[go: up one dir, main page]

WO2017010159A1 - 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 - Google Patents

不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
WO2017010159A1
WO2017010159A1 PCT/JP2016/064181 JP2016064181W WO2017010159A1 WO 2017010159 A1 WO2017010159 A1 WO 2017010159A1 JP 2016064181 W JP2016064181 W JP 2016064181W WO 2017010159 A1 WO2017010159 A1 WO 2017010159A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
carboxylic acid
unsaturated carboxylic
bismuth
Prior art date
Application number
PCT/JP2016/064181
Other languages
English (en)
French (fr)
Inventor
元彦 杉山
良太 平岡
智志 河村
将吾 保田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201680040195.XA priority Critical patent/CN107848920B/zh
Priority to KR1020187000568A priority patent/KR102612311B1/ko
Priority to JP2017528311A priority patent/JP6694884B2/ja
Priority to EP16824139.6A priority patent/EP3321247B1/en
Priority to US15/742,597 priority patent/US20180186712A1/en
Publication of WO2017010159A1 publication Critical patent/WO2017010159A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • C07C27/12Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen
    • C07C27/14Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen wholly gaseous reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8873Zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/882Molybdenum and cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36

Definitions

  • the present invention relates to an unsaturated aldehyde obtained by vapor-phase catalytic partial oxidation of an alkene with molecular oxygen or a molecular oxygen-containing gas in the presence of a composite metal oxide catalyst to obtain a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid. And / or a method for producing an unsaturated carboxylic acid.
  • Patent Document 1 a plurality of types of catalysts having different occupation volumes and calcination temperatures and / or types and / or amounts of alkali metal elements are prepared, and a raw material gas inlet is provided in the tube axis direction of the multi-tubular oxidation reactor.
  • a method is described in which the hot spot temperature is suppressed by filling so that the activity increases from the side toward the outlet side. This method is intended to suppress excessive heat generation by filling a catalyst with reduced activity on the inlet side where a high-concentration source gas is introduced.
  • the size of the occupied volume of the catalyst is limited by the diameter of the reaction tube, so that a sufficient effect may not be obtained, or the reaction field designed by uniformly filling the catalyst may not be achieved. It may not be realized and sufficient catalyst performance may not be exhibited.
  • the amount of catalyst supported is increased from the raw material gas inlet side to the outlet side to rank the catalyst activity, thereby suppressing the hot spot temperature on the raw material gas inlet side.
  • a method is described in which the gas phase catalytic partial oxidation reaction is reached up to the conversion rate of the raw material required for the process.
  • the catalyst on the raw material gas inlet side which has a low loading amount, has a short life, while the catalyst on the raw material gas outlet side has a large amount of active component, so the reaction heat is stored in the catalyst by thickening the layer of the catalytic active component.
  • selectivity is lowered.
  • Patent Document 3 a method is described in which a hot spot temperature is suppressed by using a ring-shaped catalyst, and a reaction under a high load condition can be handled.
  • ring-shaped catalysts are difficult to pack uniformly due to the characteristics of the shape when packed into a multi-tubular oxidation reactor, and because of the low mechanical strength due to the characteristics of the molding method, the catalyst collapses.
  • Patent Document 4 a catalyst in which bismuth and iron are changed in a reaction zone in which the catalyst layer in each reaction tube is divided into two or more layers in the tube axis direction is directed from the source gas inlet side to the outlet side.
  • a technique for producing acrolein and acrylic acid stably over a long period of time by suppressing the sublimation of the molybdenum component by filling so that the total amount of bismuth and iron is reduced is disclosed.
  • Patent Document 5 when two or more types of composite metal oxide catalysts having different compositions are prepared and two or more layers are stacked and stacked in the tube axis direction, the amount of bismuth component relative to molybdenum is changed from the gas inlet side to the gas outlet side.
  • the reaction bath temperature can be reduced even in reactions under high load conditions by filling the catalyst so that the amount of iron component increases from the gas inlet side to the gas outlet side. It is described to keep it low.
  • the total yield of unsaturated aldehyde and / or unsaturated carboxylic acid (hereinafter referred to as “effective yield”).
  • effective yield the total yield of unsaturated aldehyde and / or unsaturated carboxylic acid
  • Japanese Unexamined Patent Publication No. 2001-226302 Japanese Unexamined Patent Publication No. 6-192144 Japanese National Table 2007-511565 Japanese Unexamined Patent Publication No. 2001-048817 International Publication No. 2015/008815
  • the present invention stably produces the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid from the alkene while keeping the reaction bath temperature low and improving and maintaining the effective yield even under high load reaction conditions. It aims to provide a technology that can do this.
  • the present inventors have developed a corresponding unsaturated reaction by subjecting alkenes to gas phase catalytic partial oxidation with molecular oxygen using a multitubular oxidation reactor filled with a composite metal oxide catalyst.
  • intensive studies were conducted focusing on the amount of bismuth which is important among the constituent elements of the catalyst.
  • two or more catalyst layers containing the composite metal oxide catalyst are stacked in a tube axis direction under a specific condition and packed in multiple layers, and the catalyst layer on the most gas outlet side of the tube shaft is expressed by a specific composition formula.
  • the catalyst containing the compound By including the catalyst containing the compound, the catalytic performance of the catalyst with high activity and high yield is effectively exerted, the catalyst on the raw material gas inlet side has high selectivity and long life, and the catalyst on the raw material gas outlet side is remarkably By becoming highly active, the reaction bath temperature can be kept low even in a high-load reaction, and a technique that can improve the effective yield and can be obtained stably over a long period of time has been found, and the present invention has been completed.
  • the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid is obtained by subjecting alkenes to gas phase catalytic partial oxidation with molecular oxygen using a multi-tube reactor packed with a composite metal oxide catalyst.
  • a method for producing a saturated aldehyde and / or an unsaturated carboxylic acid comprising: Two or more catalyst layers containing a composite metal oxide catalyst are stacked in the tube axis direction and packed in multiple layers, The composition of the composite metal oxide catalyst contained in one catalyst layer is different from the composition of the composite metal oxide catalyst contained in at least one of the other catalyst layers, The ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the most gas inlet side of the tube axis is larger than the ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the most gas outlet side of the tube shaft, In any of the two adjacent catalyst layers, the ratio of the bismuth component amount to the molybdenum component amount in the catalyst layer on the gas inlet side of the tube axis is bismuth relative to the molybdenum component amount in the catalyst layer on the gas outlet side of the tube shaft.
  • Y is at least one selected from the group consisting of boron (B), phosphorus (P), arsenic (As), antimony (Sb), tungsten (W), silicon (Si), and aluminum (Al).
  • Z is at least one element selected from the group consisting of sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), and a to h represent the atomic ratio of each element.
  • the molybdenum component raw material is only ammonium molybdate, and the weight of water to be dissolved is 8 with respect to the weight of molybdenum contained in the ammonium molybdate.
  • Acid production method (4) Any one of (1) to (3), wherein the alkene load in the raw material gas supplied to the multi-tubular reactor is 100 times or more (standard state conversion) per unit catalyst volume per hour A method for producing the unsaturated aldehyde and / or unsaturated carboxylic acid according to item 1, (5) Any one of (1) to (4), wherein the alkene load in the raw material gas supplied to the multitubular reactor is 150 times or more (converted to a standard state) per unit catalyst volume per hour A method for producing the unsaturated aldehyde and / or unsaturated carboxylic acid according to item 1, (6) The unsaturated aldehyde according to any one of (1) to (5), wherein the alkene concentration contained in the raw material gas supplied to the multi-tubular reactor is 8.5% by volume or less.
  • the present invention produces a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by gas-phase catalytic partial oxidation of alkene with molecular oxygen using a multi-tubular reactor packed with a composite metal oxide catalyst.
  • two or more catalyst layers containing a composite metal oxide catalyst are stacked in a tube axis direction to be packed in multiple layers, and the composition of the composite metal oxide catalyst contained in one catalyst layer is at least of the other catalyst layers.
  • the ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the most gas inlet side of the tube axis is the ratio of the catalyst layer on the most gas outlet side of the tube shaft.
  • the ratio of the bismuth component amount to the molybdenum component amount is larger than the ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the gas inlet side of the tube shaft in any of the two adjacent catalyst layers.
  • a compound in which the ratio of the bismuth component amount to the molybdenum component amount in the catalyst layer on the gas outlet side of the tube axis is equal to or greater than that and the catalyst layer on the most gas outlet side of the tube shaft is represented by the general formula (1) Including a catalyst.
  • a ratio of bismuth which is one of the main components of the catalyst, and nickel and an alkali metal that greatly affects the activity is important.
  • the ratio d / a which is the ratio of nickel is greater than 2.5 and less than or equal to 8.8 and the ratio of d / g which is the ratio of nickel to the alkali metal is 2.0 or more and 350 or less, and the ratio of bismuth to the alkali metal
  • a / g is 0.4 or more and less than 80, it becomes an excellent catalyst with high selectivity and yield of the target product.
  • the catalyst layer of the present invention is filled in the catalyst layer on the most gas outlet side of the tube axis.
  • the catalyst containing the compound represented by the general formula (1) is used as the catalyst on the gas outlet side of the tube shaft.
  • the catalyst layer on the gas inlet side may be filled with an arbitrary catalyst.
  • the arbitrary catalyst contained in the catalyst layer on the gas inlet side is a catalyst containing molybdenum and bismuth.
  • a catalyst containing a compound represented by the following general formula (2) can be used.
  • X is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), cerium (Ce) and samarium (Sm).
  • Y is at least one selected from the group consisting of boron (B), phosphorus (P), arsenic (As), antimony (Sb), tungsten (W), silicon (Si), and aluminum (Al).
  • Z is at least one element selected from the group consisting of sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), and a to h represent the atomic ratio of each element.
  • A 0.80 to 2.0
  • b 1.0 to 2.5
  • c 3.0 to 7.5
  • d 2.0 to 3.5
  • e 0 to 10
  • f 0-10
  • g 0.01-1.0
  • h is another element
  • D / a is larger than 2.5 and not larger than 8.8, d / g is not smaller than 2.0 and not larger than 350, and a / g is not smaller than 0.4.
  • the catalyst is connected to the tube so that the ratio of the bismuth component amount to the molybdenum component amount in the gas inlet side catalyst layer is larger than the ratio of the bismuth component amount to the molybdenum component amount in the gas outlet side catalyst layer.
  • the catalyst containing the compound represented by the general formula (1) is filled in the catalyst layer on the most gas outlet side of the tube axis, and the catalyst layer and gas on the most gas inlet side of the tube axis are filled.
  • the second catalyst layer from the inlet side may be filled with an arbitrary catalyst.
  • the optional catalyst contained in the catalyst layer on the most gas inlet side of the tube shaft and the second catalyst layer from the gas inlet side is a catalyst containing molybdenum and bismuth, for example, a compound represented by the general formula (2) A containing catalyst can be used.
  • the ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the most gas inlet side of the tube axis is larger than the ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the most gas outlet side of the tube shaft.
  • the ratio of the bismuth component amount to the molybdenum component amount of the catalyst layer on the gas inlet side of the tube axis is equal to that of the catalyst layer on the gas outlet side of the tube shaft.
  • the catalyst is packed in the tube shaft so as to be equal to or larger than the ratio of the bismuth component amount to the molybdenum component amount. It can also be accommodated by mixing with inert materials and / or adjusting the particle size if necessary in any or all layers of the multilayer packing.
  • the catalyst used in the present invention (hereinafter referred to as the catalyst of the present invention) can be prepared through the following steps.
  • Molybdenum component raw materials include molybdenum oxides such as molybdenum trioxide, molybdic acid such as molybdic acid and ammonium molybdate or salts thereof, heteropoly acids containing molybdenum such as phosphomolybdic acid and silicomolybdic acid, or salts thereof, and the like. Although it can be used, a high-performance catalyst tends to be obtained when ammonium molybdate is used.
  • ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among these, ammonium heptamolybdate is most preferable.
  • bismuth component raw material bismuth salts such as bismuth nitrate, bismuth subcarbonate, bismuth sulfate, bismuth acetate, bismuth trioxide, metal bismuth, etc. can be used, but more preferably high performance catalysts when bismuth nitrate is used. Tends to be obtained.
  • raw materials for iron, cobalt, nickel and other elements, oxides, nitrates, carbonates, organic acid salts, hydroxides and the like that can be converted into oxides by heat or mixtures thereof can be used.
  • an iron component raw material, a cobalt component raw material, and / or a nickel component raw material are dissolved and mixed in water at a desired ratio under conditions of 10 to 80 ° C., and a molybdenum component separately prepared under conditions of 20 to 90 ° C.
  • an aqueous solution in which the bismuth component raw material is dissolved After mixing with the raw material and the Z component raw material aqueous solution or slurry and heating and stirring for about 1 hour at 20 to 90 ° C., an aqueous solution in which the bismuth component raw material is dissolved, and the X component raw material and the Y component raw material as necessary. Addition to obtain an aqueous solution or slurry containing the catalyst component.
  • an oxide or a nitrate, carbonate, organic acid salt, hydroxide, etc., or a mixture thereof which can be converted into an oxide when heated.
  • the amount is preferably added in the preparation step so that the atomic ratio when molybdenum is 12 is in the range of 0.05 to 10.
  • the preparation liquid (A) does not necessarily need to contain all the catalyst constituent elements, and a part of the elements or a part of the amount may be added in a later step.
  • the amount of water used to dissolve each component raw material and when adding an acid such as sulfuric acid, nitric acid, hydrochloric acid, tartaric acid or acetic acid for dissolution, the raw material is dissolved.
  • the form of the preparation liquid (A) may become a clay-like lump, which is an excellent catalyst. Must not.
  • an aqueous solution or a slurry is preferable as an excellent catalyst.
  • the molybdenum component raw material is only ammonium molybdate, and the weight of water to be dissolved is 8.5 times the weight of molybdenum contained in the ammonium molybdate.
  • the concentration of nitric acid in the nitric acid aqueous solution in which the bismuth component raw material is only bismuth nitrate and the weight of the nitric acid aqueous solution to be dissolved is not less than 2.3 times the weight of bismuth nitrate contained in the bismuth nitrate. It is preferable to fill the catalyst layer on the most gas outlet side of the tube shaft with the catalyst obtained with 10% by weight or more. In order to consider the reaction efficiency, balance of temperature distribution, etc., the catalyst of the present invention may be packed in multiple layers, or in multiple layers, it may be combined with a catalyst of another composition.
  • the drying method is not particularly limited as long as the preparation liquid (A) can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness.
  • spray drying that can be dried from the slurry into powder or granules in a short time is particularly preferable.
  • the drying temperature of spray drying varies depending on the slurry concentration, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, it is preferable that the dry powder obtained at this time is dried so that the average particle size is 10 to 700 ⁇ m. A dry powder (B) is thus obtained.
  • Step c) Pre-calcination
  • the obtained dry powder (B) is calcined at 200 to 600 ° C., preferably 300 to 600 ° C. under air flow to improve the moldability, mechanical strength and catalyst performance of the catalyst. Tend.
  • the firing time is preferably 1 to 12 hours.
  • the pre-fired powder (C) is obtained.
  • Step d) Molding Although there is no particular limitation on the molding method, a method using a tableting molding machine, an extrusion molding machine or the like is preferable when molding into a cylindrical shape or a ring shape. More preferably, it is a case of forming into a spherical shape, and the pre-fired powder (C) may be formed into a spherical shape by a molding machine, but the pre-fired powder (C) (if necessary, a molding aid and a strength improver are added. (Including) is preferably carried on a carrier such as an inert ceramic.
  • a rolling granulation method a method using a centrifugal fluidized coating apparatus, a wash coating method, and the like are widely known, and particularly if it is a method capable of uniformly supporting the pre-fired powder (C) on a carrier.
  • the carrier charged in the container is vigorously stirred by repeating the rotation and revolution of the carrier itself, and the pre-fired powder (C) and, if necessary, a molding aid and / or a strength improver are added thereto.
  • a method in which the powder component is supported on a carrier is preferable.
  • a binder for carrying is preferable.
  • the binder that can be used include water, ethanol, methanol, propanol, polyhydric alcohol, polyvinyl alcohol as a polymeric binder, silica sol aqueous solution of an inorganic binder, and the like.
  • Ethanol, methanol, propanol, polyhydric alcohol A diol such as ethylene glycol or a triol such as glycerin is more preferable.
  • the performance is particularly high.
  • the amount of these binders used is usually 2 to 80 parts by weight per 100 parts by weight of the pre-fired powder (C).
  • the inert carrier is usually about 2 to 8 mm, and the pre-calcined powder (C) is supported on the inert carrier, and the loading rate depends on the conditions under which the catalyst is used, such as the reaction material space velocity and the raw material concentration. Although it is determined in consideration of conditions, it is usually 20 to 80% by weight.
  • the supporting rate is expressed by the following formula (3).
  • the molded body (D) tends to improve catalytic activity and selectivity by firing at a temperature of 200 to 600 ° C. for about 1 to 12 hours.
  • the baking temperature is preferably 400 ° C. or higher and 600 ° C. or lower, and more preferably 500 ° C. or higher and 600 ° C. or lower. Since the optimal calcination temperature of catalysts having different atomic ratios is different, when the atomic ratio of the catalyst is changed, a catalyst having excellent performance tends to be obtained when calcination is performed at the optimal temperature at the atomic ratio.
  • As the gas to be circulated air is simple and preferable.
  • a catalyst (E) is obtained.
  • the mechanical strength of the catalyst (E) is greatly influenced by the atomic ratio of the catalyst composition, that is, the kind of the compound produced by adjusting the atomic ratio and the phase structure of the crystal structure are different even in the same compound. receive.
  • the micro physical properties such as the strength of the compound crystals in the composite metal oxide
  • it is also affected by changes in macro properties such as the particle size distribution of the pre-fired powder.
  • the combined physical properties including not only the preparation method of each step but also the influence of the atomic ratio determine the mechanical strength of the catalyst finally prepared.
  • the catalyst containing the compound represented by the general formula (1) obtained by this method is filled in the catalyst layer on the most gas outlet side of the tube axis, and propylene as a raw material gas contains molecular oxygen or molecular oxygen Gas phase catalytic partial oxidation with gas to produce acrolein and acrylic acid, or isobutylene and tertiary butanol as raw material gases to gas phase catalytic partial oxidation with molecular oxygen or molecular oxygen containing gas to produce methacrolein and methacrylic acid Can be used in the process.
  • the raw material gas composition is composed of 1 to 10% by volume alkene, 5 to 18% by volume molecular oxygen, 0 to 60% by volume water vapor, and 20 to 70% by volume inert gas such as nitrogen or carbon dioxide.
  • This is accomplished by introducing the alkene feed load onto the catalyst prepared as described above at a space velocity of 60 to 200 hr ⁇ 1 under a temperature range of 250 to 450 ° C. and a pressure of atmospheric pressure to 10 atmospheres.
  • the effect of improving the effective yield described in the present invention becomes more remarkable as the alkene supply load increases, and the alkene in the mixed gas is 8.5 vol% or less, and the alkene supply load is a space velocity of 100 hr ⁇ 1 or more.
  • the alkene space velocity (SV 0 ) means a raw material load.
  • the alkene space velocity (SV 0 ) is introduced at 100 hr ⁇ 1 , the alkene is 100 times the unit catalyst volume per hour (standard state conversion).
  • the alkene includes alcohols that generate alkene in the intramolecular dehydration reaction, such as tertiary butanol.
  • Catalyst 1 2000 parts by weight of ammonium heptamolybdate was completely dissolved in 7600 parts by weight of pure water heated to 60 ° C.
  • 9.2 parts by weight of potassium nitrate was dissolved in 104.1 parts by weight of pure water and added to the above solution.
  • 686.4 parts by weight of ferric nitrate, 1428.8 parts by weight of cobalt nitrate, and 768.6 parts by weight of nickel nitrate were dissolved in 1528.4 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring.
  • a solution obtained by adding 198.2 parts by weight of nitric acid (60% by weight) to 825.2 ml of pure water and 778.4 parts by weight of bismuth nitrate was added to the above solution and mixed with stirring.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired at a maximum temperature of 440 ° C. for 6 hours.
  • a 30% by weight glycerin solution is used as a binder in the rolling granulation method, and the diameter is mainly composed of silica and alumina.
  • a 4.5 mm inert spherical carrier was spherically supported and molded so that the loading ratio was 50% by weight. Next, it baked at 560 degreeC for 4 hours, and obtained the spherical catalyst 1 with an average particle diameter of 5.2 mm.
  • Catalyst 2 2000 parts by weight of ammonium heptamolybdate was completely dissolved in 7600 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum).
  • 4.4 parts by weight of potassium nitrate was dissolved in 50.1 parts by weight of pure water and added to the above solution.
  • 762.7 parts by weight of ferric nitrate, 1786.0 parts by weight of cobalt nitrate, and 823.5 parts by weight of nickel nitrate were dissolved in 1787.3 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was carried out for 4 hours at a maximum temperature of 520 ° C. to obtain a spherical catalyst 2 having an average particle diameter of 5.2 mm.
  • Catalyst 3 2000 parts by weight of ammonium heptamolybdate was completely dissolved in 7600 parts by weight of pure water heated to 60 ° C.
  • 5.5 parts by weight of cesium nitrate was dissolved in 62.2 parts by weight of pure water and added to the above solution.
  • 762.7 parts by weight of ferric nitrate, 1786.0 parts by weight of cobalt nitrate, and 823.5 parts by weight of nickel nitrate were dissolved in 1787.3 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring.
  • nitric acid 60% by weight
  • 457.9 parts by weight of bismuth nitrate was completely dissolved.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired at a maximum temperature of 440 ° C. for 6 hours.
  • a 30% by weight glycerin solution is used as a binder in the rolling granulation method, and the diameter is mainly composed of silica and alumina.
  • a 4.5 mm inert spherical carrier was spherically supported and molded so that the loading ratio was 50% by weight.
  • Catalyst 4 The catalyst 4 was obtained by changing only the firing process temperature after molding in the catalyst 2 to 540 ° C.
  • Catalyst 5 2000 parts by weight of ammonium heptamolybdate was completely dissolved in 7600 parts by weight of pure water heated to 60 ° C.
  • 4.4 parts by weight of potassium nitrate was dissolved in 50.1 parts by weight of pure water and added to the above solution.
  • 762.7 parts by weight of ferric nitrate, 1786.0 parts by weight of cobalt nitrate, and 823.5 parts by weight of nickel nitrate were dissolved in 1787.3 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring.
  • nitric acid 60 wt% was added to 485.5 ml of pure water, and 457.9 parts by weight of bismuth nitrate was added and completely dissolved in the above solution, followed by stirring and mixing.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired at a maximum temperature of 440 ° C. for 6 hours.
  • a 30% by weight glycerin solution is used as a binder in the rolling granulation method, and the diameter is mainly composed of silica and alumina.
  • a 4.5 mm inert spherical carrier was spherically supported and molded so that the loading ratio was 50% by weight. Next, it baked at 550 degreeC for 4 hours, and obtained the spherical catalyst 5 with an average particle diameter of 5.2 mm.
  • Catalyst 6 2000 parts by weight of ammonium heptamolybdate was completely dissolved in 7600 parts by weight of pure water heated to 60 ° C.
  • 9.2 parts by weight of potassium nitrate was dissolved in 104.1 parts by weight of pure water and added to the above solution.
  • 877.1 parts by weight of ferric nitrate, 1333.9 parts by weight of cobalt nitrate, and 768.6 parts by weight of nickel nitrate were dissolved in 1600.4 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring.
  • nitric acid 60 wt% was added to 631.1 ml of pure water, and 595.3 parts by weight of bismuth nitrate was added and completely dissolved, and the mixture was stirred and mixed.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired at a maximum temperature of 440 ° C. for 6 hours.
  • a 30% by weight glycerin solution is used as a binder in the rolling granulation method, and the diameter is mainly composed of silica and alumina.
  • a 4.5 mm inert spherical carrier was spherically supported and molded so that the loading ratio was 50% by weight.
  • calcination was performed at 530 ° C. for 4 hours to obtain a spherical catalyst 6 having an average particle diameter of 5.2 mm.
  • Example 1 A gas phase catalytic oxidation reaction of propylene is carried out using catalyst 1 and catalyst 2, and is represented by propylene conversion, acrolein yield (A), acrylic acid yield (B), and effective yield (A + B).
  • the catalyst performance was determined.
  • the catalyst 2 is filled on the raw material gas inlet side of a 25.2 mm diameter stainless steel reaction tube provided with a thermocouple protection tube having an outer diameter of 3.2 mm so that the filling length is 1500 mm, and the catalyst 2 is placed on the raw gas outlet side.
  • the filling length was 2000 mm.
  • Example 2 A gas phase catalytic oxidation reaction of propylene is carried out using catalyst 3 and catalyst 4, and is represented by propylene conversion, acrolein yield (A), acrylic acid yield (B), and effective yield (A + B).
  • the catalyst performance was determined.
  • the catalyst 3 is filled on the raw material gas inlet side of a 27.2 mm diameter stainless steel reaction tube provided with a thermocouple protective tube having an outer diameter of 6.0 mm so that the filling length is 1200 mm, and the catalyst 4 is placed on the raw gas outlet side.
  • the filling length was 1700 mm.
  • a mixed gas of 8.2% by volume of propylene, 64.0% by volume of air, 24.4% by volume of water vapor, and 3.4% by volume of nitrogen is introduced at a propylene space velocity (SV 0 ) 140 hr ⁇ 1 from the reaction tube inlet. Then, the gas outlet side pressure was adjusted to 80 kPaG, and propylene gas phase catalytic partial oxidation reaction was carried out. Table 1 shows the results when the propylene conversion rate reaches 98% when about 300 hours have elapsed from the start of the reaction.
  • Example 3 The oxidation reaction of propylene was carried out in the same manner except that in Example 2, the catalyst 3 and the catalyst 4 were changed to the three-layer dilution.
  • the catalyst concentration was increased from the gas inlet side to the gas outlet side in the upper layer, middle layer, and lower layer.
  • the upper layer is packed so as to have a packing length of 650 mm after being diluted with an inert substance having an average particle size of 5.2 mm, which is mainly composed of silica and alumina, so that the weight of the catalyst 3 is 90% by weight.
  • the lower layer was filled so that the weight of the catalyst 4 was 100% and the filling length was 1600 mm.
  • Table 1 shows the results when the propylene conversion rate reaches 98% when about 300 hours have elapsed from the start of the reaction.
  • Comparative Example 1 The oxidation reaction of propylene was carried out in the same manner except that the catalyst 2 was changed to the catalyst 5 in Example 1. Table 1 shows the results when the propylene conversion rate reaches 98% when about 300 hours have elapsed from the start of the reaction.
  • Comparative Example 2 The oxidation reaction of propylene was carried out in the same manner except that the catalyst 4 was changed to the catalyst 5 in Example 2. Table 1 shows the results when the propylene conversion rate reaches 98% when about 300 hours have elapsed from the start of the reaction.
  • Comparative Example 3 The oxidation reaction of propylene was performed in the same manner as in Example 2 except that the catalyst 6 was changed to the three-layer filling with dilution. In the diluted three-layer filling, the catalyst concentration was increased from the gas inlet side to the gas outlet side in the upper layer, middle layer, and lower layer. The upper layer is packed so that the packing length becomes 700 mm after being diluted with an inert substance having an average particle size of 5.2 mm and containing silica and alumina as main components so that the catalyst weight becomes 70% by weight.
  • Table 1 shows the results when the effective yield reaches the maximum when about 300 hours have elapsed from the start of the reaction.
  • Comparative Example 3 when the reaction was performed such that the propylene conversion was 98%, the hot spot temperature was too high, and it was difficult to maintain a stable reaction state.
  • the target product can be stably obtained for a long period of time while suppressing the reaction bath temperature low and improving the effective yield even in a high-load reaction. it can.
  • the present invention is useful for the production of unsaturated aldehydes and / or unsaturated carboxylic acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

不飽和アルデヒドおよび/または不飽和カルボン酸を高負荷な反応であっても有効収率を向上させつつ長期間安定して運転が可能である製造方法を提供する。複合金属酸化物触媒を含む触媒層を特定の条件で管軸方向に2層以上積み重ねて多層充填し、かつ管軸の最もガス出口側の触媒層が特定の組成式で表される化合物を含む触媒を含む、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法である。

Description

不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
 本発明は、アルケンを複合金属酸化物触媒の存在下に分子状酸素又は分子状酸素含有ガスにより気相接触部分酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を得る、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法に関する。
 アルケンを分子状酸素により気相接触部分酸化して、不飽和アルデヒドおよび/または不飽和カルボン酸を工業的に製造する場合、種々の問題が生じる。その一つとして、複合金属酸化物触媒(以下、「触媒」とも表記)がさらされる温度が高くなるにつれて、過剰な酸化反応が促進されることによる目的生成物の収率低下や、触媒の劣化が促進され所望の触媒寿命を達成できないことが問題となっている。生産性を高めるべく原料濃度や空間速度を高くした場合、この問題はより顕著になる。これは、アルケンの気相接触部分酸化は発熱反応であるためであり、結果として触媒層に局所的な高温蓄熱部(ホットスポット)が発生する。ホットスポット発生の課題に対し、従来技術ではさまざまな提案がなされている。
 例えば、特許文献1には、占有容積と焼成温度、および/またはアルカリ金属元素の種類および/または量とが異なる複数種の触媒を準備し多管式酸化反応器の管軸方向に原料ガス入口側から出口側に向かって活性が高くなるよう充填することでホットスポット温度を抑制する方法が記載されている。この方法は、高濃度の原料ガスを導入する入口側において活性を抑えた触媒を充填することで過剰な発熱を抑えることを目的としている。しかし、占有容積による活性調節では、反応管径によって触媒の占有容積の大きさが制限されるため十分な効果が得られない場合がある、もしくは触媒が均一に充填されないことで設計した反応場が実現されず十分な触媒性能が発揮されない可能性がある。
 また、特許文献2では、原料ガス入口側から出口側へ向かって触媒の担持量を多くして触媒活性に序列をつけることによって原料ガス入口側におけるホットスポット温度を抑制し、高活性な触媒が充填されている出口側においてはプロセス上必要とされる原料の転化率まで気相接触部分酸化反応を到達させるという方法が記載されている。しかしながら、低い担持量である原料ガス入口側の触媒は寿命が短く、一方で原料ガス出口側の触媒は活性成分量が多いため触媒活性成分の層が厚くなることで反応熱が触媒内に蓄熱され選択性が低下する課題がある。
 また特許文献3によれば、リング形状触媒を使用することで、ホットスポット温度を抑制し、高負荷の状況下における反応に対応できる方法が記載されている。しかし、リング形状触媒は、多管式酸化反応器へ充填するときに形状の特性上、均一に充填することが困難であり、また成型方法の特性上、機械的強度が低いために触媒が崩れたり、粉化が発生したりして、反応管の閉塞が生じるだけでなく、触媒活性成分の崩落により触媒性能が十分に発揮されないことも大きな課題である。
 さらに、特許文献4では、各反応管内の触媒層を管軸方向に2層以上に分割して設けた反応帯に、ビスマスおよび鉄を変更した触媒を、原料ガス入口側から出口側に向かってビスマスおよび鉄の総量が少なくなるように充填することで、モリブデン成分の昇華を抑制して、長期にわたり安定してアクロレインおよびアクリル酸を製造する技術が開示されている。
 さらに、特許文献5では異なる組成の複合金属酸化物触媒を2種類以上用意し管軸方向に2層以上積み重ねて多層充填するときに、モリブデンに対しビスマスの成分量がガス入口側からガス出口側へ向かって小さくなるようにし、かつモリブデンに対し鉄の成分量がガス入口側からガス出口側へ向かって大きくなるように触媒を充填することで高負荷な状況下の反応においても反応浴温度を低く抑えることが記載されている。
 このように従来の技術にはアルケンから対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する工程において、不飽和アルデヒドおよび/または不飽和カルボン酸の合計収率(以下、「有効収率」と表記)そのものを向上させ、かつ高負荷な状況下の反応においても、反応浴温度を低く抑えながら、向上した有効収率を維持しつつ安定して製造する検討は見当たらない。
日本国特開2001-226302号公報 日本国特開平6-192144号公報 日本国特表2007-511565号公報 日本国特開2001-048817号公報 国際公開第2015/008815号公報
 本発明は、アルケンから対応する不飽和アルデヒドおよび/または不飽和カルボン酸を、高負荷な反応条件であっても反応浴温度を低く抑え、有効収率を向上させかつ維持しつつ安定して製造することが可能な技術を提供することを目的としている。
 本発明者らは、上記課題を解決するために、複合金属酸化物触媒を充填した多管式酸化反応器を用いてアルケンを分子状酸素にて気相接触部分酸化することで対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法において、触媒の構成元素の中で重要であるビスマスの量に注目し鋭意検討を行った。その結果、複合金属酸化物触媒を含む触媒層を特定の条件で管軸方向に2層以上積み重ねて多層充填し、かつ管軸の最もガス出口側の触媒層が特定の組成式で表される化合物を含む触媒を含むことにより、高活性かつ高収率な触媒の触媒性能が効果的に発揮され、原料ガス入口側の触媒は高選択性で長寿命となり、原料ガス出口側の触媒は著しく高活性になることで、高負荷な反応であっても反応浴温度を低く抑制でき、有効収率を向上させかつ長期に安定して得られる技術を見出し、本発明を完成させるに至った。
 すなわち、本発明は、
(1)複合金属酸化物触媒を充填した多管型反応器を用いてアルケンを分子状酸素にて気相接触部分酸化することで対応する不飽和アルデヒドおよび/または不飽和カルボン酸を得る、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法であって、
 複合金属酸化物触媒を含む触媒層を管軸方向に2層以上積み重ねて多層充填し、
 一つの触媒層に含まれる複合金属酸化物触媒の組成が、その他の触媒層の少なくとも一つに含まれる複合金属酸化物触媒の組成と異なり、
 管軸の最もガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸の最もガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比より大きく、
 隣り合う二つの触媒層のいずれにおいても、管軸のガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸のガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比と同じ又はそれより大きく、
 かつ管軸の最もガス出口側の触媒層が下記一般式(1)で表される化合物を含む触媒を含む、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
一般式(1) Mo12 Bi Fe Co Ni X Y Zg 
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群より選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)、タングステン(W)、ケイ素(Si)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、a~hは各元素の原子比率を表し、a=0.40以上0.80未満、b=1.0~2.5、c=3.0~7.5、d=2.0~3.5、e=0~10、f=0~10、g=0.01~1.0、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.5より大きく8.8以下であり、かつd/gが2.0以上350以下であり、かつa/gが0.4以上80未満である。)、
(2)前記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量を硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上とする(1)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
(3)前記複合金属酸化物触媒が不活性な担持体の表面に触媒活性成分を担持した球状のコーティング触媒である、(1)または(2)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
(4)前記多管型反応器に供給される原料ガス中のアルケン負荷が、1時間あたり単位触媒体積に対し100倍以上(標準状態換算)である、(1)~(3)のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
(5)前記多管型反応器に供給される原料ガス中のアルケン負荷が、1時間あたり単位触媒体積に対し150倍以上(標準状態換算)である、(1)~(4)のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
(6)前記多管型反応器に供給される原料ガス中に含まれるアルケン濃度が8.5容量%以下である、(1)~(5)のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
(7)前記多管型反応器に充填される全ての触媒層が、複合金属酸化物触媒と不活性物質の物理混合による希釈をされていない、(1)~(6)のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
(8)(1)~(7)のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法による、アクロレインおよび/またはアクリル酸、メタクロレインおよび/またはメタクリル酸の製造方法、
に関する。
 高負荷の反応においても反応浴温度を低く抑えながら、有効収率を向上させつつかつ長期に安定してアルケンから対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造することができる。
 本発明は、複合金属酸化物触媒を充填した多管型反応器を用いてアルケンを分子状酸素にて気相接触部分酸化することで対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法であって、複合金属酸化物触媒を含む触媒層を管軸方向に2層以上積み重ねて多層充填し、一つの触媒層に含まれる複合金属酸化物触媒の組成が、その他の触媒層の少なくとも一つに含まれる複合金属酸化物触媒の組成と異なり、管軸の最もガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸の最もガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比より大きく、隣り合う二つの触媒層のいずれにおいても、管軸のガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸のガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比と同じ又はそれより大きく、かつ管軸の最もガス出口側の触媒層が一般式(1)で表される化合物を含む触媒を含む。
 ここで、一般式(1)で表される化合物の構成元素比としては、触媒主成分の一つであるビスマスと、活性に大きく影響を及ぼすニッケルおよびアルカリ金属の比率が重要であり、ビスマスに対するニッケルの比率であるd/aが2.5より大きく8.8以下であり、かつアルカリ金属に対するニッケルの比率であるd/gが2.0以上350以下であり、かつアルカリ金属に対するビスマスの比率であるa/gが0.4以上80未満であることにより、目的生成物の選択性と収率が高い優れた触媒となる。また、ビスマスの量を0.40以上0.80未満、好ましくは0.40以上0.75未満にすることにより高い収率が得られる。
 管軸の最もガスの出口側の触媒層に本発明の触媒を充填し、例えば二層充填の場合には一般式(1)で表記される化合物を含む触媒を管軸のガス出口側の触媒層に充填し、ガス入口側の触媒層には任意の触媒を充填してもよい。ガス入口側の触媒層に含まれる任意の触媒は、モリブデンとビスマスを含有する触媒であり、例えば以下に示す一般式(2)で表される化合物を含む触媒を使用することができる。
一般式(2) Mo12 Bi Fe Co Ni X Y Zg 
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群より選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)、タングステン(W)、ケイ素(Si)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、a~hは各元素の原子比率を表し、a=0.80以上2.0以下、b=1.0~2.5、c=3.0~7.5、d=2.0~3.5、e=0~10、f=0~10、g=0.01~1.0、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.5より大きく8.8以下であり、かつd/gが2.0以上350以下であり、かつa/gが0.4以上80未満である。)
この場合、ガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、ガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比より大きくなるように触媒を管軸に充填する。
 また、例えば三層充填の場合には一般式(1)で表記される化合物を含む触媒を管軸の最もガス出口側の触媒層に充填し、管軸の最もガス入口側の触媒層およびガス入口側から二番目の触媒層には任意の触媒を充填してもよい。管軸の最もガス入口側の触媒層およびガス入口側から二番目の触媒層に含まれる任意の触媒は、モリブデンとビスマスを含有する触媒であり、例えば一般式(2)で表される化合物を含む触媒を使用することができる。この場合、管軸の最もガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸の最もガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比より大きくなるように、及び隣り合う二つの触媒層のいずれにおいても、管軸のガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸のガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比と同じ又はそれより大きくなるように触媒を管軸に充填する。
 また、多層充填のいずれかまたはすべての層において必要があれば不活性物質と混合および/または粒径を調製することで対応することもできる。
 本発明で使用する触媒(以下、本発明の触媒という)は以下の工程を経ることで調製することが出来る。
工程a)調合
 一般に触媒を構成する各元素の出発原料は特に制限されるものではない。モリブデン成分原料としては三酸化モリブデンのようなモリブデン酸化物、モリブデン酸、モリブデン酸アンモニウムのようなモリブデン酸又はその塩、リンモリブデン酸、ケイモリブデン酸のようなモリブデンを含むヘテロポリ酸又はその塩などを用いることができるが、より好ましくはモリブデン酸アンモニウムを使用した場合に高性能な触媒が得られる傾向がある。特にモリブデン酸アンモニウムには、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムを使用した場合が最も好ましい。ビスマス成分原料としては硝酸ビスマス、次炭酸ビスマス、硫酸ビスマス、酢酸ビスマスなどのビスマス塩、三酸化ビスマス、金属ビスマスなどを用いることができるが、より好ましくは硝酸ビスマスを使用した場合に高性能な触媒が得られる傾向がある。鉄、コバルト、ニッケル及びその他の元素の原料としては通常は酸化物あるいは熱によって酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることができる。例えば、鉄成分原料とコバルト成分原料及び/又はニッケル成分原料を所望の比率で10~80℃の条件下にて水に溶解混合し、20~90℃の条件下にて別途調合されたモリブデン成分原料およびZ成分原料水溶液もしくはスラリーと混合し、20~90℃の条件下にて1時間程度加熱撹拌した後、ビスマス成分原料を溶解した水溶液と、必要に応じX成分原料、Y成分原料とを添加して触媒成分を含有する水溶液またはスラリーを得る。X成分、Y成分を添加する場合、原料としては酸化物あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることが好ましく、添加量としてはモリブデンを12としたときの原子比率で0.05~10の範囲となるように、調合工程で添加するのが好ましい。以降、これら水溶液またはスラリーをまとめ、調合液(A)と称する。ここで、調合液(A)は必ずしもすべての触媒構成元素を含有する必要はなく、その一部の元素または一部の量を後の工程で添加してもよい。また、調合液(A)を調合する際に各成分原料を溶解する水の量や、溶解のために硫酸や硝酸、塩酸、酒石酸、酢酸などの酸を加える場合には、原料が溶解するのに十分な水溶液中の酸濃度が例えば5重量%~99重量%の範囲の中で適していないと調合液(A)の形態が粘土状の塊となる場合があり、これは優れた触媒にはならない。調合液(A)の形態としては水溶液またはスラリーが優れた触媒として好ましい。
 前記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量を硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上として得られた触媒を管軸の最もガス出口側の触媒層に充填することが好ましい。反応効率や温度分布のバランス等を考慮するために本発明の触媒を多層充填することや、多層では他の組成の触媒と組み合わせて充填してもよい。
工程b)乾燥
 次いで上記で得られた調合液(A)を乾燥し、乾燥粉体とする。乾燥方法は、調合液(A)を完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明においては、スラリーから短時間に粉体又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリーの濃度、送液速度等によって異なるが概ね乾燥機の出口における温度が70~150℃である。また、この際得られる乾燥粉体の平均粒径が10~700μmとなるよう乾燥するのが好ましい。こうして乾燥粉体(B)を得る。
工程c)予備焼成
 得られた乾燥粉体(B)は空気流通下で200~600℃で、好ましくは300~600℃で焼成することで触媒の成型性、機械的強度、触媒性能が向上する傾向がある。焼成時間は1~12時間が好ましい。こうして予備焼成粉体(C)を得る。
工程d)成型
 成型方法に特に制限はないが円柱状、リング状に成型する際には打錠成型機、押し出し成型機などを用いた方法が好ましい。さらに好ましくは、球状に成型する場合であり、成型機で予備焼成粉体(C)を球形に成型しても良いが、予備焼成粉体(C)(必要により成型助剤、強度向上剤を含む)を不活性なセラミック等の担体に担持させる方法が好ましい。ここで担持方法としては転動造粒法、遠心流動コーティング装置を用いる方法、ウォッシュコート方法等が広く知られており、予備焼成粉体(C)を担体に均一に担持できる方法であれば特に限定されないが、触媒の製造効率や調製される触媒の性能を考慮した場合、より好ましくは固定円筒容器の底部に、平らな、あるいは凹凸のある円盤を有する装置で、円盤を高速で回転させることにより、容器内にチャージされた担体を、担体自体の自転運動と公転運動の繰り返しにより激しく撹拌させ、ここに予備焼成粉体(C)並びに必要により、成型助剤及び/または強度向上剤を添加することにより粉体成分を担体に担持させる方法が好ましい。尚、担持に際して、バインダーを使用するのが好ましい。用いうるバインダーの具体例としては、水やエタノール、メタノール、プロパノール、多価アルコール、高分子系バインダーのポリビニルアルコール、無機系バインダーのシリカゾル水溶液等が挙げられるが、エタノール、メタノール、プロパノール、多価アルコールが好ましく、エチレングリコール等のジオールやグリセリン等のトリオール等がより好ましい。グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高性能な触媒が得られ、具体的にはグリセリンの濃度5重量%以上の水溶液を使用した場合に特に高性能な触媒が得られる傾向がある。これらバインダーの使用量は、予備焼成粉体(C)100重量部に対して通常2~80重量部である。不活性担体は、通常2~8mm程度のものを使用し、これに予備焼成粉体(C)を担持させるが、その担持率は触媒使用条件、たとえば反応原料の空間速度、原料濃度などの反応条件を考慮して決定されるものであるが、通常20~80重量%である。ここで担持率は以下の式(3)で表記される。
式(3)担持率(重量%)=100×成型に使用した予備焼成粉体(C)の重量/(成型に使用した予備焼成粉体(C)の重量+成型に使用した不活性担体の重量)
こうして成型体(D)を得る。
工程e)「焼成」
 成型体(D)は200~600℃の温度で1~12時間程度焼成することで触媒活性、選択性が向上する傾向にある。焼成温度は400℃以上600℃以下が好ましく、500℃以上600℃以下がより好ましい。原子比率が異なる触媒の最適な焼成温度は異なるため、触媒の原子比率を変更した場合には、その原子比率において最適な温度で焼成すると優れた性能の触媒が得られる傾向がある。流通させるガスとしては空気が簡便で好ましいが、その他に不活性ガスとして窒素、二酸化炭素、還元雰囲気にするための窒素酸化物含有ガス、アンモニア含有ガス、水素ガスおよびそれらの混合物を使用することも可能である。こうして触媒(E)を得る。触媒(E)の機械的強度は、触媒組成の原子比率によっても大きく影響され、すなわち原子比率を調節することにより生成される化合物の種類や同じ化合物でも結晶構造の相形態が異なることに影響を受ける。また調合工程や乾燥工程で生成される複合金属酸化物粒子の直径や粒子の幾何学的構造、その凝集形態が変化するため、複合金属酸化物中の化合物結晶の強度のようなミクロな物性や例えば予備焼成粉体の粒度分布のようなマクロな物性の変化によっても影響を受ける。各工程の調製方法だけでなく原子比率の影響も含めて総括された物性が最終的に調製される触媒の機械的強度を決定する。
 この方法によって得られた前記一般式(1)で表される化合物を含む触媒を管軸の最もガスの出口側の触媒層に充填し、原料ガスであるプロピレンを分子状酸素または分子状酸素含有ガスにより気相接触部分酸化しアクロレインおよびアクリル酸を製造する工程または原料ガスであるイソブチレン、ターシャルブタノールを分子状酸素または分子状酸素含有ガスにより気相接触部分酸化しメタクロレインおよびメタクリル酸を製造する工程に使用できる。たとえば原料ガス組成として1~10容量%のアルケン、5~18容量%の分子状酸素、0~60容量%の水蒸気及び20~70容量%の不活性ガス、例えば窒素、炭酸ガスなどからなる混合ガスを前記のようにして調製された触媒上に250~450℃の温度範囲及び常圧~10気圧の圧力下、アルケンの供給負荷を60~200hr-1の空間速度で導入することによって遂行されるが、本発明記載の有効収率の向上効果はアルケン供給負荷が高くなるほど著しくなり、混合ガス中のアルケンを8.5容量%以下、アルケンの供給負荷を100hr-1以上の空間速度とするのが好ましく、さらには150hr-1以上の空間速度で実行するのがより好ましい。ここで、アルケン空間速度(SV)とは原料負荷を意味し、例えばアルケン空間速度(SV)100hr-1で導入するとは、1時間あたり単位触媒体積の100倍(標準状態換算)のアルケンを供給し気相接触部分酸化反応を実行することである。本発明において、アルケンとは、その分子内脱水反応においてアルケンを生じるアルコール類、例えばターシャリーブタノールも含めたものとする。
 以下、具体例を挙げて実施例を示したが、本発明はその趣旨を逸脱しない限り実施例に限定されるものではない。
触媒1
 ヘプタモリブデン酸アンモニウム2000重量部を60℃に加温した純水7600重量部に完全溶解させた。次に、硝酸カリウム9.2重量部を純水104.1重量部に溶解させて、上記溶液に加えた。次に、硝酸第二鉄686.4重量部、硝酸コバルト1428.8重量部及び硝酸ニッケル768.6重量部を60℃に加温した純水1528.4mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水825.2mlに硝酸(60重量%)198.2重量部を加えて硝酸ビスマス778.4重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で6時間予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、シリカ、アルミナを主成分とした直径4.5mmの不活性な球状担体に、担持率が50重量%となるように球状に担持成型した。次に560℃で4時間焼成を行って、平均粒径5.2mmの球状の触媒1を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=1.6、d/g=28、a/g=17、
Mo:Bi:Fe:Co:Ni:K=12:1.7:1.8:5.2:2.8:0.10
触媒2
 ヘプタモリブデン酸アンモニウム2000重量部を60℃に加温した純水7600重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム4.4重量部を純水50.1重量部に溶解させて、上記溶液に加えた。次に、硝酸第二鉄762.7重量部、硝酸コバルト1786.0重量部及び硝酸ニッケル823.5重量部を60℃に加温した純水1787.3mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水339.8mlに硝酸(60重量%)81.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス320.5重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、平均粒径5.2mmの球状の触媒2を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=4.3、d/g=60、a/g=14、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:6.5:3.0:0.05
触媒3
 ヘプタモリブデン酸アンモニウム2000重量部を60℃に加温した純水7600重量部に完全溶解させた。次に、硝酸セシウム5.5重量部を純水62.2重量部に溶解させて、上記溶液に加えた。次に、硝酸第二鉄762.7重量部、硝酸コバルト1786.0重量部及び硝酸ニッケル823.5重量部を60℃に加温した純水1787.3mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水485.5mlに硝酸(60重量%)116.6重量部を加えて硝酸ビスマス457.9重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で6時間予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、シリカ、アルミナを主成分とした直径4.5mmの不活性な球状担体に、担持率が50重量%となるように球状に担持成型した。次に540℃で4時間焼成を行って、平均粒径5.2mmの球状の触媒3を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=100、a/g=33、
Mo:Bi:Fe:Co:Ni:Cs=12:1.0:2.0:6.5:3.0:0.03
触媒4
 触媒2における成型後の焼成工程温度のみを540℃と変更することで触媒4を得た。
触媒5
 ヘプタモリブデン酸アンモニウム2000重量部を60℃に加温した純水7600重量部に完全溶解させた。次に、硝酸カリウム4.4重量部を純水50.1重量部に溶解させて、上記溶液に加えた。次に、硝酸第二鉄762.7重量部、硝酸コバルト1786.0重量部及び硝酸ニッケル823.5重量部を60℃に加温した純水1787.3mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水485.5mlに硝酸(60重量%)116.6gを加えて硝酸ビスマス457.9重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で6時間予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、シリカ、アルミナを主成分とした直径4.5mmの不活性な球状担体に、担持率が50重量%となるように球状に担持成型した。次に550℃で4時間焼成を行って、平均粒径5.2mmの球状の触媒5を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=60、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.0:6.5:3.0:0.05
触媒6
 ヘプタモリブデン酸アンモニウム2000重量部を60℃に加温した純水7600重量部に完全溶解させた。次に、硝酸カリウム9.2重量部を純水104.1重量部に溶解させて、上記溶液に加えた。次に、硝酸第二鉄877.1重量部、硝酸コバルト1373.9重量部及び硝酸ニッケル768.6重量部を60℃に加温した純水1600.4mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水631.1mlに硝酸(60重量%)151.6gを加えて硝酸ビスマス595.3重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で6時間予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、シリカ、アルミナを主成分とした直径4.5mmの不活性な球状担体に、担持率が50重量%となるように球状に担持成型した。次に530℃で4時間焼成を行って、平均粒径5.2mmの球状の触媒6を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=2.2、d/g=29、a/g=13、
Mo:Bi:Fe:Co:Ni:K=12:1.3:2.3:5.0:2.8:0.10
実施例1
 触媒1および触媒2を使用して、プロピレンの気相接触酸化反応を実施し、プロピレン転化率、アクロレイン収率(A)、アクリル酸収率(B)、有効収率(A+B)に代表される触媒性能を求めた。外径3.2mmの熱電対保護管を設置した直径25.2mmのステンレス製反応管の原料ガス入口側に触媒1を充填長が1500mmとなるよう充填し、原料ガス出口側に上記触媒2を充填長が2000mmとなるよう充填した。原料ガスは反応管入口よりプロピレン7.4容量%、空気63.2容量%、水蒸気7.4容量%、窒素22.1容量%の混合ガスをプロピレン空間速度(SV)165hr-1で導入し、ガス出口側圧力を95kPaGに調節しプロピレンの気相接触部分酸化反応を実施した。反応開始から300時間程度経過した時のプロピレン転化率が98%となるときの結果を表1に示した。
実施例2
 触媒3および触媒4を使用して、プロピレンの気相接触酸化反応を実施し、プロピレン転化率、アクロレイン収率(A)、アクリル酸収率(B)、有効収率(A+B)に代表される触媒性能を求めた。外径6.0mmの熱電対保護管を設置した直径27.2mmのステンレス製反応管の原料ガス入口側に触媒3を充填長が1200mmとなるよう充填し、原料ガス出口側に上記触媒4を充填長が1700mmとなるよう充填した。原料ガスは反応管入口よりプロピレン8.2容量%、空気64.0容量%、水蒸気24.4容量%、窒素3.4容量%の混合ガスをプロピレン空間速度(SV)140hr-1で導入し、ガス出口側圧力を80kPaGに調節しプロピレンの気相接触部分酸化反応を実施した。反応開始から300時間程度経過した時のプロピレン転化率が98%となるときの結果を表1に示した。
実施例3
 実施例2において触媒3と触媒4の希釈三層充填へ変更した以外は同様にプロピレンの酸化反応を実施した。希釈三層充填は、ガス入口側からガス出口側へ上層、中層、下層へと触媒濃度が高くなるように充填された。上層は触媒3の重量が90重量%となるようシリカ、アルミナを主成分とした、平均粒径5.2mmの不活性物質で希釈されたあと充填長650mmとなるように充填され、次に中層は触媒3の重量を100%重量とし充填長が650mmとなるように充填され、最後に下層は触媒4の重量を100%とし充填長は1600mmとなるように充填された。反応開始から300時間程度経過した時のプロピレン転化率が98%となるときの結果を表1に示した。
比較例1
 実施例1において触媒2を触媒5へ変更した以外は同様にプロピレンの酸化反応を実施した。反応開始から300時間程度経過した時のプロピレン転化率が98%となるときの結果を表1に示した。
比較例2
 実施例2において触媒4を触媒5へ変更した以外は同様にプロピレンの酸化反応を実施した。反応開始から300時間程度経過した時のプロピレン転化率が98%となるときの結果を表1に示した。
比較例3
 実施例2において触媒6の希釈三層充填へ変更した以外は同様にプロピレンの酸化反応を実施した。希釈三層充填は、ガス入口側からガス出口側へ上層、中層、下層へと触媒濃度が高くなるように充填された。上層は触媒重量が70重量%となるようシリカ、アルミナを主成分とした、平均粒径5.2mmの不活性物質で希釈されたあと充填長700mmとなるように充填され、次に中層は触媒重量が80%重量となるよう上記不活性物質で希釈されたあと充填長が700mmとなるように充填され、最後に下層は触媒重量を100%とし充填長は1500mmとなるように充填された。反応開始から300時間程度経過した時の有効収率が最大となるときの結果を表1に示した。なお、比較例3においてプロピレン転化率が98%となるよう反応した場合はホットスポット温度が高くなりすぎてしまい、安定した反応状態の維持が困難であった。
Figure JPOXMLDOC01-appb-T000001
 このように、本発明の技術を用いることによって高負荷な反応であっても、反応浴温度を低く抑制しつつ、かつ有効収率を向上させながら長期間安定して目的生成物を得ることができる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2015年7月10日付で出願された日本国特許出願(2015-138375)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明は、不飽和アルデヒドおよび/または不飽和カルボン酸の製造に有用である。

Claims (8)

  1.  複合金属酸化物触媒を充填した多管型反応器を用いてアルケンを分子状酸素にて気相接触部分酸化することで対応する不飽和アルデヒドおよび/または不飽和カルボン酸を得る、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法であって、
     複合金属酸化物触媒を含む触媒層を管軸方向に2層以上積み重ねて多層充填し、
     一つの触媒層に含まれる複合金属酸化物触媒の組成が、その他の触媒層の少なくとも一つに含まれる複合金属酸化物触媒の組成と異なり、
     管軸の最もガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸の最もガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比より大きく、
     隣り合う二つの触媒層のいずれにおいても、管軸のガス入口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比が、管軸のガス出口側の触媒層のモリブデンの成分量に対するビスマスの成分量の比と同じ又はそれより大きく、
     かつ管軸の最もガス出口側の触媒層が下記一般式(1)で表される化合物を含む触媒を含む、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
    一般式(1) Mo12 Bi Fe Co Ni X Y Zg  
    (式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群より選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)、タングステン(W)、ケイ素(Si)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、a~hは各元素の原子比率を表し、a=0.40以上0.80未満、b=1.0~2.5、c=3.0~7.5、d=2.0~3.5、e=0~10、f=0~10、g=0.01~1.0、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.5より大きく8.8以下であり、かつd/gが2.0以上350以下であり、かつa/gが0.4以上80未満である。)
  2.  前記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量を硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上とする、請求項1に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
  3.  前記複合金属酸化物触媒が不活性な担持体の表面に触媒活性成分を担持した球状のコーティング触媒である、請求項1または2に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
  4.  前記多管型反応器に供給される原料ガス中のアルケン負荷が、1時間あたり単位触媒体積に対し100倍以上(標準状態換算)である、請求項1~3のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
  5.  前記多管型反応器に供給される原料ガス中のアルケン負荷が、1時間あたり単位触媒体積に対し150倍以上(標準状態換算)である、請求項1~4のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
  6.  前記多管型反応器に供給される原料ガス中に含まれるアルケン濃度が8.5容量%以下である、請求項1~5のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
  7.  前記多管型反応器に充填される全ての触媒層が、複合金属酸化物触媒と不活性物質の物理混合による希釈をされていない、請求項1~6のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
  8.  請求項1~7のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法による、アクロレインおよび/またはアクリル酸、メタクロレインおよび/またはメタクリル酸の製造方法。
     
PCT/JP2016/064181 2015-07-10 2016-05-12 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 WO2017010159A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680040195.XA CN107848920B (zh) 2015-07-10 2016-05-12 不饱和醛和/或不饱和羧酸的制造方法
KR1020187000568A KR102612311B1 (ko) 2015-07-10 2016-05-12 아크롤레인, 메타크롤레인, 아크릴산, 또는 메타크릴산의 제조 방법
JP2017528311A JP6694884B2 (ja) 2015-07-10 2016-05-12 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
EP16824139.6A EP3321247B1 (en) 2015-07-10 2016-05-12 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US15/742,597 US20180186712A1 (en) 2015-07-10 2016-05-12 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138375 2015-07-10
JP2015138375 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010159A1 true WO2017010159A1 (ja) 2017-01-19

Family

ID=57756916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064181 WO2017010159A1 (ja) 2015-07-10 2016-05-12 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Country Status (6)

Country Link
US (1) US20180186712A1 (ja)
EP (1) EP3321247B1 (ja)
JP (1) JP6694884B2 (ja)
KR (1) KR102612311B1 (ja)
CN (1) CN107848920B (ja)
WO (1) WO2017010159A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013064A1 (ja) * 2018-07-09 2020-01-16 日本化薬株式会社 触媒及びそれを用いた化合物の製造方法
WO2020203606A1 (ja) * 2019-03-29 2020-10-08 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
WO2020203266A1 (ja) * 2019-03-29 2020-10-08 日本化薬株式会社 不飽和アルデヒドの製造方法
WO2021141133A1 (ja) 2020-01-10 2021-07-15 日本化薬株式会社 触媒、触媒の充填方法、および触媒を用いた化合物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220050518A (ko) * 2020-10-16 2022-04-25 주식회사 엘지화학 몰리브덴-비스무트계 복합 금속 산화물의 제조방법

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113730A (en) * 1979-02-26 1980-09-02 Mitsubishi Petrochem Co Ltd Preparation of acrolein and acrylic acid
JPH03176440A (ja) * 1989-12-06 1991-07-31 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03200733A (ja) * 1989-12-28 1991-09-02 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03215441A (ja) * 1990-01-18 1991-09-20 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03294239A (ja) * 1990-04-11 1991-12-25 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JPH03294238A (ja) * 1990-01-26 1991-12-25 Nippon Shokubai Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH09202741A (ja) * 1996-12-12 1997-08-05 Nippon Shokubai Co Ltd メタクロレインおよびメタクリル酸の製造方法
JP2001048817A (ja) * 1999-08-04 2001-02-20 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JP2003146920A (ja) * 2001-11-07 2003-05-21 Mitsubishi Chemicals Corp アクロレインおよびアクリル酸の製造方法
JP2003306457A (ja) * 2002-02-14 2003-10-28 Mitsubishi Chemicals Corp 多管式熱交換器型反応器を用いた気相接触酸化方法
JP2005162744A (ja) * 2003-11-14 2005-06-23 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸の製造方法
WO2014181839A1 (ja) * 2013-05-09 2014-11-13 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2015008815A1 (ja) * 2013-07-18 2015-01-22 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2015008814A1 (ja) * 2013-07-18 2015-01-22 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2130297T3 (es) * 1989-12-06 1999-07-01 Nippon Catalytic Chem Ind Procedimiento para producir metacroleina y acido metacrilico.
JP3028327B2 (ja) 1992-12-25 2000-04-04 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造方法
JP4318367B2 (ja) 2000-02-16 2009-08-19 株式会社日本触媒 アクロレインおよびアクリル酸の製造方法
MY139735A (en) 2003-11-18 2009-10-30 Basf Ag Preparation of acrolein by heterogeneously catalyzed partial gas phase oxidation of propene
JPWO2009057463A1 (ja) * 2007-11-02 2011-03-10 日本化薬株式会社 気相接触酸化反応方法
MY160779A (en) * 2009-04-16 2017-03-15 Procter & Gamble Apparatus for delivering a volatile material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113730A (en) * 1979-02-26 1980-09-02 Mitsubishi Petrochem Co Ltd Preparation of acrolein and acrylic acid
JPH03176440A (ja) * 1989-12-06 1991-07-31 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03200733A (ja) * 1989-12-28 1991-09-02 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03215441A (ja) * 1990-01-18 1991-09-20 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03294238A (ja) * 1990-01-26 1991-12-25 Nippon Shokubai Co Ltd メタクロレインおよびメタクリル酸の製造方法
JPH03294239A (ja) * 1990-04-11 1991-12-25 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JPH09202741A (ja) * 1996-12-12 1997-08-05 Nippon Shokubai Co Ltd メタクロレインおよびメタクリル酸の製造方法
JP2001048817A (ja) * 1999-08-04 2001-02-20 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JP2003146920A (ja) * 2001-11-07 2003-05-21 Mitsubishi Chemicals Corp アクロレインおよびアクリル酸の製造方法
JP2003306457A (ja) * 2002-02-14 2003-10-28 Mitsubishi Chemicals Corp 多管式熱交換器型反応器を用いた気相接触酸化方法
JP2005162744A (ja) * 2003-11-14 2005-06-23 Mitsubishi Chemicals Corp 不飽和アルデヒド及び不飽和カルボン酸の製造方法
WO2014181839A1 (ja) * 2013-05-09 2014-11-13 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2015008815A1 (ja) * 2013-07-18 2015-01-22 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2015008814A1 (ja) * 2013-07-18 2015-01-22 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321247A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013064A1 (ja) * 2018-07-09 2020-01-16 日本化薬株式会社 触媒及びそれを用いた化合物の製造方法
JPWO2020013064A1 (ja) * 2018-07-09 2021-08-05 日本化薬株式会社 触媒及びそれを用いた化合物の製造方法
JP7224351B2 (ja) 2018-07-09 2023-02-17 日本化薬株式会社 触媒及びそれを用いた化合物の製造方法
WO2020203606A1 (ja) * 2019-03-29 2020-10-08 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
WO2020203266A1 (ja) * 2019-03-29 2020-10-08 日本化薬株式会社 不飽和アルデヒドの製造方法
JP6792744B1 (ja) * 2019-03-29 2020-11-25 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
JPWO2020203266A1 (ja) * 2019-03-29 2021-04-30 日本化薬株式会社 不飽和アルデヒドの製造方法
JP7506031B2 (ja) 2019-03-29 2024-06-25 日本化薬株式会社 不飽和アルデヒドの製造方法
US12157720B2 (en) 2019-03-29 2024-12-03 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde
WO2021141133A1 (ja) 2020-01-10 2021-07-15 日本化薬株式会社 触媒、触媒の充填方法、および触媒を用いた化合物の製造方法

Also Published As

Publication number Publication date
CN107848920A (zh) 2018-03-27
KR20180029031A (ko) 2018-03-19
EP3321247B1 (en) 2019-11-20
EP3321247A4 (en) 2019-01-16
KR102612311B1 (ko) 2023-12-08
US20180186712A1 (en) 2018-07-05
JP6694884B2 (ja) 2020-05-20
EP3321247A1 (en) 2018-05-16
CN107848920B (zh) 2021-02-26
JPWO2017010159A1 (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6294883B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
KR102422025B1 (ko) 불포화 알데히드 및/또는 불포화 카본산 제조용 촉매 및 그의 제조 방법 그리고 불포화 알데히드 및/또는 불포화 카본산의 제조 방법
JP2018140993A (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP5951121B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6199972B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2008535784A (ja) 不飽和アルデヒド及び/または不飽和酸の製造法
JP6694884B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP7506031B2 (ja) 不飽和アルデヒドの製造方法
JP5680373B2 (ja) 触媒及びアクリル酸の製造方法
JP2004002209A (ja) 不飽和アルデヒドの製造方法
JP6238354B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2016147324A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2005162744A (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2019210228A (ja) メタクロレインの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528311

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000568

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824139

Country of ref document: EP