルオキシ基が好ましい。加水分解性が穏やかで取扱いやすいことから、アルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。Xが複数存在する場合、それらは互いに同一であってもよいし、異なっていてもよい。
aは1、2、または3である。aは、2または3であることが好ましい。硬化性がより良好となる観点から、aは、3であることが特に好ましい。
一般式(1)で表される反応性ケイ素基としては特に限定されないが、例えば、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、ジメトキシフェニルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、および(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられる。これらの中では、ジメトキシメチルシリル基、トリメトキシシリル基が、合成が容易であることから好ましい。トリメトキシシリル基、メトキシメチルジメトキシシリル基は、高い硬化性が得られることから好ましい。トリメトキシシリル基、トリエトキシシリル基は、高復元率や低吸水率を示す硬化物が得られることから好ましい。
(反応性ケイ素基含有有機重合体(A)の主鎖構造)
反応性ケイ素基含有有機重合体(A)の主鎖構造(重合体骨格ともいう)は、特に制限はなく、各種の主鎖構造を使用することができる。具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリルなどの(メタ)アクリル酸エステル系単量体をラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系単量体、酢酸ビニル、アクリロニトリル、スチレンなどの単量体をラジカル重合して得られるビニル系共重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体、ジアリルフタレート系重合体等が挙げられる。なお、上記記載において、(メタ)アクリルとは、アクリルおよび/またはメタクリルを表す。
反応性ケイ素基含有有機重合体(A)の主鎖構造(重合体骨格ともいう)は、特に制限はなく、各種の主鎖構造を使用することができる。具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリルなどの(メタ)アクリル酸エステル系単量体をラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系単量体、酢酸ビニル、アクリロニトリル、スチレンなどの単量体をラジカル重合して得られるビニル系共重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体、ジアリルフタレート系重合体等が挙げられる。なお、上記記載において、(メタ)アクリルとは、アクリルおよび/またはメタクリルを表す。
これらのうち、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体、ポリオキシアルキレン系重合体、及び、(メタ)アクリル酸エステル系重合体は、比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。これらのうち1種類のみを使用してもよいし、2種類以上を併用してもよい。
ポリオキシアルキレン系重合体、及び、(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型硬化性組成物にした場合に深部硬化性に優れ、更に接着性にも優れることから特に好ましい。ポリオキシアルキレン系重合体がより好ましく、ポリオキシプロピレンがさらに好ましい。
(メタ)アクリル酸エステル系重合体は、重合体を構成するモノマー組成を様々に組み合わせることで、接着性を向上させたり、耐熱性、耐候性を向上させたり、硬化性組成物を硬化させて得られる硬化物の吸水性を低くするなどの効果を得られることから有用である。
ポリオキシアルキレン系重合体は、-R-O-(式中、Rは、炭素数1~14の直鎖状又は分岐鎖状のアルキレン基である)で示される繰り返し単位を有する重合体であることが好ましい。Rは、炭素数2~4の直鎖状又は分岐鎖状のアルキレン基であることがより好ましい。-R-O-で示される繰り返し単位の具体例としては、-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH(C2H5)O-、-CH2C(CH3)(CH3)O-、-CH2CH2CH2CH2O-などが挙げられる。ポリオキシアルキレン系重合体の主鎖構造は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。
特に、本開示に係る硬化性組成物をシーラント、接着剤等に使用する場合、オキシプロピレン繰り返し単位を、重合体主鎖構造の50重量%以上、より好ましくは80重量%以上有するポリオキシプロピレン系重合体が、非晶質であることや比較的低粘度であることから好ましい。
ポリオキシアルキレン系重合体の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。分岐鎖を有する場合、分岐鎖数は1~6個(すなわち、末端水酸基数は3~8個)が好ましく、分岐鎖数が1~4個(すなわち、末端水酸基数が3~6個)がより好ましく、分岐鎖数が1個(すなわち、末端水酸基数が3個)が、最も好ましい。分岐鎖を有することで、硬化物の復元性が向上する効果を得ることができる。また、硬化物の吸水性を低くする効果も期待できる。分岐鎖を有し、かつ反応性ケイ素基がトリメトキシシリル基である場合には、特に吸水率が低い硬化物を得ることができる。
ポリオキシアルキレン系重合体は、開始剤の存在下、重合触媒を用いて、環状エーテル化合物の開環重合反応により得られるものが好ましい。
環状エーテル化合物としては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラメチレンオキシド、テトラヒドロフランなどが挙げられる。これら環状エーテル化合物は1種のみを使用してもよく、2種以上を組合せて用いてもよい。環状エーテル化合物のなかでは、非晶質で比較的低粘度なポリエーテル重合体が得られることから、特にプロピレンオキシドを用いることが好ましい。
開始剤としては、具体的には、ブタノール、エチレングリコール、プロピレングリコール、プロピレングリコールモノアルキルエーテル、ブタンジオール、ヘキサメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、グリセリン、トリメチロールメタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどのアルコール類;数平均分子量が300~4,000である水酸基末端ポリオキシアルキレン系重合体、例えば、ポリオキシプロピレンジオール、ポリオキシプロピレントリオール、ポリオキシエチレンジオール、ポリオキシエチレントリオールなどが挙げられる。
ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒による重合法、特公昭46-27250号、特公昭59-15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10-273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11-060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等、が挙げられ、特に限定されない。製造コストや、分子量分布の狭い重合体が得られることなどの理由から、複合金属シアン化物錯体触媒による重合法がより好ましい。
反応性ケイ素基含有有機重合体(A)としては、発明の効果を大きく損なわない範囲で、主鎖構造中にウレタン結合、ウレア結合などの他の結合を含むポリオキシアルキレン系重合体を用いてもよい。このような重合体の具体例としては、ポリウレタンプレポリマーが挙げられる。
ポリウレタンプレポリマーは、公知の方法により得ることが可能であり、例えば、ポリオール化合物とポリイソシアネート化合物とを反応させて得ることができる。
ポリオール化合物としては、具体的には、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリエステルポリオールなどが挙げられる。
ポリイソシアネート化合物としては、具体的には、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、メチレン-ビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートなどが挙げられる。
なお、ポリウレタンプレポリマーは、末端が水酸基、イソシアネート基のいずれのものであってもよい。
なお、ポリウレタンプレポリマーは、末端が水酸基、イソシアネート基のいずれのものであってもよい。
貯蔵安定性や作業性に優れた硬化性組成物を得るという点から、反応性ケイ素基含有有機重合体(A)は、主鎖構造中にウレタン結合、ウレア結合、エステル結合、および、アミド結合を含まないポリオキシアルキレン系重合体であることが特に好ましい。
反応性ケイ素基含有有機重合体(A)は、下記(a)から(d)のいずれかの方法により反応性ケイ素基を重合体に導入して得ることが好ましい。
(a)水酸基末端有機重合体の末端水酸基を炭素-炭素不飽和基に変換した後、HSiR1 3-aXa(式中、R1、X、及びaは、一般式(1)に関して示した各基と同じ)を反応させる方法。
(a)水酸基末端有機重合体の末端水酸基を炭素-炭素不飽和基に変換した後、HSiR1 3-aXa(式中、R1、X、及びaは、一般式(1)に関して示した各基と同じ)を反応させる方法。
(b)水酸基末端有機重合体の末端水酸基に、OCN-W-SiR1
3-aXa(式中、Wは、二価の有機基。R1、X、及びaは、一般式(1)に関して示した各基と同じ)で表わされるイソシアネート基含有シラン化合物を反応させる方法。
(c)水酸基末端有機重合体の末端水酸基を炭素-炭素不飽和基に変換した後、HS-W-SiR1
3-aXa(式中、Wは、二価の有機基。R1、X、及びaは、一般式(1)に関して示した各基と同じ)で表されるメルカプト基含有シラン化合物を反応させる方法。
(d)水酸基末端有機重合体をポリイソシアネート化合物と反応させてNCO基末端有機重合体を合成した後、HNR-W-SiR1
3-aXa(式中、Wは、二価の有機基。Rは、水素またはアルキル基。R1、X、及びaは、一般式(1)に関して示した各基と同じ)またはHS-W-SiR1
3-aXa(式中、Wは、二価の有機基。R1、X、及びaは、一般式(1)に関して示した各基と同じ)で表されるシラン化合物を反応させる方法。
前記(a)および(c)の方法において、末端の炭素-炭素不飽和基としては、ビニル基、アリル基、メタリル基、アレニル基、プロパルギル基などが例示できる。
前記の各方法において、Wがメチレン基で表されるシラン化合物を用いて得られる反応性ケイ素基含有有機重合体(A)は、非常に高い硬化性を示す点で好ましい。
(a)の方法は、貯蔵安定性が良好である反応性ケイ素基含有有機重合体(A)が得られる傾向があり好ましい。(b)、(c)および(d)の方法は、比較的短い反応時間で高い転化率が得られることから好ましい。
(a)の方法による反応性ケイ素基の導入については、特公昭45-36319号、同46-12154号、特開昭50-156599号、同54-6096号、同55-13767号、同55-13468号、同57-164123号、特公平3-2450号、米国特許3632557号、米国特許4345053号、米国特許4366307号、米国特許4960844号等の各公報に提案されているもの、また特開昭61-197631号、同61-215622号、同61-215623号、同61-218632号の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシプロピレン重合体にヒドロシリル化等により反応性ケイ素基を導入するものや、特開平3-72527号に提案されているものが例示できる。
反応性ケイ素基含有有機重合体(A)の分子量分布(Mw/Mn)は、特に限定されないが、1.6以下であることが好ましく、1.5以下がより好ましく、1.4以下が特に好ましい。また、硬化物の耐久性や伸びを向上させる等、各種機械的物性を向上させる観点からは、1.2以下が好ましい。
反応性ケイ素基含有有機重合体(A)の数平均分子量は、GPCにおけるポリスチレン換算分子量として、3,000~100,000であることが好ましく、5,000~50,000がより好ましく、8,000~35,000が特に好ましい。数平均分子量がこれらの範囲内であると、硬化物の機械的物性に優れ、また、反応性ケイ素基の導入量が適度であることにより、製造コストを適度な範囲内に抑えつつ、良好な硬化性を示し、かつ、扱いやすい粘度を有し作業性に優れる有機重合体(A)を得ることができる。
反応性ケイ素基含有有機重合体(A)の分子量は、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたヨウ素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基分子量で示すこともできる。有機重合体(A)の末端基換算分子量は、重合体前駆体の一般的なGPC測定により求めた数平均分子量と上記末端基換算分子量の検量線を作成し、有機重合体(A)のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。
良好なゴム状硬化物を得るためには、有機重合体(A)が有する反応性ケイ素基は、高分子鎖末端中に存在することが好ましい。良好な硬化性を示し、かつゴム弾性挙動を発現しやすいことから、反応性ケイ素基の数は、有機重合体(A)の高分子鎖末端あたり平均して0.5個以上であることが好ましく、0.6個以上がより好ましく、0.7個以上がさらに好ましく、0.8個以上が特に好ましい。
有機重合体(A)1分子あたりの高分子鎖末端の数は、2~8個であることが好ましく、2~4個がより好ましく、2個または3個が特に好ましい。
有機重合体(A)1分子中の反応性ケイ素基の数は、平均して1~7個であることが好ましく、1~3.4個がより好ましく、1~2.6個が特に好ましい。
有機重合体(A)1分子中の反応性ケイ素基の数は、平均して1~7個であることが好ましく、1~3.4個がより好ましく、1~2.6個が特に好ましい。
反応性ケイ素基含有有機重合体(A)が分岐鎖状である場合、反応性ケイ素基は、有機重合体の主鎖の末端、側鎖(分岐鎖)の末端、その両方のいずれにあってもよい。特に、反応性ケイ素基が主鎖の末端にあるときは、架橋点間分子量が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなることから好ましい。
国際公開第2013/180203号に記載のように、1つの高分子鎖末端に2個以上の炭素-炭素不飽和結合を有する有機重合体を用いて、前記方法(a)、(c)によって得られる有機重合体(A)は、1つの高分子鎖末端に2個以上の反応性ケイ素基を有する。このような有機重合体(A)は高い硬化性を示し、得られる硬化物が高い強度や高い復元性を有することを期待できる。
反応性ケイ素基含有有機重合体(A)の具体的な製品例として、株式会社カネカの、カネカMSポリマーまたはカネカサイリルの商標名の各種反応性ケイ素基含有ポリオキシプロピレン製品、カネカTAポリマーまたはカネカXMAPなどの反応性ケイ素基含有ポリ(メタ)アクリル酸エステル、カネカEPIONなどの反応性ケイ素基含有ポリイソブチレンなどが挙げられる。
(硬化触媒(B))
本開示に係る硬化性組成物は、有機重合体(A)が有する反応性ケイ素基を加水分解・縮合させて硬化物を形成するために使用される硬化触媒(B)を含有する。
硬化触媒(B)は、アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)と、チタン化合物又はその縮合体(b2)とを含む。硬化触媒(B)において、(b1e)又は(b1f)と(b2)は、互いから独立して存在していてもよい。また、硬化触媒(B)は、両成分の混合物であってよいし、両成分の複合体であってもよい。
本開示に係る硬化性組成物は、有機重合体(A)が有する反応性ケイ素基を加水分解・縮合させて硬化物を形成するために使用される硬化触媒(B)を含有する。
硬化触媒(B)は、アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)と、チタン化合物又はその縮合体(b2)とを含む。硬化触媒(B)において、(b1e)又は(b1f)と(b2)は、互いから独立して存在していてもよい。また、硬化触媒(B)は、両成分の混合物であってよいし、両成分の複合体であってもよい。
(アミジン構造含有化合物(b1e))
アミジン構造含有化合物(b1e)は、下記一般式(2)で表すことができる。
R2N=CR3-NR4 2 (2)
(式中、R2、R3、及びR4は、同一又は異なって、水素原子、又は、置換若しくは非置換の炭素数1~20の炭化水素基を表す。2つのR4は同じでもよく、異なっていてもよい。R2、R3、及び、2つのR4のうち任意の2つ以上が結合して環状構造を形成していてもよい。)
アミジン構造含有化合物(b1e)は、下記一般式(2)で表すことができる。
R2N=CR3-NR4 2 (2)
(式中、R2、R3、及びR4は、同一又は異なって、水素原子、又は、置換若しくは非置換の炭素数1~20の炭化水素基を表す。2つのR4は同じでもよく、異なっていてもよい。R2、R3、及び、2つのR4のうち任意の2つ以上が結合して環状構造を形成していてもよい。)
R2は、前記硬化性組成物の硬化性を高めることから、水素原子または炭素数1~20の炭化水素基であることが好ましく、窒素原子に隣接する炭素原子(α位の炭素原子)が不飽和結合を有さない炭化水素基であることがより好ましい。R2の炭素数は、入手が容易なことから、1~10が好ましく、1~6がより好ましい。
R3は、前記硬化性組成物の硬化性を高めることから、水素原子または-NR10
2で示される有機基であることが好ましく、-NR10
2で示される有機基であることがより好ましい。但し、2個のR10は、それぞれ独立に、水素原子または炭素数1~20の有機基を表す。この場合、一般式(2)で表される化合物は、グアニジン化合物と呼ばれる。
また、R3は、得られる硬化物の物性が良好なことから、-NR11-C(=NR12)-NR13
2、または、-N=C(NR14
2)-NR15
2で示される有機基であることが好ましい。但し、R11、R12および2個のR13は、それぞれ独立に、水素原子または炭素数1~6の有機基を表す。2個のR14および2個のR15は、それぞれ独立に、水素原子または炭素数1~6の有機基を表す。この場合、一般式(2)で表される化合物は、ビグアニド化合物と呼ばれる。
一般式(2)中の2個のR4は、入手が容易なこと、及び、前記硬化性組成物の硬化性を高めることから、水素原子または炭素数1~20の炭化水素基を表すことが好ましく、水素原子または炭素数1~10の炭化水素基を表すことがより好ましい。
前記アミジン構造含有化合物に含まれる炭素数は、2以上であることが好ましく、6以上であることがより好ましく、7以上であることが特に好ましい。前記炭素数の上限については特に限定されないが、10,000以下が好ましい。
また、前記アミジン構造含有化合物の分子量は、60以上であることが好ましく、120以上がより好ましく、130以上が特に好ましい。前記分子量の上限については特に限定されないが、100,000以下が好ましい。
アミジン構造含有化合物(b1e)としては特に限定されないが、例えば、ピリミジン、2-アミノピリミジン、6-アミノ-2,4-ジメチルピリミジン、2-アミノ-4,6-ジメチルピリミジン、1,4,5,6-テトラヒドロピリミジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-エチル-2-メチル-1,4,5,6-テトラヒドロピリミジン、1,2-ジエチル-1,4,5,6-テトラヒドロピリミジン、1-n-プロピル-2-メチル-1,4,5,6-テトラヒドロピリミジン、2-ヒドロキシ-4,6-ジメチルピリミジン、1,3-ジアザナフタレン、2-ヒドロキシ-4-アミノピリミジンなどのピリミジン化合物;
2-イミダゾリン、2-メチル-2-イミダゾリン、2-エチル-2-イミダゾリン、2-プロピル-2-イミダゾリン、2-ビニル-2-イミダゾリン、1-(2-ヒドロキシエチル)-2-メチル-2-イミダゾリン、1,3-ジメチル-2-イミノイミダゾリジン、1-メチル-2-イミノイミダゾリジン-4-オンなどのイミダゾリン化合物;
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、2,9-ジアザビシクロ[4.3.0]ノナ-1,3,5,7-テトラエン、6-(ジブチルアミノ)-1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBA-DBU)などのアミジン化合物;
グアニジン、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、1,1-ジメチルグアニジン、1,3-ジメチルグアニジン、1,2-ジフェニルグアニジン、1,1,2-トリメチルグアニジン、1,2,3-トリメチルグアニジン、1,1,3,3-テトラメチルグアニジン、1,1,2,3,3-ペンタメチルグアニジン、2-エチル-1,1,3,3-テトラメチルグアニジン、1,1,3,3-テトラメチル-2-n-プロピルグアニジン、1,1,3,3-テトラメチル-2-イソプロピルグアニジン、2-n-ブチル-1,1,3,3-テトラメチルグアニジン、2-tert-ブチル-1,1,3,3-テトラメチルグアニジン、1,2,3-トリシクロヘキシルグアニジン、1-ベンジル-2,3-ジメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-エチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-プロピル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-イソプロピル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-ブチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-シクロヘキシル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-オクチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンなどのグアニジン化合物;
ビグアニド、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-(2-エチルヘキシル)ビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド、1-モルホリノビグアニド、1-n-ブチル-N2-エチルビグアニド、1,1’-エチレンビスビグアニド、1,5-エチレンビグアニド、1-[3-(ジエチルアミノ)プロピル]ビグアニド、1-[3-(ジブチルアミノ)プロピル]ビグアニド、N’,N’’-ジヘキシル-3,12-ジイミノ-2,4,11,13-テトラアザテトラデカンジアミジンなどのビグアニド化合物;等が挙げられる。アミジン構造含有化合物(b1e)としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
2-イミダゾリン、2-メチル-2-イミダゾリン、2-エチル-2-イミダゾリン、2-プロピル-2-イミダゾリン、2-ビニル-2-イミダゾリン、1-(2-ヒドロキシエチル)-2-メチル-2-イミダゾリン、1,3-ジメチル-2-イミノイミダゾリジン、1-メチル-2-イミノイミダゾリジン-4-オンなどのイミダゾリン化合物;
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、2,9-ジアザビシクロ[4.3.0]ノナ-1,3,5,7-テトラエン、6-(ジブチルアミノ)-1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBA-DBU)などのアミジン化合物;
グアニジン、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、1,1-ジメチルグアニジン、1,3-ジメチルグアニジン、1,2-ジフェニルグアニジン、1,1,2-トリメチルグアニジン、1,2,3-トリメチルグアニジン、1,1,3,3-テトラメチルグアニジン、1,1,2,3,3-ペンタメチルグアニジン、2-エチル-1,1,3,3-テトラメチルグアニジン、1,1,3,3-テトラメチル-2-n-プロピルグアニジン、1,1,3,3-テトラメチル-2-イソプロピルグアニジン、2-n-ブチル-1,1,3,3-テトラメチルグアニジン、2-tert-ブチル-1,1,3,3-テトラメチルグアニジン、1,2,3-トリシクロヘキシルグアニジン、1-ベンジル-2,3-ジメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-エチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-プロピル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-イソプロピル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-ブチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-シクロヘキシル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-オクチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンなどのグアニジン化合物;
ビグアニド、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-(2-エチルヘキシル)ビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド、1-モルホリノビグアニド、1-n-ブチル-N2-エチルビグアニド、1,1’-エチレンビスビグアニド、1,5-エチレンビグアニド、1-[3-(ジエチルアミノ)プロピル]ビグアニド、1-[3-(ジブチルアミノ)プロピル]ビグアニド、N’,N’’-ジヘキシル-3,12-ジイミノ-2,4,11,13-テトラアザテトラデカンジアミジンなどのビグアニド化合物;等が挙げられる。アミジン構造含有化合物(b1e)としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
アミジン構造含有化合物(b1e)は、硬化性がより良好になることから、アミジン化合物又はグアニジン化合物であることが好ましく、DBU、DBA-DBU、DBN、又はフェニルグアニジンがより好ましく、DBU、DBA-DBU、又はDBNがさらに好ましく、DBU、又はDBNが特に好ましい。
(アンモニウムヒドロキシド化合物(b1f))
アンモニウムヒドロキシド化合物(b1f)は、下記一般式(3)で表すことができる。
アンモニウムヒドロキシド化合物(b1f)は、下記一般式(3)で表すことができる。
(式中、R5、R6、R7、及びR8は、同一又は異なって、置換又は非置換の炭素数1~10の炭化水素基を表す。)
R5、R6、R7、及びR8はそれぞれ、前記式(3)中に示した窒素原子に結合している。
R5、R6、R7、及びR8で示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族系又は芳香族系の炭化水素基であることが好ましく、脂肪族系炭化水素基がより好ましい。脂肪族系炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~8であることが好ましく、1~6がより好ましく、1~4がさらに好ましい。
R5、R6、R7、及びR8で示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族系又は芳香族系の炭化水素基であることが好ましく、脂肪族系炭化水素基がより好ましい。脂肪族系炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~8であることが好ましく、1~6がより好ましく、1~4がさらに好ましい。
前記脂肪族系炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などの飽和炭化水素基、ビニル基、アリル基、プレニル基、クロチル基、シクロペンタジエニル基などの不飽和炭化水素基が挙げられ、メチル基、エチル基、ブチル基が好ましい。
前記芳香族系炭化水素基としては、例えば、フェニル基、トリル基、ベンジル基などが挙げられる。
前記芳香族系炭化水素基としては、例えば、フェニル基、トリル基、ベンジル基などが挙げられる。
前記炭化水素基が有していてもよい置換基としては、メトキシ基、エトキシ基、水酸基、アセトキシ基などが挙げられる。置換基を有する前記炭化水素基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基、ヒドロキシメチル基、ヒドロキシエチル基、3-ヒドロキシプロピル基などのヒドロキシアルキル基、2-アセトキシエチル基などが挙げられる。
前記一般式(3)で表されるアンモニウムヒドロキシドの具体例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリス(2-ヒドロキシエチル)メチルアンモニウムヒドロキシドなどが挙げられる。特に、テトラアルキルアンモニウムヒドロキシドが好ましく、テトラブチルアンモニウムヒドロキシドがより好ましい。アンモニウムヒドロキシドとしては1種類のみを使用してもよいし、2種類以上を併用してもよい。
(チタン化合物又はその縮合体(b2))
チタン化合物(b2)は、下記一般式(4)で表される。
Ti(OR9)dY4-d (4)
(式中、R9は、置換又は非置換の炭素数1~20の炭化水素基を表す。Yは、キレート配位化合物を表す。dは、0、又は、1~4の整数を示す。)
チタン化合物(b2)は、下記一般式(4)で表される。
Ti(OR9)dY4-d (4)
(式中、R9は、置換又は非置換の炭素数1~20の炭化水素基を表す。Yは、キレート配位化合物を表す。dは、0、又は、1~4の整数を示す。)
前記一般式(4)で表されるチタン化合物の縮合体も(b2)として使用することができる。当該縮合体はチタン化合物に水を添加し反応させることで得ることができる。より良好な硬化性を示すため、(b2)は、チタン化合物の縮合体であることが好ましい。また、チタン化合物とチタン化合物の縮合体を併用してもよい。
R9で示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族系又は芳香族系の炭化水素基であることが好ましく、脂肪族系炭化水素基が好ましい。脂肪族系炭化水素基としては、飽和又は不飽和炭化水素基が挙げられる。飽和炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~10であることが好ましく、1~6がより好ましく、1~4がさらに好ましい。
R9で示される炭化水素基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2-エチルヘキシル、ノニル、デシル等が挙げられる。前記炭化水素基が有していてもよい置換基としては、メトキシ基、エトキシ基、水酸基、アセトキシ基などが挙げられる。R9が複数存在する場合、それらは互いに同一であってもよいし、異なっていてもよい。
Yで示されるキレート配位化合物としては、チタンに配位することが知られている公知の化合物であってよい。特に限定されないが、例えば、2,4-ペンタンジオン、2,4-ヘキサンジオン、2,4-ペンタデカンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1-フェニル-1,3-ブタンジオン、1-(4-メトキシフェニル)-1,3-ブタンジオン等の1-アリール-1,3-ブタンジオン、1,3-ジフェニル-1,3-プロパンジオン、1,3-ビス(2-ピリジル)-1,3-プロパンジオン、1,3-ビス(4-メトキシフェニル)-1,3-プロパンジオン等の1,3-ジアリール-1,3-プロパンジオン、3-ベンジル-2,4-ペンタンジオン等のジケトン類;メチルアセトアセテート、エチルアセトアセテート、ブチルアセトアセテート、t-ブチルアセトアセテート、エチル3-オキソヘキサノエート等のケトエステル類;N,N-ジメチルアセトアセタミド、N,N-ジエチルアセトアセタミド、アセトアセトアニリド等のケトアミド類;ジメチルマロネート、ジエチルマロネート、ジフェニルマロネート等のマロン酸エステル類;N,N,N',N'-テトラメチルマロンアミド、N,N,N',N'-テトラエチルマロンアミド等のマロン酸アミド類が挙げられる。中でも、ジケトン類、ケトエステル類が好ましい。Yが複数存在する場合、それらは互いに同一であってもよいし、異なっていてもよい。
dは、0、又は、1~4の整数を示す。本開示に係る硬化性組成物がより良好な硬化性を示し、また、硬化後に大きな伸びを示し得るため、dは、0、又は、1~3の整数を示すことが好ましく、1~3の整数を示すことがより好ましく、2を示すことが特に好ましい。
一般式(4)で表されるチタン化合物又はその縮合体の具体例としては、テトラメトキシチタン、トリメトキシエトキシシチタン、トリメトキシイソプロポキシチタン、トリメトキシブトキシチタン、ジメトキシジエトキシチタン、ジメトキシジイソプロポキシチタン、ジメトキシジブトキシチタン、メトキシトリエトキシチタン、メトキシトリイソプロポキシチタン、メトキシトリブトキシチタン、テトラエトキシチタン、トリエトキシイソプロポキシチタン、トリエトキシブトキシチタン、ジエトキシジイソプロポキシチタン、ジエトキシジブトキシチタン、エトキシトリイソプロポキシチタン、エトキシトリブトキシチタン、テトライソプロポキシチタン、トリイソプロポキシブトキシチタン、ジイソプロポキシジブトキシチタン、テトラブトキシチタン、テトラtert-ブトキシチタン、ジイソプロポキシチタンビス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトアセテート)、ジイソブトキシチタンビス(エチルアセトアセテート);テトラブトキシチタンダイマー、テトラブトキシチタンテトラマー等のチタンアルコキシドの縮合体などが挙げられる。チタン化合物又はその縮合体としては1種類のみを使用してもよいし、2種類以上を併用してもよい。
良好な硬化性が得られ、硬化後に大きな伸びを示し得るため、一般式(4)で表されるチタン化合物は、Yで示されるキレート配位化合物を含む化合物であることが好ましく、具体的には、ジイソプロポキシチタンビス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトアセテート)、ジイソブトキシチタンビス(エチルアセトアセテート)が特に好ましい。
本開示に係る硬化性組成物において、硬化触媒(B)の含有量は、所望の硬化性に応じて適宜決定することができるが、例えば、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部程度であって良く、0.5~15重量部が好ましく、0.75~10重量部がより好ましく、1~8重量部がさらに好ましい。
本開示に係る硬化性組成物に含まれるアミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)の量は、前記範囲内で適宜調節できるが、(b1e)又は(b1f)のブリードアウト抑制効果がより良好になるため、反応性ケイ素基含有有機重合体(A)100重量部に対して、2重量部以下であることが好ましく、1重量部以下がより好ましく、0.7重量部以下がさらに好ましい。また、(b1e)又は(b1f)の量の下限は、硬化性の観点から、0.1重量部以上であることが好ましく、0.3重量部以上がより好ましく、0.4重量部以上がさらに好ましく、0.5重量部以上が特に好ましい。
硬化触媒(B)に使用するアミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)とチタン化合物又はその縮合体(b2)との比率は適宜設定することができるが、(b2)/(b1e)又は(b2)/(b1f)の重量比が、例えば、0.1~20程度であってよく、0.5~15であることが好ましく、0.8~12がより好ましく、1.0~10がさらに好ましい。硬化性を改善する効果が特に優れていることから、前記重量比の上限値は、9以下であることが好ましく、6以下がより好ましく、5以下がさらに好ましく、4以下が特に好ましい。また、(b1e)又は(b1f)のブリードアウト抑制効果がより良好になるため、前記重量比の下限は、1.5以上であることが好ましく、2以上がより好ましく、2.6以上がさらに好ましい。
本開示に係る硬化性組成物は、硬化触媒(B)以外の硬化触媒を含有してもよい。そのような硬化触媒としては、例えば、有機錫化合物、カルボン酸金属塩、(b1e)及び(b1f)以外のアミン化合物、カルボン酸、チタン化合物又はその縮合体(b2)以外の金属アルコキシド、無機酸などが挙げられる。
硬化触媒(B)以外の硬化触媒の含有量は特に限定されず、適宜設定して良いが、例えば、反応性ケイ素基含有有機重合体(A)100重量部に対して、0~10重量部であってよく、また、0~5重量部、あるいは、0~3重量部、あるいは、0~1重量部であってもよい。特に有機錫化合物は、環境に対する安全性の観点から、使用量は少ないほうが好ましく、0~1重量部であることが好ましく、0~0.1重量部がより好ましい。
(アミノ基含有シラン化合物(C)、アミノ基非含有シラン化合物(D))
本開示に係る硬化性組成物は、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する。また、加水分解性ケイ素基を有し、アミノ基を有しない分子量100~1500のシラン化合物(D)をさらに含有してもよい。これらシラン化合物は、シランカップリング剤とも言われる化合物である。
本開示に係る硬化性組成物は、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する。また、加水分解性ケイ素基を有し、アミノ基を有しない分子量100~1500のシラン化合物(D)をさらに含有してもよい。これらシラン化合物は、シランカップリング剤とも言われる化合物である。
シラン化合物(C)を配合することで、硬化性組成物の、各種被着体に対する接着性を改善することができる。また、シラン化合物(D)をさらに配合することで、各種被着体に対する接着性をさらに改善したり、また、硬化性組成物の貯蔵安定性を改善することができる。
アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)とチタン化合物又はその縮合体(b2)を含む硬化触媒と、アミノ基含有シラン化合物(C)とを含む硬化性組成物においては、アミノ基含有シラン化合物(C)が硬化性組成物の硬化性を低下させる大きな要因となっていることが判明した。
しかし、本開示に係る硬化性組成物の製造方法においては、有機重合体(A)と硬化触媒(B)を混合してからアミノ基含有シラン化合物(C)を混合することによって、得られる硬化性組成物の硬化性が改善され得る。よって、アミノ基含有シラン化合物(C)の配合量を削減しなくても、良好な硬化性を示す硬化性組成物を製造することができる。アミノ基含有シラン化合物(C)をより多く配合することが可能となり、良好な硬化性と接着性とを両立した硬化性組成物を製造することができる。
アミノ基含有シラン化合物(C)及びアミノ基非含有シラン化合物(D)が有する加水分解性ケイ素基とは、加水分解性基が結合したケイ素原子含有基を指し、有機重合体(A)が有する反応性ケイ素基について上述した一般的(1)で表すこともできる。
前記加水分解性ケイ素基に含まれる加水分解性基としては、特に限定されず、例えば、水素原子、ハロゲン原子、アルコキシ基、アリールオキシ基、アルケニルオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基などが挙げられる。中でも、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
アミノ基含有シラン化合物(C)又はアミノ基非含有シラン化合物(D)中のケイ素原子と結合する加水分解性基の個数は、良好な接着性を確保するために3個が好ましい場合がある。また、硬化性組成物の貯蔵安定性を確保するためには2個が良い場合がある。
前記加水分解性ケイ素基に含まれる加水分解性基としては、特に限定されず、例えば、水素原子、ハロゲン原子、アルコキシ基、アリールオキシ基、アルケニルオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基などが挙げられる。中でも、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
アミノ基含有シラン化合物(C)又はアミノ基非含有シラン化合物(D)中のケイ素原子と結合する加水分解性基の個数は、良好な接着性を確保するために3個が好ましい場合がある。また、硬化性組成物の貯蔵安定性を確保するためには2個が良い場合がある。
アミノ基含有シラン化合物(C)又はアミノ基非含有シラン化合物(D)の分子量は100以上1,500以下の範囲内であればよい。該分子量の下限は150以上であってもよい。上限は1,000以下であってもよいし、500以下であってもよい。
アミノ基含有シラン化合物(C)は、加水分解性ケイ素基と、置換又は非置換のアミノ基とを有する化合物であり、アミノシランと呼ばれることもある。従来から、反応性ケイ素基含有有機重合体を含む硬化性組成物において、接着性付与剤として使用されている。置換アミノ基が有する置換基としては、特に限定されず、例えばアルキル基、アラルキル基、アリール基などが挙げられる。
アミノ基含有シラン化合物(C)の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、N-ブチルアミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(トリメトキシシリルプロピル)アミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類を挙げることができる。また、以上で挙げたアミノ基含有シランの部分加水分解縮合物や、アミノ基含有シランと他のアルコキシシランとの部分加水分解縮合物(例えば、アミノ基含有シランとエポキシ基含有シランの反応物、アミノ基含有シランと(メタ)アクリル基含有シランの反応物)等も使用することができる。アミノ基含有シラン化合物(C)は1種類のみ使用してもよいし、2種類以上を併用してもよい。
良好な接着性を達成するためには、アミノ基含有シラン化合物(C)は、γ-アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシランであることが好ましい。加水分解性ケイ素基を部分的に縮合させてオリゴマー化させたシランカップリング剤は、安全性、安定性の点で好適に使用できる。縮合させるシランカップリング剤は単一でも複数種でもよい。オリゴマー化させたシランカップリング剤としては、Evonik社のDynasylan1146などが挙げられる。硬化性組成物の貯蔵安定性を確保するためには、γ-アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシランが好ましい。
加水分解性ケイ素基を有し、アミノ基を有しないシラン化合物(D)は、加水分解性ケイ素基と、アミノ基以外の反応性基とを有する化合物であってもよいし、加水分解性ケイ素基以外の反応性基を有しない化合物であってもよい。
アミノ基非含有シラン化合物(D)の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;
γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;
γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;
β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;
ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン等のビニル型不飽和基含有シラン類;
γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルメチルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリル型不飽和基含有シラン類;
メチルトリメトキシシラン、ジメチルジメトキシシラン、n-プロピルトリメトキシシラン、フェニルトリメトキシシラン、メチルフェニルジメトキシシラン、ジメトキシジフェニルシラン、へキシルトリメトキシシラン、1,6-ビス(トリメトキシリル)ヘキサン、(メトキシメチル)トリメトキシシラン、p-スチリルトリメトキシシラン等の反応性基非含有シラン類;
γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。アミノ基非含有シラン化合物(D)は1種類のみ使用してもよいし、2種類以上を併用してもよい。また、以上で挙げたシラン化合物の部分加水分解縮合物も使用できる。例えばEvonik社のDynasylan6490、Dynasylan6498などが挙げられる。
γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;
γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;
β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;
ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン等のビニル型不飽和基含有シラン類;
γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルメチルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリル型不飽和基含有シラン類;
メチルトリメトキシシラン、ジメチルジメトキシシラン、n-プロピルトリメトキシシラン、フェニルトリメトキシシラン、メチルフェニルジメトキシシラン、ジメトキシジフェニルシラン、へキシルトリメトキシシラン、1,6-ビス(トリメトキシリル)ヘキサン、(メトキシメチル)トリメトキシシラン、p-スチリルトリメトキシシラン等の反応性基非含有シラン類;
γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。アミノ基非含有シラン化合物(D)は1種類のみ使用してもよいし、2種類以上を併用してもよい。また、以上で挙げたシラン化合物の部分加水分解縮合物も使用できる。例えばEvonik社のDynasylan6490、Dynasylan6498などが挙げられる。
良好な接着性を達成するためには、アミノ基非含有シラン化合物(D)は、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランであることが好ましい。
良好な貯蔵安定性を達成するためには、アミノ基非含有シラン化合物(D)は、ビニルトリメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、(メトキシメチル)トリメトキシシランであることが好ましく、ビニルトリメトキシシラン、(メトキシメチル)トリメトキシシランがより好ましく、ビニルトリメトキシシランが特に好ましい。
アミノ基含有シラン化合物(C)の配合量は、特に限定されず、目的とする接着性に応じて適宜設定できるが、有機重合体(A)100重量部に対して0.1~20重量部であることが好ましく、0.5~10重量部がより好ましく、1~8重量部がさらに好ましい。
本開示に係る硬化性組成物は、各成分の混合順序を設定することによって硬化性が改善されるので、従来の硬化性組成物において硬化性を低下させる要因となっていたアミノ基含有シラン化合物(C)を多く配合することが可能となる。この観点から、アミノ基含有シラン化合物(C)の配合量は、有機重合体(A)100重量部に対して2重量部以上であることが好ましく、3重量部以上がより好ましく、4重量部以上がさらに好ましい。5重量部以上であってもよい。
アミノ基非含有シラン化合物(D)の配合量も特に限定されず、該シラン化合物(D)の目的とする物性に応じて適宜設定できるが、有機重合体(A)100重量部に対して0~20重量部であることが好ましく、0.1~10重量部がより好ましく、1~8重量部がさらに好ましい。本開示に係る硬化性組成物では、アミノ基非含有シラン化合物(D)も多く配合することが可能である。具体的には、シラン化合物(D)の配合量は、有機重合体(A)100重量部に対して3重量部以上であってよく、4重量部以上であってもよく、5重量部以上であってもよい。
さらに、アミノ基含有シラン化合物(C)及びアミノ基非含有シラン化合物(D)の総含有量は、有機重合体(A)100重量部に対して5~20重量部であることが好ましく、6~15重量部がより好ましく、7~12重量部がさらに好ましい。
(硬化性組成物の製造方法)
本開示に係る硬化性組成物は、有機重合体(A)と硬化触媒(B)を混合して中間混合物を得た後、該中間混合物とアミノ基含有シラン化合物(C)を混合することで製造できる。これにより、製造される硬化性組成物の硬化性を改善することができる。この方法によると、アミノ基含有シラン化合物(C)が配合される前に、アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)とチタン化合物又はその縮合体(b2)とが相互作用し、それによって、触媒活性が改善されると推測される。
本開示に係る硬化性組成物は、有機重合体(A)と硬化触媒(B)を混合して中間混合物を得た後、該中間混合物とアミノ基含有シラン化合物(C)を混合することで製造できる。これにより、製造される硬化性組成物の硬化性を改善することができる。この方法によると、アミノ基含有シラン化合物(C)が配合される前に、アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)とチタン化合物又はその縮合体(b2)とが相互作用し、それによって、触媒活性が改善されると推測される。
一方、各成分をそれぞれ添加した後に一括して混合する従来の方法では、チタン化合物又はその縮合体(b2)がアミノ基含有シラン化合物(C)と作用してしまい、これによって、チタン化合物又はその縮合体(b2)と、アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)間の作用が阻害されるため、触媒活性が低下すると考えられる。
有機重合体(A)と硬化触媒(B)との混合、又は、中間混合物とアミノ基含有シラン化合物(C)との混合を実施する手法は、均一な混合を実施できれば特に限定されず、従来公知の装置を用いて実施できる。また、混合時の温度は特に限定されず、常温であってよい。
硬化触媒(B)の各成分の混合順序は特に限定されず、アミジン構造含有化合物(b1e)又はアンモニウムヒドロキシド化合物(b1f)と有機重合体(A)を混合した後、チタン化合物又はその縮合体(b2)を添加し混合してもよい。また、(b2)と有機重合体(A)を混合した後、(b1e)又は(b1f)を添加し混合してもよい。また、(b1e)又は(b1f)と、(b2)の双方を有機重合体(A)に添加してから混合してもよい。特に硬化性を改善する効果に優れていることから、(b1e)又は(b1f)と(b2)を混合し、得られた混合物を有機重合体(A)に添加し混合することが好ましい。
アミノ基非含有シラン化合物(D)は、アミノ基含有シラン化合物(C)とは異なり、硬化性組成物の硬化性を低下させる要因にはなりにくい。そのため、アミノ基非含有シラン化合物(D)の混合順序は特に限定されず、有機重合体(A)とアミノ基非含有シラン化合物(D)を混合してから硬化触媒(B)を添加し混合してもよいし、有機重合体(A)と硬化触媒(B)を混合してからアミノ基非含有シラン化合物(D)を添加し混合してもよい。しかし、硬化性がより改善され得る観点から、後者の混合順序が好ましい。
後者の混合順序では、アミノ基含有シラン化合物(C)とアミノ基非含有シラン化合物(D)の混合順序も特に限定されず、中間混合物とアミノ基含有シラン化合物(C)を混合してからアミノ基非含有シラン化合物(D)を添加し混合してもよいし、中間混合物とアミノ基非含有シラン化合物(D)を混合してからアミノ基含有シラン化合物(C)を添加し混合してもよい。また、中間混合物にアミノ基含有シラン化合物(C)とアミノ基非含有シラン化合物(D)をそれぞれ添加してから混合してもよい。
また、後述するその他の配合剤を混合する順序も特に限定されず、アミノ基非含有シラン化合物(D)の場合と同様であってもよい。しかし、有機重合体(A)とその他の配合剤を混合した後に、硬化触媒(B)を混合し、さらにアミノ基含有シラン化合物(C)を混合することが好ましい。
(その他の配合剤)
本開示に係る硬化性組成物は、必要に応じて、可塑剤、充填剤、物性調整剤、タレ防止剤(チクソ性付与剤)、安定剤などを含有することができる。
本開示に係る硬化性組成物は、必要に応じて、可塑剤、充填剤、物性調整剤、タレ防止剤(チクソ性付与剤)、安定剤などを含有することができる。
本開示に係る硬化性組成物は、可塑剤を含有することができる。可塑剤の添加により、硬化性組成物の粘度やスランプ性および硬化性組成物を硬化して得られる硬化物の引張り強度、伸びなどの機械特性が調整できる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物(具体的には、商品名:EASTMAN168(EASTMAN CHEMICAL製));1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物(具体的には、商品名:Hexamoll DINCH(BASF製));アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル(具体的には、商品名:Mesamoll(LANXESS製));トリクレジルホスフェート、トリブチルホスフェートなどのリン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジルなどのエポキシ可塑剤などが挙げられる。中でも、1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの脂肪族カルボン酸エステルを用いて作製した硬化性組成物から得られる硬化物は、低吸水性を得やすく好ましい。
また、高分子可塑剤を使用することができる。高分子可塑剤を使用すると、重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持することができる。更に、該硬化物にアルキド塗料を塗付した場合の乾燥性(塗装性)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;数平均分子量500以上、更には1,000以上のポリエチレングリコールポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられるが、これらに限定されるものではない。
これらの高分子可塑剤の中では、反応性ケイ素基含有有機重合体(A)と相溶するものが好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/またはメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステル等のアクリル系重合体が更に好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法が更に好ましい。また、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温・高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。
高分子可塑剤の数平均分子量は、好ましくは500~15,000であるが、より好ましくは800~10,000であり、更に好ましくは1,000~8,000、特に好ましくは1,000~5,000である。最も好ましくは1,000~3,000である。分子量が低すぎると、熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できなくなる。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。
高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましい。1.70以下がより好ましく、1.60以下がなお好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。
高分子可塑剤の数平均分子量は、ビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定される。また、分子量分布(Mw/Mn)はGPC法(ポリスチレン換算)で測定される。
また、高分子可塑剤は、反応性ケイ素基を有していてもよいし、有していなくてもよい。反応性ケイ素基を有する場合、反応性可塑剤として作用し、硬化物からの可塑剤の移行を防止できる。反応性ケイ素基を有する場合、1分子に対し平均して1個以下、更には0.8個以下が好ましい。反応性ケイ素基を有する可塑剤、特に反応性ケイ素基を有するポリエーテル系重合体を使用する場合、その数平均分子量は、反応性ケイ素基含有有機重合体(A)より低いことが望ましい。
可塑剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して好ましくは5~150重量部、より好ましくは10~120重量部、更に好ましくは20~100重量部である。このような範囲では、硬化物の機械強度を保持しつつ、可塑剤としての効果を発現することができる。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なお、これら可塑剤は重合体製造時に配合することも可能である。
本開示に係る硬化性組成物は、充填剤を含有することができる。充填剤としては、例えば、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックのような補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末など樹脂粉末のような充填剤;石綿、ガラス繊維およびフィラメントのような繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して1~300重量部であることが好ましく、10~200重量部がより好ましい。
これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく使用できる。反応性ケイ素基含有有機重合体(A)100重量部に対し、1~200重量部の範囲で使用すれば好ましい結果を得ることができる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を反応性ケイ素基含有有機重合体(A)100重量部に対して5~200重量部の範囲で使用すれば好ましい結果を得ることができる。
本開示に係る硬化性組成物は、組成物の軽量化(低比重化)の目的で、バルーンのような球状中空体を含有することができる。
バルーンとは、球状体充填剤で内部が中空のものである。バルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、フェノール樹脂、尿素樹脂、ポリスチレン、サラン、アクリルニトリルなどの有機系の材料が挙げられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。たとえば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンをシランカップリング剤で表面処理することなどが挙げられる。
バルーンとは、球状体充填剤で内部が中空のものである。バルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、フェノール樹脂、尿素樹脂、ポリスチレン、サラン、アクリルニトリルなどの有機系の材料が挙げられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。たとえば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンをシランカップリング剤で表面処理することなどが挙げられる。
バルーンの粒径は、3~200μmであることが好ましく、特に10~110μmであることが好ましい。3μm未満では、軽量化への寄与が小さいため大量の添加が必要となり、200μm以上では、硬化したシーリング材の表面が凹凸になったり、伸びが低下する傾向がある。
球状中空体の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.01~30重量部が好ましい。下限は0.1重量部がより好ましく、上限は20重量部がより好ましい。このような範囲では、硬化物の伸びや破断強度を保持ししつつ、作業性を改善することができる。
本開示に係る硬化性組成物は、必要に応じて、硬化物の引張特性を調整する物性調整剤を含有しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、硬化性組成物を硬化させて得られる硬化物の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は、硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5-117521号公報に記載されている化合物が挙げられる。また、ヘキサノール、オクタノール、デカノールなどのアルキルアルコールの誘導体であって加水分解によりトリメチルシラノールなどのトリアルキルシラノールを生成するシリコン化合物を生成する化合物、特開平11-241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトールなどの水酸基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのトリアルキルシラノールを生成するシリコン化合物を生成する化合物が挙げられる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。
また、特開平7-258534号公報に記載されているようなオキシアルキレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのトリアルキルシラノールを生成するシリコン化合物を生成する化合物も挙げられる。さらに特開平6-279693号公報に記載されている架橋可能な加水分解性ケイ素含有基と加水分解によりモノシラノール含有化合物となり得るケイ素含有基を有する重合体を使用することもできる。
物性調整剤は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部使用することが好ましく、0.5~10重量部使用することがより好ましい。
本開示に係る硬化性組成物は、必要に応じて、タレを防止し、作業性を良くするためにタレ防止剤を含有しても良い。また、タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
タレ防止剤は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部の範囲で使用することが好ましい。
本開示に係る硬化性組成物は、酸化防止剤(老化防止剤)を含有することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。例えば、イルガノックス245,イルガノックス1010,イルガノックス1035,イルガノックス1076,イルガノックス1135,イルガノックス1330,イルガノックス1520(以上いずれもBASF製);SONGNOX1076(SONGWON製)、BHTが挙げられる。同様に、チヌビン622LD,チヌビン144,チヌビン292,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASF製);アデカスタブLA-57,アデカスタブLA-62,アデカスタブLA-67,アデカスタブLA-63,アデカスタブLA-68(以上いずれも株式会社ADEKA製);サノールLS-2626,サノールLS-1114,サノールLS-744(以上いずれも三共ライフテック株式会社製);ノクラックCD(大内新興化学工業株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。他にSONGNOX4120,ナウガード445,OKABEST CLX050などの酸化防止剤も使用できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
酸化防止剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して0.1~10重量部であることが好ましく、0.2~5重量部がより好ましい。
本開示に係る硬化性組成物は、光安定剤を含有することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の具体例は特開平9-194731号公報にも記載されている。
光安定剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して0.1~10重量部であることが好ましく、0.2~5重量部がより好ましい。
本開示に係る硬化性組成物に光硬化性物質を配合する場合、特に不飽和アクリル系化合物を用いる場合、特開平5-70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン123,チヌビン144,チヌビン249,チヌビン292,チヌビン312,チヌビン622LD,チヌビン765,チヌビン770,チヌビン880,チヌビン5866,チヌビンB97,CHIMASSORB119FL,CHIMASSORB944LD(以上いずれもBASF製);アデカスタブLA-57,LA-62,LA-63,LA-67,LA-68(以上いずれも株式会社ADEKA製);サノールLS-292,LS-2626,LS-765,LS-744,LS-1114(以上いずれも三共ライフテック株式会社製),SABOSTAB UV91,SABOSTAB UV119,SONGSORB CS5100,SONGSORB CS622,SONGSORB CS944(以上いずれもSONGWON製),ノクラックCD(大内新興化学工業株式会社製)などの光安定剤が例示できる。
本開示に係る硬化性組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、トリアジン系、置換アクリロニトリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。例えば、チヌビン234,チヌビン326,チヌビン327,チヌビン328,チヌビン329,チヌビン350,チヌビン571,チヌビン900,チヌビン928,チヌビン1130,チヌビン1600(以上いずれもBASF製);SONGSORB3290(SONGWON製)が挙げられる。また、トリアジン系化合物として、チヌビン400,チヌビン405,チヌビン477,チヌビン1577ED(以上いずれもBASF製);SONGSORB CS400,SONGSORB1577(SONGWON製)などが挙げられる。ベンゾフェノン系化合物としてSONGSORB8100(SONGWON製)などが挙げられる。
紫外線吸収剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して0.1~10重量部であることが好ましく、0.2~5重量部がより好ましい。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
酸化防止剤、光安定剤、紫外線吸収剤を混合した製品として、AddworksIBC760(Clariant製)も使用できる。
本開示に係る硬化性組成物は、エポキシ樹脂を含有することができる。エポキシ樹脂を添加した組成物は、特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
有機重合体(A)とエポキシ樹脂の使用割合は、特に限定されないが、重量比で、有機重合体(A)/エポキシ樹脂=100/1~1/100の範囲であることが好ましい。
エポキシ樹脂を配合する場合、本開示に係る硬化性組成物は、エポキシ樹脂を硬化させる硬化剤を併用することが好ましい。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。エポキシ樹脂硬化剤を使用する場合、その使用量は、エポキシ樹脂100重量部に対して0.1~300重量部の範囲であることが好ましい。
本開示に係る硬化性組成物は、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を含有してもよい。このような添加物の例としては、たとえば、難燃剤、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、溶剤、防かび剤などが挙げられる。難燃剤の例としては水酸化アルミニウム、水酸化マグネシウムなどが挙げられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書で掲載した添加物以外の具体例は、たとえば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開2001-72854号の各公報などに記載されている。
本開示に係る硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型の硬化性組成物として調製することが可能である。また、硬化触媒、充填材、可塑剤、水等の成分を配合した硬化剤と、反応性ケイ素基含有有機重合体(A)を含む主剤をそれぞれ調製し、これら主剤と硬化剤を使用前に混合する2成分型の硬化性組成物として調製することも可能である。
硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。前記硬化性組成物が2成分型の場合、反応性ケイ素基含有有機重合体(A)を含有する主剤に硬化触媒を配合する必要がないので、配合剤中には若干の水分が含有されていてもゲル化の可能生は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水乾燥方法としては、粉状などの固状物の場合は加熱乾燥法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲルなどを使用した脱水法が好適である。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。かかる脱水乾燥法に加えて、メタノール、エタノールなどの低級アルコール;メチルトリメトキシシラン、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、フェニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上し得る。脱水剤として、Evonik社のDynasylan6490などの部分的に縮合したシラン化合物なども、安全性、安定性の観点で好適に使用できる。
脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。
本開示に係る硬化性組成物は、建築用シーリング材や、工業用接着剤、防水塗膜、粘着剤原料などとして使用することができる。また、建造物、船舶、自動車、道路などの密封剤として使用することができる。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの広範囲の基材に密着し得るので、種々のタイプの密封組成物および接着組成物としても使用することができる。接着剤として通常の接着剤のほかに、コンタクト接着剤としても使用可能である。更に、食品包装材料、注型ゴム材料、型取り用材料、塗料としても有用である。
以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
[項目1]
下記一般式(1):
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表わされる反応性ケイ素基を有する有機重合体(A)、硬化触媒(B)、及び、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する硬化性組成物の製造方法であって、
前記硬化触媒(B)が、前記一般式(2)で表されるアミジン構造含有化合物(b1e)又は前記一般式(3)で表されるアンモニウムヒドロキシド化合物(b1f)と、
前記一般式(4)で表されるチタン化合物又はその縮合体(b2)とを含み、
前記製造方法が、前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、該中間混合物と前記シラン化合物(C)を混合する工程、を含む、硬化性組成物の製造方法。
[項目2]
前記有機重合体(A)の主鎖構造が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、又は、(メタ)アクリル酸エステル系重合体を含む、項目1に記載の硬化性組成物の製造方法。
[項目3]
前記有機重合体(A)の主鎖構造がポリオキシアルキレン系重合体を含む、項目2に記載の硬化性組成物の製造方法。
[項目4]
前記一般式(1)におけるaが3を示す、項目1~3のいずれか1項に記載の硬化性組成物の製造方法。
[項目5]
前記一般式(4)におけるdが、0、又は、1~3の整数を示す、項目1~4のいずれか1項に記載の硬化性組成物の製造方法。
[項目6]
前記アミジン構造含有化合物(b1e)又は前記アンモニウムヒドロキシド化合物(b1f)に対する前記チタン化合物又はその縮合体(b2)の重量比(b2)/(b1e)又は(b2)/(b1f)が1.0~10である、項目1~5のいずれか1項に記載の硬化性組成物の製造方法。
[項目7]
前記硬化触媒(B)として、前記アミジン構造含有化合物(b1e)又は前記アンモニウムヒドロキシド化合物(b1f)と、前記チタン化合物又はその縮合体(b2)との混合物を準備する工程をさらに含む、項目1~6のいずれか1項に記載の硬化性組成物の製造方法。
[項目8]
前記硬化性組成物が、加水分解性ケイ素基を有し、アミノ基を有しない分子量100~1500のシラン化合物(D)をさらに含有する、項目1~7のいずれか1項に記載の硬化性組成物の製造方法。
[項目9]
前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、前記シラン化合物(D)を添加し混合する工程をさらに含む、項目8に記載の硬化性組成物の製造方法。
[項目10]
前記シラン化合物(C)の含有量が、前記有機重合体(A)100重量部に対して1~8重量部である、項目1~9のいずれか1項に記載の硬化性組成物の製造方法。
[項目1]
下記一般式(1):
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表わされる反応性ケイ素基を有する有機重合体(A)、硬化触媒(B)、及び、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する硬化性組成物の製造方法であって、
前記硬化触媒(B)が、前記一般式(2)で表されるアミジン構造含有化合物(b1e)又は前記一般式(3)で表されるアンモニウムヒドロキシド化合物(b1f)と、
前記一般式(4)で表されるチタン化合物又はその縮合体(b2)とを含み、
前記製造方法が、前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、該中間混合物と前記シラン化合物(C)を混合する工程、を含む、硬化性組成物の製造方法。
[項目2]
前記有機重合体(A)の主鎖構造が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、又は、(メタ)アクリル酸エステル系重合体を含む、項目1に記載の硬化性組成物の製造方法。
[項目3]
前記有機重合体(A)の主鎖構造がポリオキシアルキレン系重合体を含む、項目2に記載の硬化性組成物の製造方法。
[項目4]
前記一般式(1)におけるaが3を示す、項目1~3のいずれか1項に記載の硬化性組成物の製造方法。
[項目5]
前記一般式(4)におけるdが、0、又は、1~3の整数を示す、項目1~4のいずれか1項に記載の硬化性組成物の製造方法。
[項目6]
前記アミジン構造含有化合物(b1e)又は前記アンモニウムヒドロキシド化合物(b1f)に対する前記チタン化合物又はその縮合体(b2)の重量比(b2)/(b1e)又は(b2)/(b1f)が1.0~10である、項目1~5のいずれか1項に記載の硬化性組成物の製造方法。
[項目7]
前記硬化触媒(B)として、前記アミジン構造含有化合物(b1e)又は前記アンモニウムヒドロキシド化合物(b1f)と、前記チタン化合物又はその縮合体(b2)との混合物を準備する工程をさらに含む、項目1~6のいずれか1項に記載の硬化性組成物の製造方法。
[項目8]
前記硬化性組成物が、加水分解性ケイ素基を有し、アミノ基を有しない分子量100~1500のシラン化合物(D)をさらに含有する、項目1~7のいずれか1項に記載の硬化性組成物の製造方法。
[項目9]
前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、前記シラン化合物(D)を添加し混合する工程をさらに含む、項目8に記載の硬化性組成物の製造方法。
[項目10]
前記シラン化合物(C)の含有量が、前記有機重合体(A)100重量部に対して1~8重量部である、項目1~9のいずれか1項に記載の硬化性組成物の製造方法。
以下に、具体的な実施例をあげて本発明をより詳細に説明するが、本発明は、下記実施例に限定されるものではない。
実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
送液システム:東ソー製HLC-8120GPC
カラム:東ソー製TSKgel SuperHシリーズ
溶媒:THF
分子量:ポリスチレン換算
測定温度:40℃
送液システム:東ソー製HLC-8120GPC
カラム:東ソー製TSKgel SuperHシリーズ
溶媒:THF
分子量:ポリスチレン換算
測定温度:40℃
実施例に示す重合体の末端1個あたり、または1分子あたりのシリル基の平均数は、H-NMR(ブルカー製AVANCE III HD-500を用いて、CDCl3溶媒中で測定)による測定により算出した。
<有機重合体(A)の合成>
(合成例1(A-1))
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量28,500のポリプロピレンオキシドを得た。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2モル当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリプロピレンオキシド100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基である数平均分子量約28,500の2官能ポリプロピレンオキシドを得た。得られたアリル末端ポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%の2-プロパノール溶液150ppmを触媒として、アリル末端ポリプロピレンオキシドのアリル基に対して0.8モル当量のトリメトキシシランを90℃で5時間反応させ、トリメトキシシリル基末端ポリオキシプロピレン(A-1)を得た。トリメトキシシリル基の数は高分子鎖末端あたり約0.8個であった。
(合成例1(A-1))
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量28,500のポリプロピレンオキシドを得た。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2モル当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリプロピレンオキシド100重量部に対し、n-ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基である数平均分子量約28,500の2官能ポリプロピレンオキシドを得た。得られたアリル末端ポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%の2-プロパノール溶液150ppmを触媒として、アリル末端ポリプロピレンオキシドのアリル基に対して0.8モル当量のトリメトキシシランを90℃で5時間反応させ、トリメトキシシリル基末端ポリオキシプロピレン(A-1)を得た。トリメトキシシリル基の数は高分子鎖末端あたり約0.8個であった。
(合成例2(A-2))
数平均分子量が約4,500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900のポリオキシプロピレンを得た。
得られた両末端に水酸基を有する重合体100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(3-イソシアナトプロピル)トリメトキシシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施して、トリメトキシシリル基末端ポリオキシプロピレン(A-2)を得た。トリメトキシシリル基の数は高分子鎖末端あたり約0.9個であった。
数平均分子量が約4,500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900のポリオキシプロピレンを得た。
得られた両末端に水酸基を有する重合体100重量部に対して2-エチルヘキサン酸ビスマス(III)2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(3-イソシアナトプロピル)トリメトキシシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施して、トリメトキシシリル基末端ポリオキシプロピレン(A-2)を得た。トリメトキシシリル基の数は高分子鎖末端あたり約0.9個であった。
<硬化性組成物の製造方法>
(実施例1)
反応性ケイ素基を有する有機重合体(A-1)100重量部に対して、それぞれ表1に記載の量(重量部)で、膠質炭酸カルシウム(白石工業株式会社製、商品名:白艶華CCR)、重質炭酸カルシウム(白石カルシウム株式会社製、商品名:ホワイトンSB)、可塑剤(BASF社製、商品名:Hexamoll DINCH)、顔料(石原産業株式会社製、商品名:タイペークR820)、チキソ性付与剤(ARKEMA社製、商品名:Crayvallac SLT)、酸化防止剤(BASF社製、商品名:Irganox1010)、紫外線吸収剤(BASF社製、商品名:Tinuvin326)、及び光安定剤(BASF社製、商品名:Tinuvin770)を加え、スパチュラを用いて混合した後、混合物を3本ロールミルに3回通して分散させた。この後、プラネタリーミキサーを使用して減圧脱水を行い、配合物を防湿性の容器であるカートリッジに充填し、主剤とした。
23℃、相対湿度50%の雰囲気下にて、カートリッジから主剤を押出し、プラスチック容器に計量した。該主剤に、まず、表1に記載の量で、Dynasylan VTMO(シラン化合物(D):ビニルトリメトキシシラン、Evonik製)を添加して混合した。続いて、Tyzor KE-6(チタン化合物(b2):チタンジイソブトキシビス(エチルアセトアセテート)、Dorf Ketal製)を添加して混合した後、DBU(アミジン構造含有化合物(b1e):1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、東京化成工業株式会社製)を添加して混合した。最後に、Dynasylan AMMO(シラン化合物(C):γ-アミノプロピルトリメトキシシラン、Evonik製)を添加して混合し、硬化性組成物を得た。
(実施例1)
反応性ケイ素基を有する有機重合体(A-1)100重量部に対して、それぞれ表1に記載の量(重量部)で、膠質炭酸カルシウム(白石工業株式会社製、商品名:白艶華CCR)、重質炭酸カルシウム(白石カルシウム株式会社製、商品名:ホワイトンSB)、可塑剤(BASF社製、商品名:Hexamoll DINCH)、顔料(石原産業株式会社製、商品名:タイペークR820)、チキソ性付与剤(ARKEMA社製、商品名:Crayvallac SLT)、酸化防止剤(BASF社製、商品名:Irganox1010)、紫外線吸収剤(BASF社製、商品名:Tinuvin326)、及び光安定剤(BASF社製、商品名:Tinuvin770)を加え、スパチュラを用いて混合した後、混合物を3本ロールミルに3回通して分散させた。この後、プラネタリーミキサーを使用して減圧脱水を行い、配合物を防湿性の容器であるカートリッジに充填し、主剤とした。
23℃、相対湿度50%の雰囲気下にて、カートリッジから主剤を押出し、プラスチック容器に計量した。該主剤に、まず、表1に記載の量で、Dynasylan VTMO(シラン化合物(D):ビニルトリメトキシシラン、Evonik製)を添加して混合した。続いて、Tyzor KE-6(チタン化合物(b2):チタンジイソブトキシビス(エチルアセトアセテート)、Dorf Ketal製)を添加して混合した後、DBU(アミジン構造含有化合物(b1e):1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、東京化成工業株式会社製)を添加して混合した。最後に、Dynasylan AMMO(シラン化合物(C):γ-アミノプロピルトリメトキシシラン、Evonik製)を添加して混合し、硬化性組成物を得た。
(実施例2)
Tyzor KE-6とDBUを添加して混合する順序を入れ替えて、DBU(アミジン構造含有化合物(b1e))を添加して混合した後、Tyzor KE-6(チタン化合物(b2))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
Tyzor KE-6とDBUを添加して混合する順序を入れ替えて、DBU(アミジン構造含有化合物(b1e))を添加して混合した後、Tyzor KE-6(チタン化合物(b2))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
(実施例3)
Tyzor KE-6を添加して混合した後にDBUを添加して混合するのではなく、Tyzor KE-6(チタン化合物(b2))とDBU(アミジン構造含有化合物(b1e))をそれぞれ添加した後に混合した以外は実施例1と同様にして硬化性組成物を得た。
Tyzor KE-6を添加して混合した後にDBUを添加して混合するのではなく、Tyzor KE-6(チタン化合物(b2))とDBU(アミジン構造含有化合物(b1e))をそれぞれ添加した後に混合した以外は実施例1と同様にして硬化性組成物を得た。
(実施例4)
主剤に、まず、Tyzor KE-6(チタン化合物(b2))とDBU(アミジン構造含有化合物(b1e))をそれぞれ添加した後に混合し、続いて、Dynasylan VTMO(シラン化合物(D))を添加して混合し、最後に、Dynasylan AMMO(シラン化合物(C))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
主剤に、まず、Tyzor KE-6(チタン化合物(b2))とDBU(アミジン構造含有化合物(b1e))をそれぞれ添加した後に混合し、続いて、Dynasylan VTMO(シラン化合物(D))を添加して混合し、最後に、Dynasylan AMMO(シラン化合物(C))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
(比較例1)
主剤に、まず、Dynasylan VTMO(シラン化合物(D))を添加して混合し、続いて、Dynasylan AMMO(シラン化合物(C))を添加して混合した後、Tyzor KE-6(チタン化合物(b2))を添加して混合し、最後に、DBU(アミジン構造含有化合物(b1e))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
主剤に、まず、Dynasylan VTMO(シラン化合物(D))を添加して混合し、続いて、Dynasylan AMMO(シラン化合物(C))を添加して混合した後、Tyzor KE-6(チタン化合物(b2))を添加して混合し、最後に、DBU(アミジン構造含有化合物(b1e))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
(比較例2)
主剤に、まず、Dynasylan VTMO(シラン化合物(D))を添加して混合し、続いて、Dynasylan AMMO(シラン化合物(C))を添加して混合した後、DBU(アミジン構造含有化合物(b1e))を添加して混合し、最後に、Tyzor KE-6(チタン化合物(b2))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
主剤に、まず、Dynasylan VTMO(シラン化合物(D))を添加して混合し、続いて、Dynasylan AMMO(シラン化合物(C))を添加して混合した後、DBU(アミジン構造含有化合物(b1e))を添加して混合し、最後に、Tyzor KE-6(チタン化合物(b2))を添加して混合した以外は実施例1と同様にして硬化性組成物を得た。
(比較例3)
主剤に、Dynasylan VTMO(シラン化合物(D))、Dynasylan AMMO(シラン化合物(C))、DBU(アミジン構造含有化合物(b1e))、及びTyzor KE-6(チタン化合物(b2))をそれぞれ添加した後に一括混合した以外は実施例1と同様にして硬化性組成物を得た。
主剤に、Dynasylan VTMO(シラン化合物(D))、Dynasylan AMMO(シラン化合物(C))、DBU(アミジン構造含有化合物(b1e))、及びTyzor KE-6(チタン化合物(b2))をそれぞれ添加した後に一括混合した以外は実施例1と同様にして硬化性組成物を得た。
(評価)
(皮張り時間(硬化性))
得られた硬化性組成物を厚さ約5mmの型枠にスパチュラを用いて充填し、表面を平面状に整えた時間を硬化開始時間とした。表面をスパチュラで触り、スパチュラに組成物が付着しなくなった時間を、皮張り時間(硬化性)として測定した。測定の結果を表1に示す。
(皮張り時間(硬化性))
得られた硬化性組成物を厚さ約5mmの型枠にスパチュラを用いて充填し、表面を平面状に整えた時間を硬化開始時間とした。表面をスパチュラで触り、スパチュラに組成物が付着しなくなった時間を、皮張り時間(硬化性)として測定した。測定の結果を表1に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例1~4の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例1及び2の硬化性組成物や、有機重合体(A)、硬化触媒(B)、及びシラン化合物(C)を一括混合して得た比較例3の硬化性組成物よりも、速硬化性を示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例1~4の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例1及び2の硬化性組成物や、有機重合体(A)、硬化触媒(B)、及びシラン化合物(C)を一括混合して得た比較例3の硬化性組成物よりも、速硬化性を示した。
(実施例5~9)
DBU(アミジン構造含有化合物(b1e))又はDynasylan AMMO(シラン化合物(C))の配合量を変更した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表2に示す。
DBU(アミジン構造含有化合物(b1e))又はDynasylan AMMO(シラン化合物(C))の配合量を変更した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表2に示す。
(結果)
実施例5~9の硬化性組成物はいずれも速硬化性を示した。
実施例5~9の硬化性組成物はいずれも速硬化性を示した。
(実施例10~13)
チタン化合物(b2)として、Tyzor KE-6の代わりに、表3に記載のチタン化合物(各化合物の詳細は下記のとおり)を使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表3に示す。
チタン化合物(b2)として、Tyzor KE-6の代わりに、表3に記載のチタン化合物(各化合物の詳細は下記のとおり)を使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表3に示す。
Ti(OBu)4:チタンテトラブトキシド、東京化成工業株式会社製
Tyzor 9000:チタンテトラターシャリーブトキシド、Dorf Ketal製
Ti(OiPr)4:チタンテトライソプロポキシド、東京化成工業株式会社製
TC-750:チタンジイソプロポキシビス(エチルアセトアセテート)、マツモトファインケミカム株式会社製
Tyzor 9000:チタンテトラターシャリーブトキシド、Dorf Ketal製
Ti(OiPr)4:チタンテトライソプロポキシド、東京化成工業株式会社製
TC-750:チタンジイソプロポキシビス(エチルアセトアセテート)、マツモトファインケミカム株式会社製
(比較例4~8)
チタン化合物(b2)として、Tyzor KE-6の代わりに、表3に記載のチタン化合物を使用し、さらに比較例8についてはDynasylan AMMO(シラン化合物(C))の配合量を変更した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表3に示す。
チタン化合物(b2)として、Tyzor KE-6の代わりに、表3に記載のチタン化合物を使用し、さらに比較例8についてはDynasylan AMMO(シラン化合物(C))の配合量を変更した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表3に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例10~13の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例4~8の硬化性組成物よりも、速硬化性を示した。但し、比較は、同じチタン化合物を使用した実施例と比較例との間で行うべきであり、実施例10は、比較例4よりも速硬化性を示している。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例10~13の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例4~8の硬化性組成物よりも、速硬化性を示した。但し、比較は、同じチタン化合物を使用した実施例と比較例との間で行うべきであり、実施例10は、比較例4よりも速硬化性を示している。
(実施例14~17)
アミジン構造含有化合物(b1e)として、DBUの代わりに、DBN(1,5-ジアザビシクロ[4.3.0]-5-ノネン、サンアプロ株式会社製)を使用し、チタン化合物(b2)として表4に記載のものを使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表4に示す。
アミジン構造含有化合物(b1e)として、DBUの代わりに、DBN(1,5-ジアザビシクロ[4.3.0]-5-ノネン、サンアプロ株式会社製)を使用し、チタン化合物(b2)として表4に記載のものを使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表4に示す。
(比較例9~12)
アミジン構造含有化合物(b1e)として、DBUの代わりに、DBNを使用し、チタン化合物(b2)として表4に記載のものを使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表4に示す。
アミジン構造含有化合物(b1e)として、DBUの代わりに、DBNを使用し、チタン化合物(b2)として表4に記載のものを使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表4に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例14~17の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例9~12の硬化性組成物よりも、速硬化性を示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例14~17の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例9~12の硬化性組成物よりも、速硬化性を示した。
(実施例18~21)
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f):テトラブチルアンモニウムヒドロキシドの37%メタノール溶液、東京化成工業株式会社製)2重量部を使用し、チタン化合物(b2)として表5に記載のものを使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表5に示す。
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f):テトラブチルアンモニウムヒドロキシドの37%メタノール溶液、東京化成工業株式会社製)2重量部を使用し、チタン化合物(b2)として表5に記載のものを使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表5に示す。
(比較例13~16)
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f))2重量部を使用し、チタン化合物(b2)として表5に記載のものを使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表5に示す。
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f))2重量部を使用し、チタン化合物(b2)として表5に記載のものを使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表5に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例18~21の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例13~16の硬化性組成物よりも、速硬化性を示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例18~21の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例13~16の硬化性組成物よりも、速硬化性を示した。
(実施例22~24)
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f))1重量部を使用し、チタン化合物(b2)として表6に記載のものを使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表6に示す。
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f))1重量部を使用し、チタン化合物(b2)として表6に記載のものを使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表6に示す。
(比較例17~19)
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f))1重量部を使用し、チタン化合物(b2)として表6に記載のものを使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表6に示す。
DBU(アミジン構造含有化合物(b1e))の代わりに、TBAOH(アンモニウムヒドロキシド化合物(b1f))1重量部を使用し、チタン化合物(b2)として表6に記載のものを使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表6に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例22~24の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例17~19の硬化性組成物よりも、速硬化性を示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例22~24の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例17~19の硬化性組成物よりも、速硬化性を示した。
(実施例25)
有機重合体(A-1)の代わりに、有機重合体(A-2)を使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表7に示す。
有機重合体(A-1)の代わりに、有機重合体(A-2)を使用した以外は実施例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表7に示す。
(比較例20)
有機重合体(A-1)の代わりに、有機重合体(A-2)を使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表7に示す。
有機重合体(A-1)の代わりに、有機重合体(A-2)を使用した以外は比較例1と同様にして硬化性組成物を得、同様に皮張り時間(硬化性)の測定を行った。結果を表7に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例25の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例20の硬化性組成物よりも、速硬化性を示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例25の硬化性組成物は、有機重合体(A)とシラン化合物(C)を混合した後に硬化触媒(B)を混合して得た比較例20の硬化性組成物よりも、速硬化性を示した。
(実施例26~27)
反応性ケイ素基を有する有機重合体(A-1)100重量部に対して、それぞれ表8に記載の量(重量部)で、膠質炭酸カルシウム(白艶華CCR)、重質炭酸カルシウム(ホワイトンSB)、可塑剤(Hexamoll DINCH)、顔料(タイペークR820)、チキソ性付与剤(Crayvallac SLT)、酸化防止剤(Irganox1010)、紫外線吸収剤(BASF社製、商品名:Tinuvin928)、及び光安定剤(BASF社製、商品名:Tinuvin123)を加え、スパチュラを用いて混合した後、混合物を3本ロールミルに3回通して分散させた。この後、プラネタリーミキサーを使用して減圧脱水を行い、50℃以下に冷却後、シラン化合物(D)としてDynasylan VTMOを添加して混合した。続いて、チタン化合物(b2)を添加して混合した後、アミジン構造含有化合物(b1e)またはアンモニウムヒドロキシド化合物(b1f)を添加して混合した。最後に、シラン化合物(C)としてDynasylan AMMOを添加して混合した後、防湿性の容器であるカートリッジに充填し、1成分型硬化性組成物を得た。
反応性ケイ素基を有する有機重合体(A-1)100重量部に対して、それぞれ表8に記載の量(重量部)で、膠質炭酸カルシウム(白艶華CCR)、重質炭酸カルシウム(ホワイトンSB)、可塑剤(Hexamoll DINCH)、顔料(タイペークR820)、チキソ性付与剤(Crayvallac SLT)、酸化防止剤(Irganox1010)、紫外線吸収剤(BASF社製、商品名:Tinuvin928)、及び光安定剤(BASF社製、商品名:Tinuvin123)を加え、スパチュラを用いて混合した後、混合物を3本ロールミルに3回通して分散させた。この後、プラネタリーミキサーを使用して減圧脱水を行い、50℃以下に冷却後、シラン化合物(D)としてDynasylan VTMOを添加して混合した。続いて、チタン化合物(b2)を添加して混合した後、アミジン構造含有化合物(b1e)またはアンモニウムヒドロキシド化合物(b1f)を添加して混合した。最後に、シラン化合物(C)としてDynasylan AMMOを添加して混合した後、防湿性の容器であるカートリッジに充填し、1成分型硬化性組成物を得た。
(評価)
(皮張り時間(硬化性))
各硬化性組成物を、相対湿度50%の雰囲気下にて、23℃で7日間保存した。その後、上述した方法によって、皮張り時間(硬化性)の測定を行った。得られた結果を、「貯蔵前の皮張り時間」として表8に示した。
また、前記硬化性組成物を、23℃で7日間保存後、さらに50℃で28日間保存し、23℃で1日間保存した。その後、上述した方法によって、皮張り時間(硬化性)の測定を行った。得られた結果を、「貯蔵後の皮張り時間」として表8に示した。
(皮張り時間(硬化性))
各硬化性組成物を、相対湿度50%の雰囲気下にて、23℃で7日間保存した。その後、上述した方法によって、皮張り時間(硬化性)の測定を行った。得られた結果を、「貯蔵前の皮張り時間」として表8に示した。
また、前記硬化性組成物を、23℃で7日間保存後、さらに50℃で28日間保存し、23℃で1日間保存した。その後、上述した方法によって、皮張り時間(硬化性)の測定を行った。得られた結果を、「貯蔵後の皮張り時間」として表8に示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例26~27の硬化性組成物はいずれも、良好な硬化性を示した。
(粘度)
前記硬化性組成物を、23℃で7日間保存後、23℃、相対湿度50%の雰囲気下にて、東京計器(株)製のBS型粘度計、ローターNo.7を使用して、2rpm粘度を測定した。得られた結果を、「貯蔵前の粘度」として表8に示した。
また、前記硬化性組成物を、23℃で7日間保存後、さらに50℃で28日間保存し、23℃で1日間保存した。その後、同様の方法によって、2rpm粘度を測定した。得られた結果を、「貯蔵後の粘度」として表8に示した。
前記硬化性組成物を、23℃で7日間保存後、23℃、相対湿度50%の雰囲気下にて、東京計器(株)製のBS型粘度計、ローターNo.7を使用して、2rpm粘度を測定した。得られた結果を、「貯蔵前の粘度」として表8に示した。
また、前記硬化性組成物を、23℃で7日間保存後、さらに50℃で28日間保存し、23℃で1日間保存した。その後、同様の方法によって、2rpm粘度を測定した。得られた結果を、「貯蔵後の粘度」として表8に示した。
(貯蔵安定性)
以上で得られた結果から、貯蔵前の皮張り時間に対する貯蔵後の皮張り時間の変化率(貯蔵後/貯蔵前)、および、貯蔵前の粘度に対する貯蔵後の粘度の変化率(貯蔵後/貯蔵前)を求めた。結果を表8に示す。変化率が1倍に近いほど、貯蔵安定性に優れていると言える。
以上で得られた結果から、貯蔵前の皮張り時間に対する貯蔵後の皮張り時間の変化率(貯蔵後/貯蔵前)、および、貯蔵前の粘度に対する貯蔵後の粘度の変化率(貯蔵後/貯蔵前)を求めた。結果を表8に示す。変化率が1倍に近いほど、貯蔵安定性に優れていると言える。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例26~27の硬化性組成物はいずれも、皮張り時間の変化率および粘度の変化率が1倍に近く、貯蔵による硬化遅延や増粘が実質的に生じておらず、良好な貯蔵安定性を示した。
(接着性)
表8に示す各種基材の表面に各硬化性組成物を塗布し、23℃、相対湿度50%の恒温恒湿条件下で7日間硬化させた。得られた硬化物の90°ハンドピール試験を行い、破壊状態を目視で観察した。破壊状態は、凝集破壊(硬化物部分で破壊)をCF、界面破壊(硬化物と基材との界面で剥離)をAFとした。結果を表8に示す。
表8に示す各種基材の表面に各硬化性組成物を塗布し、23℃、相対湿度50%の恒温恒湿条件下で7日間硬化させた。得られた硬化物の90°ハンドピール試験を行い、破壊状態を目視で観察した。破壊状態は、凝集破壊(硬化物部分で破壊)をCF、界面破壊(硬化物と基材との界面で剥離)をAFとした。結果を表8に示す。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例26~27の硬化性組成物はいずれも、各種基材に対して良好な接着性を示した。
(ブリード有無)
23℃、相対湿度50%の恒温恒湿条件下で、ダンボール板上に、各硬化性組成物をスパテュラでシート状にし、表面を平滑にならした。7日後に、指先で硬化性組成物の表面を触り、DBU由来の液状化合物が、硬化物表面にブリードしているか否かを確認した。結果を表8に示す。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例26~27の硬化性組成物を硬化させてなる硬化物表面ではいずれも、液状化合物のブリードが確認されなかった。
23℃、相対湿度50%の恒温恒湿条件下で、ダンボール板上に、各硬化性組成物をスパテュラでシート状にし、表面を平滑にならした。7日後に、指先で硬化性組成物の表面を触り、DBU由来の液状化合物が、硬化物表面にブリードしているか否かを確認した。結果を表8に示す。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例26~27の硬化性組成物を硬化させてなる硬化物表面ではいずれも、液状化合物のブリードが確認されなかった。
(ダンベル引張物性)
23℃、相対湿度50%の恒温恒湿条件下で、各硬化性組成物を3mm厚のシート状型枠に充填した。23℃50%RHで3日間硬化させた後、50℃乾燥機内で4日間養生し、シート状硬化物を得た。
得られた硬化物をJIS K 6251に従って3号ダンベル型に打ち抜き、オートグラフを用いて引張試験(引張速度200mm/分)を行い、50%伸張時応力、100%伸張時応力、破断時応力、及び破断時伸びを測定した。その結果を表8に示す。
23℃、相対湿度50%の恒温恒湿条件下で、各硬化性組成物を3mm厚のシート状型枠に充填した。23℃50%RHで3日間硬化させた後、50℃乾燥機内で4日間養生し、シート状硬化物を得た。
得られた硬化物をJIS K 6251に従って3号ダンベル型に打ち抜き、オートグラフを用いて引張試験(引張速度200mm/分)を行い、50%伸張時応力、100%伸張時応力、破断時応力、及び破断時伸びを測定した。その結果を表8に示す。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例26~27の硬化性組成物を硬化させてなる硬化物はいずれも、良好な引張物性を示した。
(実施例28)
反応性ケイ素基を有する有機重合体(A-1)70重量部、エポキシ樹脂硬化剤としてAncamineK54(2,4,6-トリス(ジメチルアミノメチル)フェノール、Evonik製)4重量部、シラン化合物(D)としてDynasylan VTMO1重量部、アミジン構造含有化合物(b1e)としてDBU1重量部、チタン化合物(b2)としてTC-750を2重量部混合して、最後に、シラン化合物(C)としてDynasylan AMMO2重量部混合し、A剤を得た。
エポキシ樹脂(D)としてjER828(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)30重量部、水0.5重量部を混合してB剤を得た。
A剤とB剤を十分に混合した後、上述した方法によって、皮張り時間(硬化性)の測定を行った。その結果を表9に示す。
反応性ケイ素基を有する有機重合体(A-1)70重量部、エポキシ樹脂硬化剤としてAncamineK54(2,4,6-トリス(ジメチルアミノメチル)フェノール、Evonik製)4重量部、シラン化合物(D)としてDynasylan VTMO1重量部、アミジン構造含有化合物(b1e)としてDBU1重量部、チタン化合物(b2)としてTC-750を2重量部混合して、最後に、シラン化合物(C)としてDynasylan AMMO2重量部混合し、A剤を得た。
エポキシ樹脂(D)としてjER828(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)30重量部、水0.5重量部を混合してB剤を得た。
A剤とB剤を十分に混合した後、上述した方法によって、皮張り時間(硬化性)の測定を行った。その結果を表9に示す。
(実施例29)
反応性ケイ素基を有する有機重合体(A-1)100重量部、Dynasylan VTMO1重量部、DBU1重量部、TC-750を2重量部混合して、最後にDynasylan AMMO2重量部混合し、A剤を得た。
可塑剤としてAcclaim12200(ポリエーテルポリオール可塑剤、Covestro製)30重量部、水0.5重量部を混合してB剤を得た。
実施例28と同様の方法によって、皮張り時間(硬化性)の測定を行った。その結果を表9に示す。
反応性ケイ素基を有する有機重合体(A-1)100重量部、Dynasylan VTMO1重量部、DBU1重量部、TC-750を2重量部混合して、最後にDynasylan AMMO2重量部混合し、A剤を得た。
可塑剤としてAcclaim12200(ポリエーテルポリオール可塑剤、Covestro製)30重量部、水0.5重量部を混合してB剤を得た。
実施例28と同様の方法によって、皮張り時間(硬化性)の測定を行った。その結果を表9に示す。
(結果)
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例28及び29の硬化性組成物は、速硬化性を示した。
有機重合体(A)と硬化触媒(B)を混合した後にシラン化合物(C)を混合して得た実施例28及び29の硬化性組成物は、速硬化性を示した。
Claims (10)
- 下記一般式(1):
-SiR1 3-aXa (1)
(式中、R1は、置換若しくは非置換の炭素数1~20の炭化水素基、又は、R0 3SiO-で表わされるトリオルガノシロキシ基を表す。3個のR0は、同一又は異なって、炭素数1~20の炭化水素基を表す。Xは、水酸基または加水分解性基を表す。aは、1、2、又は3を示す。R1又はXが複数存在するとき、それらは同じでもよく、異なっていてもよい。)
で表わされる反応性ケイ素基を有する有機重合体(A)、硬化触媒(B)、及び、加水分解性ケイ素基とアミノ基とを有する分子量100~1500のシラン化合物(C)を含有する硬化性組成物の製造方法であって、
前記硬化触媒(B)が、下記一般式(2):
R2N=CR3-NR4 2 (2)
(式中、R2、R3、及びR4は、同一又は異なって、水素原子、又は、置換若しくは非置換の炭素数1~20の炭化水素基を表す。2つのR4は同じでもよく、異なっていてもよい。R2、R3、及び、2つのR4のうち任意の2つ以上が結合して環状構造を形成していてもよい。)
で表されるアミジン構造含有化合物(b1e)又は下記一般式(3):
(式中、R5、R6、R7、及びR8は、同一又は異なって、置換又は非置換の炭素数1~10の炭化水素基を表す。)
で表されるアンモニウムヒドロキシド化合物(b1f)と、
下記一般式(4):
Ti(OR9)dY4-d (4)
(式中、R9は、置換又は非置換の炭素数1~20の炭化水素基を表す。Yは、キレート配位化合物を表す。dは、0、又は、1~4の整数を示す。)
で表されるチタン化合物又はその縮合体(b2)とを含み、
前記製造方法が、前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、該中間混合物と前記シラン化合物(C)を混合する工程、を含む、硬化性組成物の製造方法。 - 前記有機重合体(A)の主鎖構造が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、又は、(メタ)アクリル酸エステル系重合体を含む、請求項1に記載の硬化性組成物の製造方法。
- 前記有機重合体(A)の主鎖構造がポリオキシアルキレン系重合体を含む、請求項2に記載の硬化性組成物の製造方法。
- 前記一般式(1)におけるaが3を示す、請求項1~3のいずれか1項に記載の硬化性組成物の製造方法。
- 前記一般式(4)におけるdが、0、又は、1~3の整数を示す、請求項1~3のいずれか1項に記載の硬化性組成物の製造方法。
- 前記アミジン構造含有化合物(b1e)又は前記アンモニウムヒドロキシド化合物(b1f)に対する前記チタン化合物又はその縮合体(b2)の重量比(b2)/(b1e)又は(b2)/(b1f)が1.0~10である、請求項1~3のいずれか1項に記載の硬化性組成物の製造方法。
- 前記硬化触媒(B)として、前記アミジン構造含有化合物(b1e)又は前記アンモニウムヒドロキシド化合物(b1f)と、前記チタン化合物又はその縮合体(b2)との混合物を準備する工程をさらに含む、請求項1~3のいずれか1項に記載の硬化性組成物の製造方法。
- 前記硬化性組成物が、加水分解性ケイ素基を有し、アミノ基を有しない分子量100~1500のシラン化合物(D)をさらに含有する、請求項1~3のいずれか1項に記載の硬化性組成物の製造方法。
- 前記有機重合体(A)と前記硬化触媒(B)を混合して中間混合物を得た後、前記シラン化合物(D)を添加し混合する工程をさらに含む、請求項8に記載の硬化性組成物の製造方法。
- 前記シラン化合物(C)の含有量が、前記有機重合体(A)100重量部に対して1~8重量部である、請求項1~3のいずれか1項に記載の硬化性組成物の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023007743 | 2023-01-23 | ||
JP2023-007743 | 2023-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024157860A1 true WO2024157860A1 (ja) | 2024-08-02 |
Family
ID=91970524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/001165 WO2024157860A1 (ja) | 2023-01-23 | 2024-01-17 | 硬化性組成物の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024157860A1 (ja) |
Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
JPS4627250B1 (ja) | 1965-10-15 | 1971-08-07 | ||
US3632557A (en) | 1967-03-16 | 1972-01-04 | Union Carbide Corp | Vulcanizable silicon terminated polyurethane polymers |
JPS50156599A (ja) | 1974-06-07 | 1975-12-17 | ||
JPS546096A (en) | 1977-06-15 | 1979-01-17 | Kanegafuchi Chem Ind Co Ltd | Preparation of silyl-terminated polymer |
JPS5513468A (en) | 1978-07-17 | 1980-01-30 | Toshiba Corp | Display unit |
JPS5513767A (en) | 1978-07-18 | 1980-01-30 | Kanegafuchi Chem Ind Co Ltd | Production of polymer terminated with silyl groups |
US4345053A (en) | 1981-07-17 | 1982-08-17 | Essex Chemical Corp. | Silicon-terminated polyurethane polymer |
JPS57164123A (en) | 1981-04-02 | 1982-10-08 | Toshiba Silicone Co Ltd | Production of silicon-containing polyoxyalkylene |
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
JPS5915336B2 (ja) | 1980-10-16 | 1984-04-09 | ザ ゼネラル タイヤ アンド ラバ− カンパニ− | ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法 |
JPS61197631A (ja) | 1985-02-28 | 1986-09-01 | Kanegafuchi Chem Ind Co Ltd | 分子量分布の狭いポリアルキレンオキシドの製造方法 |
JPS61215623A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法 |
JPS61215622A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法 |
JPS61218632A (ja) | 1985-03-25 | 1986-09-29 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド |
JPS63254149A (ja) | 1987-04-13 | 1988-10-20 | Kanegafuchi Chem Ind Co Ltd | 硬化性樹脂組成物 |
JPS6422904A (en) | 1987-07-17 | 1989-01-25 | Kanegafuchi Chemical Ind | Isobutylene polymer |
JPH01241029A (ja) | 1988-03-18 | 1989-09-26 | Matsushita Electric Ind Co Ltd | 半導体レーザ駆動回路 |
JPH0273512A (ja) | 1988-09-08 | 1990-03-13 | Diafoil Co Ltd | 磁気記録媒体 |
US4960844A (en) | 1988-08-03 | 1990-10-02 | Products Research & Chemical Corporation | Silane terminated liquid polymers |
JPH032450B2 (ja) | 1986-05-30 | 1991-01-16 | Toshiba Silicone | |
JPH0372527A (ja) | 1989-05-09 | 1991-03-27 | Asahi Glass Co Ltd | ポリアルキレンオキシド誘導体の製造法 |
JPH0469659A (ja) | 1990-07-10 | 1992-03-04 | Brother Ind Ltd | 感光感圧媒体 |
JPH04283259A (ja) | 1991-03-11 | 1992-10-08 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH0570531A (ja) | 1991-09-12 | 1993-03-23 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH05117521A (ja) | 1991-10-31 | 1993-05-14 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH06722A (ja) | 1992-06-22 | 1994-01-11 | Hitachi Zosen Corp | 電解・研削加工方法 |
JPH06279693A (ja) | 1993-03-26 | 1994-10-04 | Asahi Glass Co Ltd | 新規なポリマーおよびその組成物 |
JPH07108928A (ja) | 1993-10-13 | 1995-04-25 | Ishikawajima Harima Heavy Ind Co Ltd | 台車設備 |
JPH07258534A (ja) | 1994-03-25 | 1995-10-09 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH09194731A (ja) | 1996-01-23 | 1997-07-29 | Asahi Glass Co Ltd | 硬化性組成物 |
JP2001072854A (ja) | 1999-09-01 | 2001-03-21 | Asahi Glass Co Ltd | 室温硬化性組成物 |
JP2001207157A (ja) | 2000-01-28 | 2001-07-31 | Toagosei Co Ltd | シーリング材組成物 |
WO2008084651A1 (ja) * | 2007-01-12 | 2008-07-17 | Kaneka Corporation | 硬化性組成物 |
JP2009179683A (ja) * | 2008-01-30 | 2009-08-13 | Shin Etsu Chem Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
WO2012036109A1 (ja) * | 2010-09-14 | 2012-03-22 | 株式会社カネカ | 硬化性組成物 |
WO2013180203A1 (ja) | 2012-05-31 | 2013-12-05 | 株式会社カネカ | 複数の反応性ケイ素基を有する末端構造を有する重合体、およびその製造方法および利用 |
JP2014114434A (ja) | 2012-11-14 | 2014-06-26 | Kaneka Corp | 硬化性組成物 |
WO2021106942A1 (ja) * | 2019-11-29 | 2021-06-03 | 日東化成株式会社 | 重合体の硬化に用いる硬化触媒、湿気硬化型組成物、硬化物の製造方法 |
-
2024
- 2024-01-17 WO PCT/JP2024/001165 patent/WO2024157860A1/ja active Application Filing
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3278459A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278457A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3278458A (en) | 1963-02-14 | 1966-10-11 | Gen Tire & Rubber Co | Method of making a polyether using a double metal cyanide complex compound |
US3427334A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity |
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US3427335A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same |
JPS4627250B1 (ja) | 1965-10-15 | 1971-08-07 | ||
US3632557A (en) | 1967-03-16 | 1972-01-04 | Union Carbide Corp | Vulcanizable silicon terminated polyurethane polymers |
JPS50156599A (ja) | 1974-06-07 | 1975-12-17 | ||
JPS546096A (en) | 1977-06-15 | 1979-01-17 | Kanegafuchi Chem Ind Co Ltd | Preparation of silyl-terminated polymer |
JPS5513468A (en) | 1978-07-17 | 1980-01-30 | Toshiba Corp | Display unit |
JPS5513767A (en) | 1978-07-18 | 1980-01-30 | Kanegafuchi Chem Ind Co Ltd | Production of polymer terminated with silyl groups |
JPS5915336B2 (ja) | 1980-10-16 | 1984-04-09 | ザ ゼネラル タイヤ アンド ラバ− カンパニ− | ポリプロピレンエ−テル及びポリ−1,2−ブチレンエ−テルポリオ−ル類の処理法 |
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
JPS57164123A (en) | 1981-04-02 | 1982-10-08 | Toshiba Silicone Co Ltd | Production of silicon-containing polyoxyalkylene |
US4345053A (en) | 1981-07-17 | 1982-08-17 | Essex Chemical Corp. | Silicon-terminated polyurethane polymer |
JPS61197631A (ja) | 1985-02-28 | 1986-09-01 | Kanegafuchi Chem Ind Co Ltd | 分子量分布の狭いポリアルキレンオキシドの製造方法 |
JPS61215623A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法 |
JPS61215622A (ja) | 1985-03-22 | 1986-09-25 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法 |
JPS61218632A (ja) | 1985-03-25 | 1986-09-29 | Kanegafuchi Chem Ind Co Ltd | 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド |
JPH032450B2 (ja) | 1986-05-30 | 1991-01-16 | Toshiba Silicone | |
JPS63254149A (ja) | 1987-04-13 | 1988-10-20 | Kanegafuchi Chem Ind Co Ltd | 硬化性樹脂組成物 |
JPS6422904A (en) | 1987-07-17 | 1989-01-25 | Kanegafuchi Chemical Ind | Isobutylene polymer |
JPH01241029A (ja) | 1988-03-18 | 1989-09-26 | Matsushita Electric Ind Co Ltd | 半導体レーザ駆動回路 |
US4960844A (en) | 1988-08-03 | 1990-10-02 | Products Research & Chemical Corporation | Silane terminated liquid polymers |
JPH0273512A (ja) | 1988-09-08 | 1990-03-13 | Diafoil Co Ltd | 磁気記録媒体 |
JPH0372527A (ja) | 1989-05-09 | 1991-03-27 | Asahi Glass Co Ltd | ポリアルキレンオキシド誘導体の製造法 |
JPH0469659A (ja) | 1990-07-10 | 1992-03-04 | Brother Ind Ltd | 感光感圧媒体 |
JPH04283259A (ja) | 1991-03-11 | 1992-10-08 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH0570531A (ja) | 1991-09-12 | 1993-03-23 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH05117521A (ja) | 1991-10-31 | 1993-05-14 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH06722A (ja) | 1992-06-22 | 1994-01-11 | Hitachi Zosen Corp | 電解・研削加工方法 |
JPH06279693A (ja) | 1993-03-26 | 1994-10-04 | Asahi Glass Co Ltd | 新規なポリマーおよびその組成物 |
JPH07108928A (ja) | 1993-10-13 | 1995-04-25 | Ishikawajima Harima Heavy Ind Co Ltd | 台車設備 |
JPH07258534A (ja) | 1994-03-25 | 1995-10-09 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH09194731A (ja) | 1996-01-23 | 1997-07-29 | Asahi Glass Co Ltd | 硬化性組成物 |
JP2001072854A (ja) | 1999-09-01 | 2001-03-21 | Asahi Glass Co Ltd | 室温硬化性組成物 |
JP2001207157A (ja) | 2000-01-28 | 2001-07-31 | Toagosei Co Ltd | シーリング材組成物 |
WO2008084651A1 (ja) * | 2007-01-12 | 2008-07-17 | Kaneka Corporation | 硬化性組成物 |
JP2009179683A (ja) * | 2008-01-30 | 2009-08-13 | Shin Etsu Chem Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
WO2012036109A1 (ja) * | 2010-09-14 | 2012-03-22 | 株式会社カネカ | 硬化性組成物 |
WO2013180203A1 (ja) | 2012-05-31 | 2013-12-05 | 株式会社カネカ | 複数の反応性ケイ素基を有する末端構造を有する重合体、およびその製造方法および利用 |
JP2014114434A (ja) | 2012-11-14 | 2014-06-26 | Kaneka Corp | 硬化性組成物 |
WO2021106942A1 (ja) * | 2019-11-29 | 2021-06-03 | 日東化成株式会社 | 重合体の硬化に用いる硬化触媒、湿気硬化型組成物、硬化物の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5841055B2 (ja) | 硬化性組成物 | |
JP5284796B2 (ja) | 硬化性組成物 | |
EP2634222B1 (en) | Curable composition | |
JP5284797B2 (ja) | 硬化性組成物 | |
JP6714515B2 (ja) | 硬化性組成物およびその硬化物 | |
JP2012057148A (ja) | 硬化性組成物 | |
EP2643386B1 (en) | Curable composition | |
JPWO2017111121A1 (ja) | 積層体の製造方法、および積層体 | |
WO2012036109A1 (ja) | 硬化性組成物 | |
US20090170995A1 (en) | Curable Resin Composition | |
WO2023048186A1 (ja) | 硬化性組成物 | |
WO2024029615A1 (ja) | 硬化性組成物 | |
JP6818540B2 (ja) | 硬化性組成物 | |
JP6716459B2 (ja) | 硬化性組成物およびその硬化物 | |
JP2012057150A (ja) | 硬化性組成物 | |
WO2024157860A1 (ja) | 硬化性組成物の製造方法 | |
JP2024104293A (ja) | 硬化性組成物及びその製造方法 | |
WO2025154435A1 (ja) | 硬化性組成物及びその製造方法 | |
JP2023150179A (ja) | 硬化性組成物 | |
JP2024157453A (ja) | 硬化性組成物 | |
WO2024166696A1 (ja) | 硬化性組成物、及びその製造方法 | |
JP2012107098A (ja) | 硬化性組成物 | |
WO2024203438A1 (ja) | 硬化性組成物 | |
JP2024021876A (ja) | 硬化性組成物 | |
JP2024157200A (ja) | 硬化性組成物、及び硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24747190 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024573003 Country of ref document: JP |