WO2010064440A1 - リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池 - Google Patents
リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池 Download PDFInfo
- Publication number
- WO2010064440A1 WO2010064440A1 PCT/JP2009/006602 JP2009006602W WO2010064440A1 WO 2010064440 A1 WO2010064440 A1 WO 2010064440A1 JP 2009006602 W JP2009006602 W JP 2009006602W WO 2010064440 A1 WO2010064440 A1 WO 2010064440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite compound
- lithium composite
- particle powder
- compound particle
- lithium
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 136
- 239000000843 powder Substances 0.000 title claims abstract description 123
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 121
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 120
- 150000001875 compounds Chemical class 0.000 title claims abstract description 108
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims description 104
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000012298 atmosphere Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 10
- 150000002500 ions Chemical group 0.000 claims description 10
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 10
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 229910012424 LiSO 3 Inorganic materials 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 239000011163 secondary particle Substances 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 239000003125 aqueous solvent Substances 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 239000007774 positive electrode material Substances 0.000 abstract description 17
- 229910019549 CoyMzO2 Inorganic materials 0.000 abstract 1
- 229910021543 Nickel dioxide Inorganic materials 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 25
- 238000003860 storage Methods 0.000 description 19
- 238000005406 washing Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- -1 aluminum compound Chemical class 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 238000002003 electron diffraction Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 238000006114 decarboxylation reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002816 nickel compounds Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004530 SIMS 5 Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002742 polystyrene-block-poly(ethylene/propylene) -block-polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/12—Borates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention provides a lithium composite compound particle powder having good cycle characteristics and excellent high-temperature storage characteristics as a positive electrode active material of a secondary battery, and a secondary battery using the lithium composite compound particle powder.
- LiMn 2 O 4 of spinel structure LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiNiO 2 and the like are generally known, and lithium ion secondary batteries using LiNiO 2 have attracted attention as batteries having a high charge / discharge capacity.
- this material is inferior in thermal stability during charging and charge / discharge cycle durability, further improvement in characteristics is required.
- One of the causes of characteristic deterioration may be impurities present on the particle surface. If surplus lithium at the time of synthesis exists on the particle surface, gelation is induced at the time of electrode preparation. In addition, when carbonated, carbon dioxide is generated due to a reaction inside the battery, and the cell swells to deteriorate the battery characteristics. In addition, the presence of sulfate causes an increase in resistance during storage.
- the amount of impurities present on the particle surface is reduced and the surface state is controlled to suppress side reactions in the battery that accompany charging and discharging, as well as to suppress deterioration as particles and electrodes, and to improve cycle characteristics and high-temperature storage characteristics. There is a strong demand for improvement.
- Patent Documents 1 to 7 technologies for improving capacity
- Patent Documents 8 to 10 technologies for improving cycle characteristics
- Patent Documents 3 and 6) 11 technologies for improving storability
- Patent Documents 5 to 7, 12 technologies for improving thermal stability
- the positive electrode active material that satisfies the above-mentioned properties is currently most demanded, but has not yet been obtained.
- the present invention provides a lithium composite compound particle powder having improved cycle characteristics and storage characteristics by controlling the crystal structure of the lithium composite compound particle powder, which is a positive electrode active material, and the amount of impurities on the surface. Let it be an issue.
- the present invention relates to a lithium composite compound particle powder composed of the lithium composite compound represented by the composition formula 1, and the ion when the particle surface of the lithium composite compound particle powder is analyzed with a time-of-flight secondary ion mass spectrometer.
- Lithium composite compound particles characterized by having an intensity ratio A (LiO ⁇ / NiO 2 ⁇ ) of 0.3 or less and an ionic strength ratio B (Li 3 CO 3 + / Ni + ) of 20 or less It is a powder (Invention 1).
- Composition formula 1 Li 1 + x Ni 1-yz Co y M z O 2
- M B, at least one of Al, ⁇ 0.02 ⁇ x ⁇ 0.02, 0 ⁇ y ⁇ 0.20, 0 ⁇ z ⁇ 0.10
- the present invention is the lithium composite compound particle powder according to the present invention 1 having an average secondary particle diameter of 1 to 30 ⁇ m or less (Invention 2).
- the present invention is the lithium composite compound particle powder according to the present invention 1 or 2, wherein the powder pH in a 2% by weight suspension solution in which the lithium composite compound particle powder is dispersed is 11.0 or less (the present invention). 3).
- the present invention is the lithium composite compound particle powder according to any one of the present inventions 1 to 3 having a carbon content of 300 ppm or less (Invention 4).
- the sulfur content is 100 ppm or less
- the ionic strength ratio C (LiSO 3 ⁇ / NiO 2 ⁇ ) is 0.3 or less
- the sodium content is 100 ppm or less. 4.
- the present invention provides the lithium according to any one of the present inventions 1 to 5, wherein the lithium carbonate component content is 0.30% by weight or less and the lithium hydroxide content is 0.30% by weight or less. It is a composite compound particle powder (Invention 6).
- the present invention also provides the lithium composite compound particle powder according to any one of the present inventions 1 to 6 having a specific surface area of 0.05 to 0.7 m 2 / g (Invention 7).
- the present invention is a method for producing a lithium composite compound particle powder according to any one of the present inventions 1 to 7, wherein the production method comprises a step of removing impurities from the lithium composite compound particle powder with an aqueous solvent (1 ), And the step (2) of heat-treating the lithium composite compound particle powder that has undergone the step (1), and in the step (1), the lithium composite compound particle powder used is based on the total number of moles of transition metal, aluminum, and boron.
- This is a method for producing a lithium composite compound particle powder in which the ratio of the total number of moles of lithium is 1.02 or more and 1.10 or less (Invention 8).
- the present invention is the production method according to the present invention 8, wherein the heat treatment in the step (2) is performed in an air or oxygen atmosphere having a carbon dioxide concentration of 100 ppm or less at a temperature range of 500 ° C. to 850 ° C. ( Invention 9).
- the present invention is a non-aqueous electrolyte secondary battery using the lithium composite compound particle powder according to any one of the present inventions 1 to 7 (present invention 10).
- the lithium composite compound particle powder according to the present invention is suitable as a positive electrode active material for a secondary battery because it has good cycle characteristics and excellent high-temperature storage characteristics as a positive electrode active material for a secondary battery.
- the lithium composite compound particle powder according to the present invention has the following composition formula 1.
- Composition formula 1 Li 1 + x Ni 1-yz Co y M z O 2
- M B, at least one of Al, ⁇ 0.02 ⁇ x ⁇ 0.02, 0 ⁇ y ⁇ 0.20, 0 ⁇ z ⁇ 0.10
- the lithium composite compound particle powder according to the present invention has an ionic strength ratio A (LiO ⁇ / NiO 2 ⁇ ) of 0.3 when the surface of the lithium composite compound particle powder is analyzed with a time-of-flight secondary ion mass spectrometer. It is as follows. When the ionic strength ratio A (LiO ⁇ / NiO 2 ⁇ ) exceeds 0.3, the cycle characteristics of a secondary battery produced using the lithium composite compound particle powder are degraded. A more preferable ionic strength ratio A (LiO ⁇ / NiO 2 ⁇ ) is 0.01 to 0.25.
- the lithium composite compound particle powder according to the present invention has an ionic strength ratio B (Li 3 CO 3 + / Ni + ) of 20 when the surface of the lithium composite compound particle powder is analyzed with a time-of-flight secondary ion mass spectrometer. It is as follows. When the ionic strength ratio B (Li 3 CO 3 + / Ni + ) exceeds 20, the cycle characteristics of a secondary battery produced using the lithium composite compound particle powder deteriorate. A more preferable ionic strength ratio B (Li 3 CO 3 + / Ni + ) is 0.1 to 19.0.
- the lithium composite compound particle powder according to the present invention has an ionic strength ratio C (LiSO 3 ⁇ / NiO 2 ⁇ ) of 0 when the surface of the lithium composite compound particle powder is analyzed with a time-of-flight secondary ion mass spectrometer. It is preferable that it is 3 or less. When the ionic strength ratio C (LiSO 3 ⁇ / NiO 2 ⁇ ) exceeds 0.3, the storage characteristics of the secondary battery produced using the lithium composite compound particle powder are degraded. An even more preferable ionic strength ratio C (LiSO 3 ⁇ / NiO 2 ⁇ ) is 0.01 to 0.25.
- the average secondary particle diameter of the lithium composite compound particle powder according to the present invention is preferably 1.0 to 30 ⁇ m.
- the average secondary particle diameter is less than 1.0 ⁇ m, the filling density is lowered and the reactivity with the electrolytic solution is increased, which is not preferable. If the thickness exceeds 30 ⁇ m, the diffusion distance of lithium ions extends, causing a decrease in conductivity and a deterioration in cycle characteristics, so that the intended effect cannot be obtained.
- a more preferable average secondary particle size is 2.0 to 20 ⁇ m.
- the average primary particle diameter of the lithium composite compound particle powder according to the present invention is preferably 0.1 ⁇ m or more.
- the average primary particle diameter is less than 0.1 ⁇ m, the crystallinity is poor and the cycle is deteriorated.
- the average primary particle diameter exceeds 15 ⁇ m, the diffusion of lithium is inhibited, which again causes cycle deterioration. That is, the average primary particle size is more preferably from 0.1 to 15 ⁇ m, more preferably from 0.5 to 12 ⁇ m.
- the powder pH of the lithium composite compound particle powder according to the present invention (water pH when the particle powder is dispersed in water) is preferably 11.0 or less.
- the powder pH exceeds 11.0, the coating properties of the positive electrode are deteriorated, and the cycle characteristics and storage characteristics of a secondary battery produced using the lithium composite compound particle powder are deteriorated.
- it is 10.8 or less, More preferably, it is 10.7 or less.
- the lower limit of the powder pH is usually 9.0.
- the carbon content of the lithium composite compound particle powder according to the present invention is preferably 300 ppm or less. When the carbon content exceeds 300 ppm, the cycle characteristics of a secondary battery produced using the lithium composite compound particle powder deteriorate.
- a more preferable carbon content is 1.0 to 250 ppm.
- the sulfur content of the lithium composite compound particle powder according to the present invention is preferably 100 ppm or less. When the content of sulfur exceeds 100 ppm, the storage characteristics of a secondary battery produced using the lithium composite compound particle powder are deteriorated. A more preferable sulfur content is 50 ppm or less.
- the sodium content of the lithium composite compound particle powder according to the present invention is preferably 100 ppm or less. When the content of sodium exceeds 100 ppm, the cycle characteristics of the secondary battery produced using the lithium composite compound particle powder are deteriorated. A more preferable sodium content is 50 ppm or less.
- the content of the lithium carbonate component of the lithium composite compound particle powder according to the present invention is preferably 0.30% by weight or less.
- the content of lithium carbonate exceeds 0.30% by weight, the cycle characteristics of a secondary battery produced using the lithium composite compound particle powder deteriorate due to side reactions and gas generation inside the battery.
- a more preferable lithium carbonate content is 0.25% by weight or less.
- the content of lithium hydroxide in the lithium composite compound particle powder according to the present invention is preferably 0.30% by weight or less.
- the content of lithium hydroxide exceeds 0.30% by weight, the coating properties of the positive electrode are deteriorated and the cycle characteristics of the secondary battery produced using the lithium composite compound particle powder are deteriorated.
- a more preferable lithium hydroxide content is 0.20% by weight or less.
- the BET specific surface area of the lithium composite compound particle powder according to the present invention is preferably 0.05 to 0.7 m 2 / g.
- the BET specific surface area value is less than 0.05 m 2 / g, the cycle characteristics of a secondary battery produced using the lithium composite compound particle powder are deteriorated.
- the storage characteristics of the secondary battery produced using the lithium composite compound particle powder are deteriorated.
- a more preferable BET specific surface area is 0.06 to 0.6 m 2 / g.
- the lithium composite compound particle powder according to the present invention includes a step (1) of pulverizing a lithium composite compound particle powder prepared in advance, dispersing it in water and washing it with water to remove impurities, and the lithium composite after the step (1). After the compound particle powder is dried, it can be obtained through a step (2) of heat treatment in air at a temperature of 500 to 850 ° C. in air having a carbonic acid concentration of 100 ppm or less or in oxygen having a carbonic acid concentration of 100 ppm or less.
- the lithium composite compound particle powder used for the treatment is obtained by an ordinary method.
- a lithium compound, a nickel compound, a cobalt compound, an aluminum compound and / or a boron compound are mixed and heat-treated.
- it may be obtained by any method of reacting an aluminum compound and / or a boron compound.
- the lithium composite compound particle powder used for the treatment had a ratio of the total number of moles of lithium to the total number of moles of transition metal elements (Co, Ni), aluminum and boron (Li / (Co + Ni + Al + B)) of 1.02 or more and 1 10 or less is preferable.
- the ratio is less than 1.02, the reaction is insufficient and the capacity is reduced.
- it exceeds 1.10 an excessive lithium component remains, which is not preferable.
- a more preferred ratio is 1.03 to 1.08.
- the lithium composite compound particle powder is suspended in pure water having a weight ratio of 5 times or more and a water temperature of 20 ° C. or less for about 20 minutes, filtered, and then the same amount of pure water as that of the suspension. Wash with water.
- the suspension time is preferably within 30 minutes.
- washing with water After washing with water, it is filtered, dried and heat treated. If the amount of pure water used is too small, cleaning will be insufficient. Further, if the suspension time is long, it is not preferable from the viewpoint of productivity, and it is not preferable because Li may be extracted from the particle crystal.
- the temperature of the pure water used at the time of water washing is high, the Li extraction from the particles is accelerated, and at the same time the Li is extracted from the crystal at the time of the excess Li water washing, it becomes difficult to control the composition.
- washing with pure water at 20 ° C. or lower, more preferably 10 ° C. or lower, within 20 minutes is preferable.
- the heat treatment temperature is 500 to 850 ° C.
- the temperature is lower than 500 ° C.
- the storage characteristics of the secondary battery produced using the obtained lithium composite compound particle powder are deteriorated.
- the temperature exceeds 850 ° C., the cycle characteristics of the secondary battery produced using the obtained lithium composite compound particle powder are deteriorated.
- a more preferable heat treatment temperature is 600 to 800 ° C.
- Holding time is preferably 1 to 5 hours. If it is shorter than 1 hour, the crystallinity of the surface is insufficient, and if it is longer than 5 hours, it is not preferable from the viewpoint of productivity and cost.
- the atmosphere during the heat treatment is in air having a carbonic acid concentration of 100 ppm or less or in oxygen having a carbonic acid concentration of 100 ppm or less.
- the carbonic acid concentration exceeds 100 ppm, the cycle characteristics of the secondary battery produced using the obtained lithium composite compound particle powder are degraded.
- oxygen is released during heat treatment, which is not preferable.
- the ionic strength ratio A LiO ⁇ / NiO 2 ⁇
- the ionic strength ratio B Li 3 CO 3 + / Ni +
- powder pH, carbon content, sulfur content Rate ionic strength ratio C (LiSO 3 ⁇ / NiO 2 ⁇ ), sodium content, lithium carbonate component content, lithium hydroxide content.
- a conductive agent and a binder are added and mixed according to a conventional method.
- the conductive agent acetylene black, carbon black, graphite and the like are preferable
- the binder polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
- the secondary battery manufactured using the positive electrode active material in the present invention is composed of the positive electrode, the negative electrode, and the electrolyte.
- lithium metal lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used.
- an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
- At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
- lithium oxide or lithium hydroxide acts as a strong alkali, gelation occurs during coating, or paint storage stability deteriorates. Further, when lithium carbonate is formed, gas is generated during charging inside the battery, which adversely affects cycle characteristics and storage characteristics. Moreover, when it exists in the surface as lithium sulfate, an impedance raise will be raise
- lithium is extracted also from the inside of the particle by touching moisture, and the crystal structure starts to be destroyed from the particle surface.
- the surface state of the lithium composite compound particle powder is measured by measuring the impurity intensity using a time-of-flight secondary ion mass spectrometer (TOF-SIMS), the amount of impurities present on the particle surface is reduced, and By stabilizing the crystallinity of the particle surface, a positive electrode active material of a secondary battery having good cycle characteristics and excellent high-temperature storage characteristics is obtained.
- TOF-SIMS time-of-flight secondary ion mass spectrometer
- a typical embodiment of the present invention is as follows.
- a plasma emission analyzer (SPS4000 manufactured by Seiko Denshi Kogyo) was used for elemental analysis.
- the average primary particle size was determined by a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer (manufactured by Hitachi High-Technologies Corporation).
- the average secondary particle size (D50) is a volume-based average particle size measured by a wet laser method using a laser type particle size distribution analyzer LMS-30 [manufactured by Seishin Enterprise Co., Ltd.].
- the presence state of particles to be coated or present is determined by scanning electron microscope SEM-EDX with energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation] and time-of-flight secondary ion mass spectrometer TOF-SIMS5 [ION-TOF Co.
- the ionic strength ratio A LiO ⁇ / NiO 2 ⁇
- the ionic strength ratio B Li 3 CO 3 + / Ni +
- the ionic strength ratio C LiSO 3 ⁇ / NiO 2 ⁇ .
- the powder pH was prepared by suspending 0.5 g of powder in 25 ml of distilled water to prepare a 2 wt% dispersion, and standing at room temperature to measure the pH value of the suspension.
- the carbon content is an amount measured by burning a sample in an oxygen stream in a combustion furnace using a carbon and sulfur measuring device EMIA-520 (manufactured by Horiba Ltd.).
- the sulfur content is an amount measured by burning a sample in an oxygen stream in a combustion furnace using a carbon and sulfur measuring device EMIA-520 (manufactured by Horiba Ltd.).
- the content of the lithium carbonate component and lithium hydroxide was determined by suspending 20 g of a sample in 100 ml of pure water in an Erlenmeyer flask, sealing it in an Ar atmosphere, and stirring the mixture for 20 minutes using a magnetic stirrer to remove excess lithium carbonate and lithium hydroxide. Extracted in. The sample and the filtrate were separated by suction filtration, and the filtrate was titrated with hydrochloric acid. At this time, phenolphthalein and bromocresol green methyl were used as indicators to determine the end point, and lithium carbonate and lithium hydroxide in the sample were estimated from the titration amount to obtain an excess.
- the BET specific surface area was measured based on the BET method using nitrogen.
- the battery characteristics of the positive electrode active material were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following manufacturing method to produce a coin-type battery cell.
- the positive electrode active material, the conductive agent acetylene black and the binder polyvinylidene fluoride are precisely weighed so that the weight ratio is 85: 10: 5, and thoroughly mixed in a mortar, and then N-methyl-2-pyrrolidone.
- the positive electrode mixture slurry was prepared by dispersing in the mixture. Next, this slurry was applied to an aluminum foil as a current collector with a film thickness of 150 ⁇ m, vacuum-dried at 150 ° C., and then punched into a disk shape of ⁇ 16 mm to obtain a positive electrode plate.
- An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 50:50.
- LiPF 6 lithium hexafluorophosphate
- a case made of SUS316 was used in a glove box in an argon atmosphere, and a CR2032-type coin battery was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.
- a charge / discharge test of a secondary battery was performed using the coin-type battery. As measurement conditions, charge and discharge were repeated at room temperature, a measurement rate of 1.0 C, and a cut-off voltage of 3.0 to 4.3 V. When the rate is 1.0 C, charging and discharging is performed in a short time compared to the case of 0.2 C or the like (1 C is performed in 1 hour, whereas 0.2 C is performed over 5 hours), which is large. Charging / discharging is performed at a current density.
- a 500 mAh laminate type cell using a carbon negative electrode was prepared, the cell charged to 4.2 V was stored at 85 ° C. for 24 hours, and the rate of change was obtained by volume measurement before and after the storage. .
- Resistance rise was performed by storing a coin cell charged to 4.3 V at 60 ° C. for 4 weeks, and measuring the AC impedance before and after that to determine the rate of increase in resistance. Impedance measurement was performed using an AC impedance measuring device comprising a 1287 type interface made by Solartron and a 1252A type frequency response analyzer.
- Example 1 Lithium hydroxide is mixed with a hydroxide composed of cobalt, nickel, and aluminum at a ratio such that Li / (Ni + Co + Al) is 1.08, and calcined in an oxygen atmosphere at 750 ° C. for 20 hours to form lithium composite compound particles A powder was obtained. 60 g of the crushed lithium composite compound particle powder was suspended in 300 ml of pure water having a water temperature of 10 ° C., stirred for 20 minutes, filtered and washed.
- the obtained lithium composite compound particle powder was evaluated by a time-of-flight secondary ion mass spectrometer.
- the ionic strength ratio A LiO ⁇ / NiO 2 ⁇
- the ionic strength ratio B Li 3 CO 3 + / Ni +
- the ionic strength ratio C LiSO 3 ⁇ / NiO 2 ⁇
- Example 2 After mixing at a ratio such that Li / (Ni + Co + Al) was 1.02, the powder obtained by the same treatment as in Example 1 was washed, dried, and decarboxylated (concentration 20 ppm) under an oxygen atmosphere of 800. Heat treatment was performed at 2 ° C. for 2 hours.
- Example 3 After mixing at a ratio such that Li / (Ni + Co + Al) is 1.02, the powder obtained by the same treatment as in Example 1 is washed, dried, and decarboxylated (concentration 20 ppm) under an air atmosphere of 800. Heat treatment was performed at 2 ° C. for 2 hours.
- Example 4 Lithium hydroxide is mixed with hydroxide and boric acid made of cobalt, nickel, and aluminum at a ratio such that Li / (Ni + Co + Al + B) is 1.07, and calcined at 750 ° C. for 20 hours in an oxygen atmosphere.
- Composite compound particle powder was obtained. 60 g of the pulverized lithium composite compound particle powder was washed in the same manner as in Example 1.
- Example 5 After mixing at a ratio such that Li / (Ni + Co + Al + B) is 1.10, the powder obtained by the same treatment as in Example 4 was washed, dried, and decarboxylated (concentration 20 ppm) under an air atmosphere 700 Heat treatment was performed at 2 ° C. for 2 hours.
- Example 6 After mixing at a ratio such that Li / (Ni + Co + Al + B) was 1.10, the powder obtained by the same treatment as in Example 4 was washed, dried, and decarboxylated (concentration 20 ppm) under an oxygen atmosphere 600 Heat treatment was performed at 2 ° C. for 2 hours.
- Example 1 In Example 1, the lithium composite compound particle powder obtained by firing was not washed. After the obtained particles were embedded in a resin and subjected to FIB processing, electron diffraction near the surface was confirmed (FIG. 4). As a result, a diffraction image belonging to R-3m having low crystallinity was obtained.
- Comparative Example 2 In Example 4, the lithium composite compound particle powder obtained by firing was not washed.
- Comparative Example 3 The powder obtained in Example 1 was not subjected to washing / drying treatment, and was subjected to heat treatment at 800 ° C. for 2 hours in an oxygen atmosphere in which the lithium composite compound particle powder was decarboxylated (concentration 20 ppm).
- Comparative Example 4 The lithium composite compound particle powder obtained by washing and drying the powder obtained in Example 2 was heat-treated at 600 ° C. for 2 hours in a nitrogen atmosphere obtained by decarboxylation (concentration 20 ppm).
- Comparative Example 5 The lithium composite compound particle powder obtained by washing and drying the powder obtained in Example 4 was heat-treated at 300 ° C. for 2 hours under an oxygen atmosphere in which the carbonic acid was decarboxylated (concentration 20 ppm).
- Comparative Example 6 The lithium composite compound particle powder obtained by washing and drying the powder obtained in Example 5 was heat-treated at 850 ° C. for 2 hours in a nitrogen atmosphere in which the carbonic acid was decarboxylated (concentration 20 ppm).
- Comparative Example 7 The lithium composite compound particle powder obtained by washing and drying the powder obtained in Example 5 was heat-treated at 500 ° C. for 2 hours in an undecarboxylated air atmosphere (CO 2 concentration 350 ppm).
- Comparative Example 8 The lithium composite compound particle powder obtained by washing and drying the powder obtained in Example 5 was heat-treated at 800 ° C. for 2 hours under an undecarboxylated oxygen atmosphere (CO 2 concentration 350 ppm). After the obtained particles were embedded in a resin and subjected to FIB processing, electron diffraction near the surface was confirmed (FIG. 5), and a polycrystalline diffraction image belonging to R-3m was obtained.
- CO 2 concentration 350 ppm undecarboxylated oxygen atmosphere
- Example 2 After embedding the obtained lithium composite compound particle powder (Example 1, Comparative Examples 1 and 8) in a resin and performing FIB processing, as shown in FIG. 1, the vicinity of the surface (B in FIG. 1) and the inside of the particle Nano-ED (electron beam diffraction) was confirmed for (A in FIG. 1). All samples were confirmed to maintain crystallinity at the center of the particle (FIG. 2).
- Comparative Example 1 Without treatment (Comparative Example 1), as shown in FIG. 4, the crystallinity of the surface is poor, and it is expected that the movement of lithium is inhibited. Also, with heat treatment and without decarboxylation (Comparative Example 8), as shown in FIG. 5, the crystallinity was improved as compared with Comparative Example 1, but it was polycrystalline. In addition, with heat treatment and with decarboxylation (Example 1), as shown in FIG. 3, it was confirmed that the crystallinity was improved and the cycle characteristics were also improved.
- the battery characteristics of the secondary battery produced using the lithium composite compound particle powder according to the present invention have a cycle retention rate of 95% or more, and among the storage characteristics, the swelling of the battery is as small as 20% or less.
- the rate of increase is also as low as 70% or less.
- the lithium composite compound particle powder according to the present invention is suitable as a positive electrode active material for a secondary battery because it has good cycle characteristics and excellent high-temperature storage characteristics as a positive electrode active material for a secondary battery.
- FIG. 2 is a photograph of electron diffraction at the particle center of the lithium composite compound particle powder obtained in Example 1.
- FIG. 2 is a photograph of electron diffraction of the particle surface portion of the lithium composite compound particle powder obtained in Example 1.
- FIG. 4 is a photograph of electron beam diffraction of the particle surface portion of the lithium composite compound particle powder obtained in Comparative Example 1.
- FIG. 6 is a photograph of electron diffraction of the particle surface portion of the lithium composite compound particle powder obtained in Comparative Example 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Abstract
Description
Li1+xNi1-y-zCoyMzO2
Li1+xNi1-y-zCoyMzO2
二次電池のサイクル特性の改善には、正極活物質を構成するリチウム複合化合物粒子粉末の粒子表面での劣化を抑制することが重要であり、高温保存特性などは電池内部でのガス発生をいかに抑制するかが重要となる。
正極活物質と導電剤であるアセチレンブラック及び結着剤のポリフッ化ビニリデンを重量比で85:10:5となるように精秤し、乳鉢で十分に混合してからN-メチル-2-ピロリドンに分散させて正極合剤スラリーを調整した。次に、このスラリーを集電体のアルミニウム箔に150μmの膜厚で塗布し、150℃で真空乾燥してからφ16mmの円板状に打ち抜き正極板とした。
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
炭酸エチレンと炭酸ジエチルとの体積比50:50の混合溶液に電解質として六フッ化リン酸リチウム(LiPF6)を1モル/リットル混合して電解液とした。
アルゴン雰囲気のグローブボックス中でSUS316製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入してCR2032型のコイン電池を作製した。
前記コイン型電池を用いて、二次電池の充放電試験を行った。測定条件としては、室温で、測定レートを1.0Cとし、カットオフ電圧は3.0~4.3Vの間で充放電を繰り返した。レートが1.0Cの場合、0.2Cなどの場合に比べて短時間で充放電することになり(1Cでは1時間で行うのに対し、0.2Cでは5時間かけて行う。)、大きな電流密度で充放電を行うものである。
コバルトとニッケルとアルミニウムからなる水酸化物に水酸化リチウムを、Li/(Ni+Co+Al)が1.08となるような比率で混合し、酸素雰囲気で750℃で20時間、焼成してリチウム複合化合物粒子粉末を得た。解砕したリチウム複合化合物粒子粉末60gを300mlの水温が10℃の純水に懸濁し、20分間攪拌した後に、濾過、洗浄した。
Li/(Ni+Co+Al)が1.02となるような比率で混合し以降を実施例1と同様の処理で得られた粉末を洗浄、乾燥し、脱炭酸(濃度20ppm)した酸素雰囲気のもと800℃で2時間、熱処理を行った。
Li/(Ni+Co+Al)が1.02となるような比率で混合し以降を実施例1と同様の処理で得られた粉末を洗浄、乾燥し、脱炭酸(濃度20ppm)した空気雰囲気のもと800℃で2時間、熱処理を行った。
コバルトとニッケルとアルミニウムからなる水酸化物とホウ酸に水酸化リチウムを、Li/(Ni+Co+Al+B)が1.07となるような比率で混合し、酸素雰囲気で750℃で20時間、焼成してリチウム複合化合物粒子粉末を得た。解砕したリチウム複合化合物粒子粉末60gを実施例1と同様にして洗浄した。
Li/(Ni+Co+Al+B)が1.10となるような比率で混合し以降を実施例4と同様の処理で得られた粉末を洗浄、乾燥し、脱炭酸(濃度20ppm)した空気雰囲気のもと700℃で2時間、熱処理を行った。
Li/(Ni+Co+Al+B)が1.10となるような比率で混合し以降を実施例4と同様の処理で得られた粉末を洗浄、乾燥し、脱炭酸(濃度20ppm)した酸素雰囲気のもと600℃で2時間、熱処理を行った。
実施例1において、焼成して得られたリチウム複合化合物粒子粉末に洗浄処理を行っていないものである。得られた粒子を樹脂に包埋後、FIB加工を行ったのちに表面近傍の電子線回折を確認したところ(図4)、結晶性の低いR-3mに属する回折像が得られた。
実施例4において、焼成して得られたリチウム複合化合物粒子粉末に洗浄処理を行っていないものである。
実施例1で得られた粉末を洗浄・乾燥処理を行わず、リチウム複合化合物粒子粉末を脱炭酸(濃度20ppm)した酸素雰囲気のもと800℃で2時間熱処理を行った。
実施例2で得られた粉末を洗浄・乾燥処理したリチウム複合化合物粒子粉末を脱炭酸(濃度20ppm)した窒素雰囲気のもと600℃で2時間熱処理を行った。
実施例4で得られた粉末を洗浄・乾燥処理したリチウム複合化合物粒子粉末を脱炭酸(濃度20ppm)した酸素雰囲気のもと300℃で2時間熱処理を行った。
実施例5で得られた粉末を洗浄・乾燥処理したリチウム複合化合物粒子粉末を脱炭酸(濃度20ppm)した窒素雰囲気のもと850℃で2時間熱処理を行った。
実施例5で得られた粉末を洗浄・乾燥処理したリチウム複合化合物粒子粉末を脱炭酸されていない空気雰囲気(CO2濃度350ppm)のもと500℃で2時間熱処理を行った。
実施例5で得られた粉末を洗浄・乾燥処理したリチウム複合化合物粒子粉末を脱炭酸されていない酸素雰囲気(CO2濃度350ppm)のもと800℃で2時間熱処理を行った。得られた粒子を樹脂に包埋後、FIB加工を行ったのちに表面近傍の電子線回折を確認したところ(図5)、多結晶性的なR-3mに属する回折像が得られた。
Claims (10)
- 組成式1で示されるリチウム複合化合物から成るリチウム複合化合物粒子粉末において、該リチウム複合化合物粒子粉末の粒子表面を飛行時間型二次イオン質量分析装置で分析したときの、イオン強度比A(LiO-/NiO2 -)が0.3以下であって、且つ、イオン強度比B(Li3CO3 +/Ni+)が20以下であることを特徴とするリチウム複合化合物粒子粉末。
組成式1:
Li1+xNi1-y-zCoyMzO2
M=B,Alの少なくとも1種以上、-0.02≦x≦0.02、0<y≦0.20、0<z≦0.10 - 平均2次粒子径が1~30μm以下である請求項1記載のリチウム複合化合物粒子粉末。
- リチウム複合化合物粒子粉末を水に分散させた2重量%の懸濁溶液における粉体pHが11.0以下である請求項1又は2記載のリチウム複合化合物粒子粉末。
- カーボン含有率が300ppm以下である請求項1~3のいずれかに記載のリチウム複合化合物粒子粉末。
- 硫黄含有率が100ppm以下であって、イオン強度比C(LiSO3 -/NiO2 -)が0.3以下であり、且つ、ナトリウム含有量が100ppm以下である請求項1~4のいずれかに記載のリチウム複合化合物粒子粉末。
- 炭酸リチウム成分の含有量が0.30重量%以下であり、かつ水酸化リチウムの含有量が0.30重量%以下である請求項1~5のいずれかに記載のリチウム複合化合物粒子粉末。
- 比表面積が0.05~0.7m2/gである請求項1~6のいずれかに記載のリチウム複合化合物粒子粉末。
- 請求項1~7のいずれかに記載のリチウム複合化合物粒子粉末の製造方法であって、当該製造方法は、リチウム複合化合物粒子粉末を水溶媒で不純物を除去する工程(1)、該工程(1)を経たリチウム複合化合物粒子粉末を熱処理する工程(2)から成り、前記工程(1)において、用いるリチウム複合化合物粒子粉末の遷移金属とアルミニウムとホウ素との総モル数に対するリチウムの総モル数の比が1.02以上1.10以下であるリチウム複合化合物粒子粉末の製造方法。
- 前記工程(2)の熱処理が、温度範囲500℃~850℃で、炭酸濃度100ppm以下の空気中又は酸素中の雰囲気下で行われる請求項8記載の製造方法。
- 請求項1~7のいずれかに記載のリチウム複合化合物粒子粉末を用いた非水電解液二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177025809A KR101970909B1 (ko) | 2008-12-04 | 2009-12-03 | 리튬 복합 화합물 입자 분말 및 그의 제조 방법, 비수전해질 이차 전지 |
EP09830210.2A EP2368851B1 (en) | 2008-12-04 | 2009-12-03 | Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell |
CN200980148557.7A CN102239118B (zh) | 2008-12-04 | 2009-12-03 | 锂复合化合物颗粒粉末及其制造方法、非水电解质二次电池 |
US13/132,495 US9455444B2 (en) | 2008-12-04 | 2009-12-03 | Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-310166 | 2008-12-04 | ||
JP2008310166 | 2008-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010064440A1 true WO2010064440A1 (ja) | 2010-06-10 |
Family
ID=42233098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006602 WO2010064440A1 (ja) | 2008-12-04 | 2009-12-03 | リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9455444B2 (ja) |
EP (1) | EP2368851B1 (ja) |
JP (3) | JP2010155775A (ja) |
KR (2) | KR101970909B1 (ja) |
CN (1) | CN102239118B (ja) |
WO (1) | WO2010064440A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102479951A (zh) * | 2010-11-19 | 2012-05-30 | 日本化学工业株式会社 | 锂二次电池用正极活性物质及其制造方法、及锂二次电池 |
CN103636038A (zh) * | 2011-07-26 | 2014-03-12 | 住友金属矿山株式会社 | 非水电解质蓄电池用正极活性物质、其制造方法以及使用它的非水电解质蓄电池 |
WO2018043189A1 (ja) * | 2016-08-31 | 2018-03-08 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質及び非水電解質二次電池 |
JP2018073654A (ja) * | 2016-10-31 | 2018-05-10 | Basf戸田バッテリーマテリアルズ合同会社 | 非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池の製造方法 |
US20180159105A1 (en) * | 2015-05-11 | 2018-06-07 | Nec Corporation | Lithium-ion battery |
WO2019102766A1 (ja) * | 2017-11-21 | 2019-05-31 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法 |
WO2019187953A1 (ja) * | 2018-03-30 | 2019-10-03 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090749A1 (ja) * | 2010-12-28 | 2012-07-05 | 三井金属鉱業株式会社 | リチウム二次電池用正極活物質の製造方法 |
CN106159255A (zh) * | 2011-04-14 | 2016-11-23 | 户田工业株式会社 | Li‑Ni复合氧化物颗粒粉末以及非水电解质二次电池 |
JP5687169B2 (ja) * | 2011-10-03 | 2015-03-18 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
CN102683672B (zh) * | 2012-01-06 | 2017-04-19 | 吉安市优特利科技有限公司 | 一种降低三元材料ph值的方法 |
CA2861036C (en) | 2012-01-13 | 2022-03-15 | Rockwood Lithium GmbH | Stabilized lithium metal impressions coated with alloy-forming elements and method for production thereof |
JP6188720B2 (ja) * | 2012-01-13 | 2017-08-30 | ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH | リンコーティングされたリチウム金属生成物、その製造法及び使用 |
JP5694208B2 (ja) * | 2012-01-19 | 2015-04-01 | 株式会社東芝 | 非水電解質電池用負極活物質及びその製造方法、非水電解質電池および電池パック |
CN102683671A (zh) * | 2012-05-07 | 2012-09-19 | 宁德新能源科技有限公司 | 层状锂镍系复合氧化物正极材料 |
JPWO2014017322A1 (ja) * | 2012-07-27 | 2016-07-11 | 東邦チタニウム株式会社 | リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池及びリチウムランタンチタン酸化物焼結体の製造方法 |
JP6092558B2 (ja) * | 2012-09-27 | 2017-03-08 | 三洋電機株式会社 | 負極活物質の製造方法 |
KR102325781B1 (ko) | 2013-05-22 | 2021-11-15 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 |
JP6193184B2 (ja) * | 2013-07-08 | 2017-09-06 | 株式会社東芝 | 非水電解質二次電池用負極活物質、非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池、電池パック及び車 |
EP3043407B1 (en) * | 2013-11-18 | 2020-04-22 | LG Chem, Ltd. | Positive electrode active material for lithium secondary battery having surface treated using fluoropolymer and manufacturing method therefor |
US10522830B2 (en) * | 2013-11-22 | 2019-12-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery |
JP5709231B1 (ja) * | 2014-02-20 | 2015-04-30 | Necエナジーデバイス株式会社 | リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池 |
US10840510B2 (en) | 2014-07-31 | 2020-11-17 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same |
JP6449593B2 (ja) * | 2014-08-28 | 2019-01-09 | ユミコア | 低アルカリニッケルリチウム金属複合酸化物粉体及びその製造方法 |
JP6449592B2 (ja) * | 2014-08-28 | 2019-01-09 | ユミコア | 低アルカリ性ニッケルリチウム金属複合酸化物粉体及びその製造方法 |
US10388944B2 (en) | 2014-10-06 | 2019-08-20 | Hitachi Metals, Ltd. | Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same |
JP6589339B2 (ja) | 2014-10-06 | 2019-10-16 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2016119190A (ja) * | 2014-12-19 | 2016-06-30 | 株式会社豊田自動織機 | 電極活物質及びその製造方法、リチウムイオン二次電池用電極並びにリチウムイオン二次電池 |
CN105810929A (zh) * | 2014-12-31 | 2016-07-27 | 北京当升材料科技股份有限公司 | 一种降低高镍材料表面残碱的处理方法 |
CN105161717B (zh) * | 2015-06-29 | 2017-08-29 | 山东玉皇新能源科技有限公司 | 一种降低锂离子电池三元正极材料pH值的简便方法 |
JP6580886B2 (ja) * | 2015-06-30 | 2019-09-25 | 株式会社エンビジョンAescジャパン | リチウムイオン二次電池 |
JP2017130410A (ja) * | 2016-01-22 | 2017-07-27 | Csエナジーマテリアルズ株式会社 | ドープされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池 |
JP2017130414A (ja) * | 2016-01-22 | 2017-07-27 | Csエナジーマテリアルズ株式会社 | コートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池 |
JP7135269B2 (ja) * | 2016-03-24 | 2022-09-13 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 |
JP2017182927A (ja) * | 2016-03-28 | 2017-10-05 | Jx金属株式会社 | 角型リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法 |
US10541413B2 (en) * | 2016-04-11 | 2020-01-21 | Tesla, Inc. | Drying procedure in manufacturing process for cathode material |
JP6826447B2 (ja) * | 2016-10-14 | 2021-02-03 | Basf戸田バッテリーマテリアルズ合同会社 | 正極活物質粒子中の残存リチウム量の低減方法 |
KR102332440B1 (ko) * | 2016-10-28 | 2021-11-26 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 |
KR102117621B1 (ko) * | 2016-12-28 | 2020-06-02 | 주식회사 엘지화학 | 리튬이차전지용 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
US11424448B2 (en) | 2017-06-28 | 2022-08-23 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery |
US12315915B2 (en) * | 2017-07-14 | 2025-05-27 | Umicore | Ni based cathode material for rechargeable lithium-ion batteries |
EP3428124B1 (en) * | 2017-07-14 | 2020-08-19 | Umicore | Ni based cathode material for rechargeable lithium-ion batteries |
CN108063245B (zh) * | 2017-10-30 | 2020-06-30 | 广东邦普循环科技有限公司 | 一种降低富镍三元材料表面锂杂质的方法 |
JP6426820B1 (ja) | 2017-11-30 | 2018-11-21 | 住友化学株式会社 | リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法 |
JP7124307B2 (ja) * | 2017-12-08 | 2022-08-24 | 住友金属鉱山株式会社 | ニッケルコバルトアルミニウム複合水酸化物の製造方法 |
WO2019131779A1 (ja) * | 2017-12-27 | 2019-07-04 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池用正極活物質の製造方法、並びにリチウムイオン二次電池 |
WO2019193873A1 (ja) * | 2018-04-06 | 2019-10-10 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池の正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池 |
CN109713228B (zh) * | 2019-01-04 | 2021-07-23 | 南通瑞翔新材料有限公司 | 一种锂离子电池三元材料可循环的水洗降碱方法 |
JP7547766B2 (ja) * | 2019-04-16 | 2024-09-10 | 住友金属鉱山株式会社 | リチウムニッケルコバルトアルミニウム複合酸化物及び、リチウムイオン二次電池並びにこれらの製造方法 |
EP3939939B1 (en) * | 2019-05-13 | 2023-01-25 | Lg Chem, Ltd. | Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery comprising same |
US20230352654A1 (en) * | 2020-12-23 | 2023-11-02 | Lg Energy Solution, Ltd. | Method of Preparing Positive Electrode Active Material |
US20240151697A1 (en) | 2021-11-16 | 2024-05-09 | Lg Chem, Ltd. | Method for Analysis of Residual Lithium Compounds in Positive Electrode Active Material |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364860A (ja) | 1989-08-02 | 1991-03-20 | Japan Storage Battery Co Ltd | 有機電解液電池用活物質の製造方法 |
JPH04328277A (ja) | 1991-04-26 | 1992-11-17 | Sony Corp | 非水電解質二次電池 |
JPH06342657A (ja) * | 1990-07-23 | 1994-12-13 | Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister | リチウム化二酸化ニッケルカソード活性物質とその製造方法および電気化学的電池 |
JPH08138669A (ja) | 1994-11-02 | 1996-05-31 | Toray Ind Inc | 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池 |
JPH0917430A (ja) | 1994-11-09 | 1997-01-17 | Toray Ind Inc | 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池 |
JPH09259879A (ja) | 1996-03-19 | 1997-10-03 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池用正極活物質の製造方法 |
JP2003017054A (ja) | 2001-06-29 | 2003-01-17 | Sony Corp | 正極活物質及び非水電解質電池の製造方法 |
JP2004171961A (ja) | 2002-11-20 | 2004-06-17 | Sumitomo Metal Mining Co Ltd | リチウム二次電池正極活物質およびリチウム二次電池 |
JP2007242288A (ja) * | 2006-03-06 | 2007-09-20 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質及びその製造方法 |
JP2007273106A (ja) | 2006-03-30 | 2007-10-18 | Sumitomo Metal Mining Co Ltd | 非水電解質二次電池用の正極活物質及びそれを用いた非水電解質二次電池 |
JP2008117729A (ja) | 2006-11-08 | 2008-05-22 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP2008198363A (ja) | 2007-02-08 | 2008-08-28 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP2008251434A (ja) * | 2007-03-30 | 2008-10-16 | Sony Corp | 正極活物質、正極および非水電解質電池 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09231963A (ja) | 1996-02-20 | 1997-09-05 | Fuji Photo Film Co Ltd | 非水二次電池 |
TW363940B (en) * | 1996-08-12 | 1999-07-11 | Toda Kogyo Corp | A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery |
JP3355102B2 (ja) | 1996-11-29 | 2002-12-09 | 同和鉱業株式会社 | リチウム二次電池用正極活物質およびそれを用いた二次電池 |
US5993998A (en) * | 1996-12-20 | 1999-11-30 | Japan Storage Battery Co., Ltd. | Positive active material for lithium battery, lithium battery having the same and method for producing the same |
JP3355126B2 (ja) | 1998-01-30 | 2002-12-09 | 同和鉱業株式会社 | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 |
JP3627516B2 (ja) * | 1998-06-08 | 2005-03-09 | 宇部興産株式会社 | 非水二次電池 |
JP2000260479A (ja) | 1999-03-11 | 2000-09-22 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP3308232B2 (ja) | 1999-05-17 | 2002-07-29 | 三菱電線工業株式会社 | Li−Co系複合酸化物およびその製造方法 |
JP4197225B2 (ja) * | 2001-10-12 | 2008-12-17 | パナソニック株式会社 | 非水電解質二次電池用正極活物質およびその製造方法 |
JP4050123B2 (ja) * | 2002-09-25 | 2008-02-20 | トヨタ自動車株式会社 | リチウムイオン二次電池用正極活物質及びその製造方法 |
JP4243131B2 (ja) | 2003-04-24 | 2009-03-25 | 住友金属鉱山株式会社 | リチウム二次電池用正極活物質およびその製造方法 |
JP2005036680A (ja) * | 2003-07-17 | 2005-02-10 | Yamaha Motor Co Ltd | V型エンジンの燃料供給装置 |
WO2005036680A1 (ja) | 2003-10-07 | 2005-04-21 | Gs Yuasa Corporation | 非水電解質二次電池 |
KR101065307B1 (ko) * | 2004-01-19 | 2011-09-16 | 삼성에스디아이 주식회사 | 리튬이차전지용 캐소드 활물질 및 이를 이용한 리튬이차전지 |
JP2007091573A (ja) * | 2005-06-10 | 2007-04-12 | Tosoh Corp | リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途 |
DE102005027937B3 (de) | 2005-06-16 | 2006-12-07 | Ion-Tof Gmbh | Verfahren zur Analyse einer Festkörperprobe |
JP2007265731A (ja) | 2006-03-28 | 2007-10-11 | Hitachi Maxell Ltd | リチウムイオン二次電池 |
JP5008328B2 (ja) * | 2006-03-30 | 2012-08-22 | 住友金属鉱山株式会社 | 非水電解質二次電池用の正極活物質、その製造方法及びそれを用いた非水電解質二次電池 |
JP4306697B2 (ja) * | 2006-06-16 | 2009-08-05 | ソニー株式会社 | 二次電池 |
CN1978524A (zh) * | 2006-11-23 | 2007-06-13 | 东北师范大学 | 快充电池材料钛酸锂和钛酸锂/聚并苯复合物的制备方法 |
KR101534042B1 (ko) * | 2006-12-26 | 2015-07-08 | 미쓰비시 가가꾸 가부시키가이샤 | 리튬 천이 금속계 화합물 분체, 그 제조 방법, 및 그 소성 전구체가 되는 분무 건조체, 그리고 그것을 사용한 리튬 이차 전지용 정극 및 리튬 이차 전지 |
KR20090125256A (ko) * | 2007-03-26 | 2009-12-04 | 사임베트 코퍼레이션 | 리튬 막박 전지용 기재 |
CN102290573B (zh) | 2007-03-30 | 2015-07-08 | 索尼株式会社 | 正极活性物质、正极、非水电解质电池 |
CN100497180C (zh) * | 2007-04-25 | 2009-06-10 | 北京理工大学 | 一种纳米晶锂钛复合氧化物的制备方法 |
JP5153200B2 (ja) * | 2007-04-27 | 2013-02-27 | 三洋電機株式会社 | 非水電解質二次電池及びその製造方法 |
JP5470751B2 (ja) * | 2008-02-13 | 2014-04-16 | Tdk株式会社 | 活物質及び電極の製造方法、活物質及び電極 |
EP2581343B1 (en) * | 2010-06-09 | 2018-05-30 | Toda Kogyo Corp. | Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery |
-
2009
- 2009-12-03 US US13/132,495 patent/US9455444B2/en active Active
- 2009-12-03 CN CN200980148557.7A patent/CN102239118B/zh active Active
- 2009-12-03 EP EP09830210.2A patent/EP2368851B1/en active Active
- 2009-12-03 KR KR1020177025809A patent/KR101970909B1/ko active Active
- 2009-12-03 JP JP2009275867A patent/JP2010155775A/ja active Pending
- 2009-12-03 KR KR20117012551A patent/KR20110094023A/ko not_active Ceased
- 2009-12-03 WO PCT/JP2009/006602 patent/WO2010064440A1/ja active Application Filing
-
2016
- 2016-02-01 JP JP2016017075A patent/JP2016084279A/ja active Pending
-
2017
- 2017-05-09 JP JP2017093189A patent/JP6380608B2/ja active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364860A (ja) | 1989-08-02 | 1991-03-20 | Japan Storage Battery Co Ltd | 有機電解液電池用活物質の製造方法 |
JPH06342657A (ja) * | 1990-07-23 | 1994-12-13 | Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister | リチウム化二酸化ニッケルカソード活性物質とその製造方法および電気化学的電池 |
JPH04328277A (ja) | 1991-04-26 | 1992-11-17 | Sony Corp | 非水電解質二次電池 |
JPH08138669A (ja) | 1994-11-02 | 1996-05-31 | Toray Ind Inc | 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池 |
JPH0917430A (ja) | 1994-11-09 | 1997-01-17 | Toray Ind Inc | 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池 |
JPH09259879A (ja) | 1996-03-19 | 1997-10-03 | Nippon Telegr & Teleph Corp <Ntt> | リチウム電池用正極活物質の製造方法 |
JP2003017054A (ja) | 2001-06-29 | 2003-01-17 | Sony Corp | 正極活物質及び非水電解質電池の製造方法 |
JP2004171961A (ja) | 2002-11-20 | 2004-06-17 | Sumitomo Metal Mining Co Ltd | リチウム二次電池正極活物質およびリチウム二次電池 |
JP2007242288A (ja) * | 2006-03-06 | 2007-09-20 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質及びその製造方法 |
JP2007273106A (ja) | 2006-03-30 | 2007-10-18 | Sumitomo Metal Mining Co Ltd | 非水電解質二次電池用の正極活物質及びそれを用いた非水電解質二次電池 |
JP2008117729A (ja) | 2006-11-08 | 2008-05-22 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP2008198363A (ja) | 2007-02-08 | 2008-08-28 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP2008251434A (ja) * | 2007-03-30 | 2008-10-16 | Sony Corp | 正極活物質、正極および非水電解質電池 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102479951A (zh) * | 2010-11-19 | 2012-05-30 | 日本化学工业株式会社 | 锂二次电池用正极活性物质及其制造方法、及锂二次电池 |
CN103636038A (zh) * | 2011-07-26 | 2014-03-12 | 住友金属矿山株式会社 | 非水电解质蓄电池用正极活性物质、其制造方法以及使用它的非水电解质蓄电池 |
US20180159105A1 (en) * | 2015-05-11 | 2018-06-07 | Nec Corporation | Lithium-ion battery |
WO2018043189A1 (ja) * | 2016-08-31 | 2018-03-08 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用正極活物質及び非水電解質二次電池 |
JP2018073654A (ja) * | 2016-10-31 | 2018-05-10 | Basf戸田バッテリーマテリアルズ合同会社 | 非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池の製造方法 |
WO2019102766A1 (ja) * | 2017-11-21 | 2019-05-31 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法 |
JP2019096424A (ja) * | 2017-11-21 | 2019-06-20 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法 |
US11569504B2 (en) | 2017-11-21 | 2023-01-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for lithium ion secondary batteries and method for producing same |
WO2019187953A1 (ja) * | 2018-03-30 | 2019-10-03 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
JP2019178025A (ja) * | 2018-03-30 | 2019-10-17 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
US11949101B2 (en) | 2018-03-30 | 2024-04-02 | Sumitomo Chemical Company, Limited | Lithium composite metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing lithium composite metal compound |
Also Published As
Publication number | Publication date |
---|---|
EP2368851A1 (en) | 2011-09-28 |
JP6380608B2 (ja) | 2018-08-29 |
JP2010155775A (ja) | 2010-07-15 |
CN102239118B (zh) | 2016-11-09 |
CN102239118A (zh) | 2011-11-09 |
EP2368851B1 (en) | 2018-05-16 |
JP2016084279A (ja) | 2016-05-19 |
KR20110094023A (ko) | 2011-08-19 |
EP2368851A4 (en) | 2015-05-13 |
US20110281168A1 (en) | 2011-11-17 |
JP2017200875A (ja) | 2017-11-09 |
KR101970909B1 (ko) | 2019-04-19 |
US9455444B2 (en) | 2016-09-27 |
KR20170106519A (ko) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380608B2 (ja) | リチウム複合化合物粒子粉末の製造方法、リチウム複合化合物粒子粉末を非水電解質二次電池に用いる方法 | |
JP5879761B2 (ja) | リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP6665060B2 (ja) | Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP6107832B2 (ja) | Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP6112118B2 (ja) | Li−Ni複合酸化物粒子粉末並びに非水電解質二次電池 | |
KR101403828B1 (ko) | 비수전해질 이차 전지용 Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법 및 비수전해질 이차 전지 | |
TWI526397B (zh) | A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery | |
JP5610178B2 (ja) | リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池 | |
JP5987401B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法および二次電池 | |
JP5482977B2 (ja) | 非水電解液二次電池用コバルト酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池 | |
US12334550B2 (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
JP5152456B2 (ja) | 正極活物質及びその製造法、並びに非水電解質二次電池 | |
JP5741969B2 (ja) | リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池 | |
JP4305613B2 (ja) | 非水電解質二次電池用正極活物質並びに非水電解質二次電池 | |
JP5741970B2 (ja) | リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池 | |
JP7308586B2 (ja) | 非水系電解質二次電池用正極活物質 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980148557.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09830210 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009830210 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117012551 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4087/DELNP/2011 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13132495 Country of ref document: US |