[go: up one dir, main page]

WO2007116971A1 - リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池 - Google Patents

リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池 Download PDF

Info

Publication number
WO2007116971A1
WO2007116971A1 PCT/JP2007/057772 JP2007057772W WO2007116971A1 WO 2007116971 A1 WO2007116971 A1 WO 2007116971A1 JP 2007057772 W JP2007057772 W JP 2007057772W WO 2007116971 A1 WO2007116971 A1 WO 2007116971A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
powder
less
transition metal
Prior art date
Application number
PCT/JP2007/057772
Other languages
English (en)
French (fr)
Inventor
Kenji Shizuka
Kenji Okahara
Hiroyuki Imura
Kaoru Terada
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP07741208.8A priority Critical patent/EP2006937A4/en
Priority to US12/296,212 priority patent/US8535829B2/en
Publication of WO2007116971A1 publication Critical patent/WO2007116971A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Lithium transition metal compound powder for lithium secondary battery positive electrode material method for producing the same, spray-dried product and firing precursor thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
  • the present invention relates to a lithium transition metal compound powder used as a positive electrode material for a lithium secondary battery, a production method thereof, a spray-dried product, and a calcined precursor, and the lithium transition metal compound powder.
  • the present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery including the positive electrode for a lithium secondary battery.
  • Lithium secondary batteries are excellent in energy density and output density, and are effective for miniaturization and weight reduction. Therefore, the demand for lithium secondary batteries as a power source for portable devices such as laptop computers, mobile phones, and handy video cameras is rapidly increasing. Shows a significant increase. Lithium secondary batteries are also attracting attention as power sources for electric vehicles and power load leveling, and in recent years, the demand for power sources for hybrid electric vehicles is rapidly expanding. Especially in electric vehicle applications, low cost, safety, longevity (especially under high temperatures) and excellent load characteristics are required, and improvements in materials are desired.
  • the positive electrode active material a substance having a function capable of desorbing and inserting lithium ions can be used.
  • various positive electrode active material materials each with its own characteristics. A common issue for improving performance is to improve load characteristics, and improvements in materials are strongly desired.
  • Lithium secondary batteries using these lithium-containing composite oxides all have advantages and disadvantages in terms of characteristics. That is, spinel structure Lithium-manganese complex oxides having a low cost and relatively easy to synthesize are excellent in safety when used as a battery, but have low capacity and high temperature characteristics (cycle, storage). Layered lithium-nickel composite oxides have high capacity and excellent high-temperature characteristics, but they have disadvantages such as poor safety when used as a battery that is difficult to synthesize and require careful storage. Layered lithium cobalt-based composite oxides are widely used as power sources for portable devices because they are easy to synthesize and have a good balance of battery performance. However, they are not safe enough and costly. Is a major drawback.
  • Patent Documents 1 to 3 and Non-Patent Documents 1 to 24 improvement of battery performance in the present invention is not described according to the present invention. However, it is extremely difficult to improve the battery performance as shown by the present invention with these technologies alone.
  • Patent Document 4 discloses porous particles having a lithium composite oxide strength mainly composed of one or more elements selected from the group forces of Co, Ni, and Mn, and lithium.
  • the average pore diameter in the pore distribution measurement is in the range of 0.1 to 1 ⁇ m, and the total volume of pores having a diameter of 0.01 to 1 ⁇ m is 0.01 cm 3 Zg or more. It is disclosed that the particles are used as a positive electrode active material for a non-aqueous secondary battery, and this can improve the load characteristics of the battery without impairing the filling property of the positive electrode active material into the positive electrode. ing.
  • Patent Document 5 discloses lithium composite oxide particles in which the amount of mercury intrusion under a specific high-pressure load condition is not more than a predetermined upper limit in the measurement by the mercury intrusion method.
  • the mercury intrusion amount is not less than a predetermined lower limit or the average pore radius is within a predetermined range, and in addition to the conventional main peak in the pore distribution curve, a specific pore radius region
  • lithium composite oxide particles having a sub-peak with a peak top at the top are used as a positive electrode material for a lithium secondary battery, the low-temperature load characteristics of the lithium secondary battery can be improved, and the positive electrode It is described that it is excellent in coating property at the time of production and can be a suitable positive electrode material for a lithium secondary battery.
  • the lithium composite oxide particles described in Patent Document 5 have a relatively high cobalt ratio 1, and the composition has an improvement effect, but the composition range defined by the present invention. However, the load characteristic is still insufficient.
  • Patent Documents 6 to 30, Non-Patent Documents 25-57 regarding lithium nickel manganese cobalt based composite oxide having a composition range in which the manganese / nickel atomic ratio is close to 1 and the cobalt ratio is reduced to the value specified by the present invention or less.
  • compositional sword material in which the amount of cobalt doping is less than the specified ratio.
  • the molar ratio of cobalt (y) The limit value is 0.1 regardless of the amount of lithium (X) contained in the transition metal layer, but in the case of the composition region defined by the present invention (composition formula (I)), it is contained in the transition metal layer.
  • the amount of lithium (zZ (2 + z)) exceeded 0, the molar ratio of cobalt was less than 10%, which was not sufficient to satisfy the composition range of the present invention.
  • Patent Documents 7 to 30 and Non-Patent Documents 25 to 57 in the composition region defined by the present invention, there is no description that focuses on the specific half-value width of the active material crystal. There is no description that captures the presence or absence of a heterophasic peak appearing at a higher angle than the peak top of the folding peak. Furthermore, it does not satisfy the requirements for improving battery performance in the present invention, which is not described in terms of particle pore control, which is a more preferable requirement, and these techniques alone show what the present invention shows. It is extremely difficult to improve battery performance.
  • Patent Document 31 includes a composition formula Li Mn Ni M O (where 0 ⁇ a ⁇ 1.3, 1 0.1 a 0. 5-x 0. 5-y x + y 2
  • the total pore volume of the positive electrode active material containing the composite oxide is 0.OOlmlZg or more and 0.006mlZg or less.
  • the relative intensity ratio of the diffraction peak at 2 0: 44.1 ⁇ 1 ° to the diffraction peak at 2 ⁇ : 18.6 ⁇ 1 ° of the powder X-ray diffraction diagram using CuK ⁇ ray is 0.65. More than 1.05 or less, the half-value width of the diffraction peak at 2 0: 18.6 ⁇ 1 ° is 0.05 to more than 0.20 °, and at 2 0: 44.1 ⁇ 1 °.
  • the half-value width of the diffraction peak is not less than 0.10 ° and not more than 0.20 °, and as a result, it has a high energy density and excellent charge / discharge cycle performance.
  • Patent Document 31 in the composition region defined by the present invention, a description focusing on the specific half-value width of the active material crystal and a description regarding particle pore control, which is a more preferable requirement, are recognized. .
  • Patent Document 32 and Patent Document 33 there is no description focusing on the specific half-value width of the active material crystal in the composition region defined by the present invention, and from the peak top of a specific diffraction peak. Although there is no description referring to the presence or absence of a heterophasic peak appearing on the high angle side, a description regarding the fine particle control which is a requirement is more preferable.
  • Patent Document 27 describes a positive electrode active material for a lithium secondary battery containing a Li Mn—Ni composite oxide containing at least lithium, manganese, and nickel as a constituent element, the Li Mn—Ni composite oxide. Is disclosed that the total pore volume is 0.0015 mlZg or more, and that it can have a high discharge capacity and excellent cycle performance.
  • Patent Document 33 discloses lithium composite oxide particles whose mercury intrusion amount is not more than a predetermined upper limit in a specific high pressure load condition in the measurement by the mercury intrusion method, and In addition to the force that the mercury intrusion amount is equal to or greater than a predetermined lower limit, the average pore radius is within a predetermined range, the pore distribution curve has a specific pore radius region in addition to the conventional main peak.
  • lithium composite oxide particles having a sub-peak with a peak top are used as the positive electrode material of a lithium secondary battery, the low temperature load characteristics of the lithium secondary battery can be improved and the positive electrode is manufactured. It is also described that it can be used as a positive electrode material for a lithium secondary battery.
  • the lithium composite oxide particles described in Patent Document 33 have a relatively high cobalt ratio and an improvement effect in composition, but the composition range defined by the present invention. However, the load characteristic is still insufficient.
  • Patent Documents 34 to 65 and Non-Patent Documents 58 to 130 the composition region defined by the present invention is used as an additive for suppressing the growth and sintering of active material particles during firing.
  • lithium-Neckel is used for the purpose of improving the positive electrode active material.
  • the following patent documents 66 to 74 and non-patent document 131 are disclosed as known documents in which a compound containing W, Mo, Nb, Ta, Re or the like is added to or substituted for manganese cobalt-based composite oxides.
  • Patent Document 66 and Patent Document 67 disclose the use of W, Mo, Ta, and Nb as substitution elements for transition metal sites in a lithium nickel composite oxide having a layered structure. Describes that the thermal stability in the charged state is improved. However, since the composite oxide disclosed here has a composition mainly composed of Li and Ni, an active material having an excellent balance of various battery characteristics still cannot be obtained. To the eye.
  • Patent Document 68 discloses the use of lithium nickel manganese cobalt niobium-based composite oxides.
  • the Mn molar ratio in the transition metal site was as low as 0.1 or less, and there was still a problem that an active material excellent in various battery characteristic balances could not be obtained.
  • Patent Document 69 describes a lithium nickel manganese cobalt-based composite oxide with W
  • Patent Document 70 discloses that Ta, Nb is used as a substitution element for a transition metal site in a lithium nickel manganese cobalt-based oxide having a layered structure. It describes that charge / discharge cycle durability with a wide possible voltage range is good, and that capacity is high and safety is high. While working Because the firing temperature at 900 ° C is low, crystals do not develop sufficiently, and it is still impossible to obtain an active material with excellent balance of various battery properties! /,When! There was a problem.
  • Patent Document 71 discloses an example in which W is substituted at the transition metal site in a lithium nickel manganese cobalt based composite oxide.
  • the Mn molar ratio in the transition metal site is extremely small at 0.01 and the Ni molar ratio is as extremely high as 0.8, so that it is still possible to obtain an active material excellent in various battery characteristics balance. I could't do it.
  • Patent Document 72 discloses that, in a monoclinic lithium manganese nickel-based composite oxide, Nb, Mo, and W substituted on the transition metal site are used as a positive electrode active material. Thus, it is described that a lithium secondary battery with high energy density, high voltage, and high reliability can be provided. However, according to the examples, since the firing temperature is as low as 950 ° C, the crystal does not develop sufficiently, and the molar ratio of the element is too high at 5 mol%, so that various battery characteristic balances are still present. There was a problem that it was not possible to obtain an excellent active material!
  • Patent Document 73 discloses that a lithium-transition metal oxide particle having a layered structure has a compound having molybdenum and tungsten on at least the surface, thereby making the use environment more severe. It is described below that it has excellent battery characteristics. However, according to the examples, the CoZ (Ni + Co + Mn) molar ratio is too high at 0.33, and the firing temperature is as low as 900 ° C. There was a problem that an active material with an excellent balance of battery characteristics could not be obtained.
  • Patent Document 74 discloses the use of a lithium nickel manganese cobalt molybdenum based composite oxide having a layered structure.
  • the Co / (Ni + Mn + Co) molar ratio is 0.34 and the Co ratio is high, and it is still impossible to obtain an active material excellent in various battery characteristic balances. there were.
  • Non-Patent Document 131 describes a LiNi Mn Mo O composite oxide having a layered structure.
  • Patent Document 1 JP 2004-6267
  • Patent Document 2 US6, 680, 143B2
  • Patent Document 3 Patent No. 3571671
  • Patent Document 4 Japanese Patent No. 3110728
  • Patent Document 5 JP-A-2005-123179
  • Patent Document 6 Japanese Patent No. 3571671
  • Patent Document 7 Japanese Patent Laid-Open No. 11-307094
  • Patent Document 8 Japanese Patent Laid-Open No. 2000-133262
  • Patent Document 9 WO 2002-040404 Panfred Patent Document 10
  • Patent Document 11 Japanese Patent Laid-Open No. 2002- — 145623
  • Patent Document 12 WO2003- -044881
  • Patent Document 13 Patent Document 13
  • Patent Document 13 WO2003- -044882
  • Patent Document 14 Patent Document 14 Japanese Patent Laid-Open No. 2003- —
  • Patent Document 15 Patent Document 15 Patent Publication No.
  • Patent Literature 40 WO2002--040404 Pamphlet Soup Patent Literature 41 WO2002--073718 Pamphlet Soot Patent Literature 42 WO2002--086993 Pamphlet Soup Patent Literature 43 JP 2002- —145623 Patent Literature 44 WO2003- -044881 Pamphlet ⁇ Patent Literature 45 WO2003- -044882 Pamphlet ⁇ Patent Literature 46 JP 2003--031219 JP Patent Literature 47 JP 2003- — 081639 Patent Literature 48 JP 2003--178756 Patent Document 49 Japanese Patent Laid-Open No.
  • Patent Document 50 Special JP 2003-221236 Publication Patent Document 51 JP 2003-238165 Publication Patent Document 52 JP 2003-297354 Publication Patent Document 53 JP 2004- — 031091 Publication Patent Document 54 JP 2004--006267 JP Patent Publication 55 JP 2004- — 139853 JP Patent Publication 56 JP 2004- — 265849 Publication Patent Reference 57 JP 2004- — 281253 Publication Patent Document 58 Japanese Patent Laid-Open No. 2004-311427 Patent Document 59 Special Table 2004- — 528691
  • Patent Document 60 Japanese Unexamined Patent Publication No. 2005- — 150057
  • Patent Document 61 Japanese Patent Laid-Open No. 2005--150093
  • Patent Document 62 Japanese Unexamined Patent Application Publication No. 2005- — 150102
  • Patent Document 63 Japanese Patent Laid-Open No. 2005- — 187282
  • Patent Document 64 Japanese Patent Laid-Open No. 2003-051308
  • Patent Document 65 Japanese Patent Laid-Open No. 2005-123179
  • Patent Document 66 Japanese Patent No. 3088716
  • Patent Document 67 Japanese Patent No. 3362025
  • Patent Document 68 Japanese Unexamined Patent Application Publication No. 2002--151071
  • Patent Document 69 WO2002- -041419
  • Patent Document 70 Japanese Patent Laid-Open No. 2003- — 68298
  • Patent Document 71 Japanese Unexamined Patent Application Publication No. 2004--303673
  • Patent Document 72 Japanese Unexamined Patent Application Publication No. 2005- — 235628
  • Patent Document 73 Japanese Patent Laid-Open No. 2005-251716
  • Patent Document 74 Japanese Unexamined Patent Publication No. 2006-164934
  • Non-Patent Document 1 Electrochem. Solid-State Lett., 4 (2001) A191-A194
  • Non-Patent Document 2 J. Power sources, 119-121 (2003) 166
  • Non-Patent Document 3 J. Power sources, 129 (2004) 288
  • Non-patent document 4 Electrochem. Solid-State Lett., 7 (2004) A167 Non-patent document 5: J. Power sources, 119-121 (2003) 161
  • Non-Patent Document 6 Solid State Ionics, 164 (2003) 43
  • Non-Patent Document 7 J. Electrochem. Soc., 149 (2002) A815
  • Non-Patent Document 8 Electrochem. Com .6 (2004) 1085
  • Non-Patent Document 9 J. Mater. Chem., 14 (2004) 1424
  • Non-Patent Document 10 Chem. Mater. 16 (2004) 1996
  • Non-Patent Document ll Solid State Ionics, 176 (2005) 1035 Non-patent document 12 Electrochem. Solid-State Lett., 7 (2004) A290 Non-patent document 13 Electrochem. Solid-State Lett., 7 (2004) A294 Non-patent document 14 J. Electrochem. Soc., 149 (2002) A778
  • Non-Patent Document 21 J. Electrochem. Soc., 151 (2004) A504
  • Non-Patent Document 22 Electrochemistry, 71 (2003) 1214
  • Non-Patent Document 23 J. Electrochem. Soc., 152 (2005) A566
  • Non-Patent Document 26 J. Electrochem. Soc, 150 (2003) A1299.
  • Non-Patent Document 31 Electrochemistry, 71 (2003) 1214.
  • Non-Patent Document 33 J. Electrochem. Soc, 152 (2005) A566.
  • Non-Patent Literature 34 Trans. Nonferrous Met. Soc. China, 15 (2005) 1185.
  • Non-Patent Document 36 Solid State Ionics, 176 (2005) 2577.
  • Non-patent literature 38 Electrochem. Solid-State Lett., 5 (2002) A145.
  • Non-patent literature 39 Electrochem. Solid-State Lett., 5 (2002) A263.
  • Non-Patent Document 45 Electrochem. Solid— State Lett., 7 (2004) A 5.
  • Non-Patent Document 46 Electrochim. Acta, 49 (2004) 1565.
  • Non-Patent Document 51 Electrochim. Acta, 50 (2005) 5349.
  • Non-Patent Document 53 Electrochem. Solid-State Lett., 8 (2005) A637.
  • Non-Patent Document 54 Mater. Lett., 59 (2005) 2693.
  • Non-patent literature 60 Electrochem. Solid- State Lett., 4 (2001) A191.
  • Non-patent literature 61 Electrochem. Solid- State Lett., 4 (2001) A200.
  • Non-patent literature 62 Electrochem. Solid-State Lett., 5 (
  • Non-patent literature 63 Electrochem. Solid— State Lett., 5 (2002) A263.
  • Non-Patent Document 65 J. Electrochem. Soc, 149 (2002) A815.
  • Non-Patent Document 67 J. Power sources, 112 (2002) 41.
  • Non-Patent Document 68 J. Power sources, 112 (2002) 634.
  • Non-Patent Document 69 Electrochemistry, 71 (2003) 1214.
  • Non-Patent Document 70 Electrochim. Acta, 48 (2003) 1505.
  • Non-Patent Document 71 Electrochim. Acta, 48 (2003) 2589.
  • Non-Patent Document 72 J. Electrochem. Soc, 150 (2003) A1299.
  • Non-Patent Document 73 J. Power sources, 119-121 (2003) 139.
  • Non-Patent Document 74 J. Power sources, 119-121 (2003) 150.
  • Non-Patent Document 75 J. Power sources, 119-121 (2003) 156.
  • Non-Patent Document 76 J. Power sources, 119-121 (2003) 161.
  • Non-Patent Document 77 J. Power sources, 119-121 (2003) 166.
  • Non-Patent Document 78 J. Power sources, 124 (2003) 170.
  • Non-Patent Document 79 J. Power sources, 124 (2003) 533.
  • Non-Patent Document 80 Solid State Ionics, 164 (2003) 43.
  • Non-Patent Document 81 Chem. Mater., 16 (2004) 1996.
  • Non-Patent Document 82 Electrochem.Com., 6 (2004) 1085.
  • Non-patent literature 83 Electrochem. Solid-State Lett., 7 (2004) A155.
  • Non-patent literature 84 Electrochem. Solid-State Lett., 7 (2004) A167.
  • Non-patent literature 85 Electrochem. Solid-State Lett. , 7 (2004) A290.
  • Non-patent document 86 Electrochem. Solid-State Lett., 7 (2004) A294.
  • Non-patent document 87 Electrochim. Acta, 49 (2004) 803.
  • Non-Patent Document 88 Electrochim. Acta, 49 (2004) 1565.
  • Non-Patent Document 89 Electrochim. Acta, 49 (2004) 4425.
  • Non-Patent Document 90 Electrochim. Acta, 50 (2004) 427.
  • Non-Patent Document 91 Electrochim. Acta, 50 (2004) 449.
  • Non-Patent Document 92 J. Electrochem. Soc, 151 (2004) A246.
  • Non-Patent Document 93 J. Electrochem. Soc, 151 (2004) A504.
  • Non-Patent Document 94 J. Electrochem. Soc, 151 (2004) A1789.
  • Non-Patent Document 95 J. Mater. Chem., 14 (2004) 1424.
  • Non-Patent Document 96 J. Power sources, 129 (2004) 288.
  • Non-Patent Document 97 J. Power sources, 135 (2004) 262.
  • Non-Patent Document 98 Adv. Mater., 17 (2005) 2834.
  • Non-Patent Document 99 Chem. Mater., 17 (2005) 3695.
  • Non-Patent Document 100 Electrochem. Solid-State Lett., 8 (2005) A637.
  • Non-Patent Document 101 Electrochim. Acta, 50 (2005) 4778.
  • Non-Patent Document 102 Electrochim. Acta, 50 (2005) 5349.
  • Non-Patent Document 103 J. Electrochem. Soc, 152 (2005) A566.
  • Non-Patent Document 104 J. Electrochem. Soc, 152 (2005) A746.
  • Non-Patent Document 105 J. Electrochem. Soc, 152 (2005) A1879.
  • Non-Patent Document 115 J. Power sources 148 (2005) 85.
  • Non-Patent Document 116 Mater. Lett., 59 (2005) 2693.
  • Non-Patent Document 117 Mater. Res. Soc. Symp. Proc, 835 (2005) KIO.8.1.
  • Non-Patent Document 118 Mater. Res. Soc. Symp. Proc, 835 (2005) Kll.3.1.
  • Non-Patent Document 119 Solid State Ionics, 176 (2005) 1035.
  • Non-Patent Document 120 Solid State Ionics, 176 (2005) 2577.
  • Non-patent document 121 Trans. Nonferrous Met. Soc. China, 15 (2005) 1185.
  • Non-patent document 122 Chem. Mater., 18 (2006) 1658.
  • Non-Patent Document 123 Electrochem. Solid-State Lett., 9 (2006) A27.
  • Non-Patent Document 124 Electrochim. Acta, 51 (2006) 3413.
  • Non-Patent Document 125 J. Am. Chem. So, 128 (2006) 8694.
  • Non-Patent Document 126 J. Appl. Phys., 99 (2006) 06371.
  • Non-Patent Document 127 J. Electrochem. Soc, 153 (2006) A261.
  • Non-Patent Document 128 J. Electrochem. Soc, 153 (2006) A390.
  • Non-Patent Document 129 J. Mater. Chem., 16 (2006) 359.
  • Non-Patent Document 130 J. Power sources, 158 (2006) 524.
  • Non-Patent Document 131 Microelectronics Journal, 36 (2005) 491.
  • the purpose of the present invention is to improve load characteristics such as rate 'output characteristics when used as a positive electrode material for a lithium secondary battery, and more preferably, cost reduction, high voltage resistance, and high safety.
  • Lithium transition metal compound powder for a lithium secondary battery positive electrode material and a method for producing the same, a lithium secondary battery positive electrode using the lithium transition metal compound powder, and the lithium secondary battery It is to provide a lithium secondary battery including a positive electrode for a secondary battery.
  • the present inventors have determined that the powder properties of lithium transition metal compounds are such that the amount of mercury intrusion during pressurization by the mercury intrusion method falls within the above range.
  • the lithium secondary battery positive electrode material can be controlled in such a manner that the peak of the pore distribution curve has the characteristics described above.
  • the present inventors have found that a lithium transition metal-based compound powder capable of coexisting with improved load characteristics such as output characteristics and output characteristics can be obtained, and the present invention has been completed.
  • the present inventors have determined the full width at half maximum of a specific diffraction peak in a powder X-ray diffraction measurement for a lithium nickel manganese cobalt based composite oxide.
  • the lithium secondary battery positive electrode material is compatible with lower load, higher voltage resistance, higher safety, and improved load characteristics such as rate and output characteristics. It has been found that lithium nickel manganese cobalt based composite oxide powder can be obtained, and the present invention has been completed.
  • the present inventors solve the problem of improving load characteristics such as rate 'output characteristics.
  • load characteristics such as rate 'output characteristics.
  • the cost can be reduced as a positive electrode material for lithium secondary batteries. It was found that lithium transition metal-based compound powders that can achieve both high voltage resistance and high safety, as well as improved load characteristics such as rate and output characteristics, and completed the present invention. It was.
  • the gist of the present invention is as follows.
  • Lithium secondary battery characterized in that the mercury intrusion amount is 0.8 cm 3 Zg or more and 3 cm 3 Zg or less in the mercury intrusion curve by the mercury intrusion method.
  • Lithium transition metal compound powder for positive electrode material Lithium transition metal compound powder for positive electrode material.
  • the pore distribution curve by the mercury intrusion method has a main peak with a peak top at a pore radius of 300 nm or more and lOOOnm or less, and a sub-peak with a peak top at a pore radius of 80 nm or more and less than 300 nm.
  • the lithium transition metal based compound powder according to any one of 1 to 4 above which is a lithium nickel manganese condensate complex oxide represented by the following composition formula (I). Li [Li ⁇ (Li Ni Mn) Co ⁇ )] 0 ... Composition formula (I)
  • composition formula (I) 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.2, —0.02 ⁇ z ⁇ 0.2 (1—y) (1 3x). 6.
  • a spray-dried product obtained by pulverizing a lithium compound and at least one or more transition metal compounds in a liquid medium and spray-drying a slurry in which these are uniformly dispersed is calcined in an oxygen-containing gas atmosphere.
  • One of the cracked gases is carbon dioxide (CO 2),
  • a spray-dried product obtained by pulverizing a lithium compound and at least one transition metal compound in a liquid medium and spray-drying a slurry in which these are uniformly dispersed. Set the refractive index to 1.24 using the particle size distribution analyzer.
  • the median diameter of the spray-dried product measured after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz) with the particle size standard as the volume standard is 0.01 ⁇ m or more and 4 ⁇ m or less.
  • a positive electrode for a lithium secondary battery comprising a positive electrode active material layer containing the lithium transition metal-based compound powder according to any one of 1 to 8 above and a binder on a current collector.
  • a lithium secondary battery comprising a negative electrode capable of occluding and releasing lithium, a non-aqueous electrolyte containing a lithium salt, and a positive electrode capable of occluding and releasing lithium, wherein the lithium battery described in 17 above is used as the positive electrode.
  • I 1, 1 and 1 are the integrated intensities of the (018), (110), and (113) diffraction peaks, respectively.
  • I, 1 and 1 are the peak tones of the (018), (110) and (113) diffraction peaks, respectively.
  • the pore distribution curve by the mercury intrusion method has a main peak with a peak top at a pore radius of 300 nm or more and lOOOnm or less, and a sub-peak with a peak top at a pore radius of 80 nm or more and less than 300 nm.
  • the lithium nickel manganese cobalt based composite oxide powder for a lithium secondary battery positive electrode material as described in any one of 19 to 22 above.
  • the pore volume related to the main peak with a peak top of 300 nm or more and lOOOnm or less is 0.3 cm 3 Zg or more and 1.0 cm 3 Zg or less.
  • the lithium nickel manganese cobalt based composite oxide powder for a positive electrode material for a lithium secondary battery according to any one of 19 to 23 above.
  • a cobalt compound in a liquid medium using a laser diffraction Z-scattering particle size distribution analyzer the refractive index is set to 1.24
  • the particle size standard is the volume standard
  • slurry viscosity during spray drying is V (cp)
  • gas supply amount is G.
  • a lithium secondary battery comprising a negative electrode capable of inserting and extracting lithium, a non-aqueous electrolyte containing a lithium salt, and a positive electrode capable of inserting and extracting lithium, wherein the positive electrode according to claim 35 is used as the positive electrode.
  • the lithium secondary battery as described in 36 above which is designed so that the charging potential of the positive electrode in a fully charged state is 4.35 V (vs. LiZLi +) or more.
  • the main component is a lithium transition metal compound having a function capable of inserting and desorbing lithium ions, and the main component material contains at least one additive for suppressing grain growth and sintering during firing. Is added at a ratio of 0.01 mol% or more and less than 2 mol% to the total molar amount of the transition metal elements in the main component raw material, and then baked. Lithium transition metal compound powder for secondary battery positive electrode material.
  • additive element an oxide containing at least one element selected from Mo, W, Nb, Ta, and Re (hereinafter referred to as “additive element”).
  • Item 40 The lithium transition metal compound powder for a lithium secondary battery positive electrode material according to Item 38 or 39. 41. Laser diffraction Measured after 5 minutes of ultrasonic dispersion (output 30W, frequency 22.5kHz) with refractive index set to 1.24 and particle size standard as volume standard with Z-scattering particle size distribution analyzer. 41. The lithium transition metal-based compound powder for a lithium secondary battery positive electrode material as described in any one of 38 to 40 above, wherein the median diameter is 0.1 ⁇ m or more and less than 3 ⁇ m.
  • the lithium transition metal based compound powder for a lithium secondary battery positive electrode material according to any one of claims 38 to 42, wherein the BET specific surface area is 1.5 m 2 Zg or more and 5 m 2 Zg or less. body.
  • the pore distribution curve by the mercury intrusion method has at least one main peak with a peak top at a pore radius of 300 nm or more and lOOOnm or less, and a peak top at a pore radius of 80 nm or more and less than 300 nm.
  • the pore volume related to the peak having a peak top of 300 nm or more and lOOOnm or less is 0.4 cm 3 Zg or more and lcm 3 Zg or less.
  • the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material according to any one of 38 to 45.
  • Lithium transition metal compound powder for lithium secondary battery positive electrode material according to any one of claims 38 to 46, wherein the bulk density is 0.5 gZcm 3 or more and 1.7 gZcm 3 or less. body.
  • volume resistivity is 1 X 10 3 Q 'cm or more, 1 X 10 6 ⁇ when consolidated at 40MPa pressure 48.
  • the lithium transition metal compound powder for a lithium secondary battery positive electrode material according to claim 49 wherein the composition is represented by the following composition formula ( ⁇ ′).
  • M is an element composed of Li, Ni and Mn, or Li, Ni, Mn and Co.
  • MnZNi molar ratio is 0.8 or more, 5 or less, CoZ ( Mn + Ni + Co) molar ratio is 0 or more and 0.30 or less, and Li molar ratio in M is 0.001 or more and 0.2 or less.
  • Lithium transition metal compound powder for secondary battery cathode material Lithium transition metal compound powder for secondary battery cathode material.
  • M Li ⁇ (Ni Mn) Co ⁇
  • I, 1, 1 are the integrated intensities of the (018), (110), and (113) diffraction peaks, respectively.
  • I, 1 and 1 are the peak tones of the (018), (110) and (113) diffraction peaks, respectively.
  • a liquid comprising a lithium compound, at least one transition metal compound selected from V, Cr, Mn, Fe, Co, Ni, and Cu, and an additive that suppresses grain growth and sintering during firing.
  • the method for producing a lithium transition metal-based compound powder for a lithium secondary battery positive electrode material according to any one of 38 to 55 above.
  • the refractive index is determined by a laser diffraction Z-scattering particle size distribution analyzer 1.
  • the particle size standard is set to 24 and the median diameter measured after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz) is reduced to 0.4 m or less.
  • V (cp) the slurry viscosity during spray drying
  • S (L / min) the slurry supply rate
  • G (L / min) the gas supply rate
  • 50cp ⁇ V ⁇ 4000cp 1500 ⁇ G / S ⁇ 57.
  • the transition metal compound contains at least a nickel compound, a manganese compound and a cobalt compound.
  • the spray-dried powder is treated under an oxygen-containing gas atmosphere.
  • a liquid comprising a lithium compound, at least one transition metal compound selected from V, Cr, Mn, Fe, Co, Ni, and Cu, and an additive that suppresses grain growth and sintering during firing.
  • a spray-dried product that is obtained by spray-drying a slurry obtained by pulverizing in a medium and uniformly dispersing them, and serving as a precursor of a lithium transition metal compound powder for a lithium secondary battery positive electrode material. This spray measured after ultrasonic dispersion (output 30 W, frequency 2 2.5 kHz) for 5 minutes with a refractive index set to 1.24 and a particle size standard as a volume standard with a diffraction Z-scattering particle size distribution analyzer.
  • a spray-dried product, wherein the dried product has a median diameter of 0.01 m or more and 4 m or less.
  • a lithium secondary battery comprising a negative electrode capable of inserting and extracting lithium, a non-aqueous electrolyte containing a lithium salt, and a positive electrode capable of inserting and extracting lithium, wherein the lithium secondary battery described in 62 above is used as a positive electrode.
  • the lithium transition metal-based compound for a lithium secondary battery positive electrode material of the present invention when used as a lithium secondary battery positive electrode material, achieves both low cost and high safety and improved load characteristics. Can do. Therefore, according to the present invention, a lithium secondary battery excellent in performance can be provided even when used at a charging voltage that is inexpensive, has high safety, and has a high combing power.
  • FIG. 1 is a graph showing a pore distribution curve of a manufactured lithium nickel manganese composite oxide powder in Example 1.
  • ⁇ 2] A graph showing the pore distribution curve of the lithium nickel manganese composite oxide powder produced in Example 2.
  • IV is a graph showing the pore distribution curve of the lithium nickel manganese composite oxide powder produced in Example 4.
  • FIG. 5 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 5.
  • FIG. 9 is a graph showing the pore distribution curve of the manufactured lithium nickel manganese composite oxide powder in Comparative Example 4.
  • FIG. 10 is a graph showing a pore distribution curve of a powder of lithium nickel manganese cobalt composite oxide produced in Comparative Example 5.
  • FIG. 11 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Example 1.
  • FIG. 12 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Example 2.
  • FIG. 13 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Example 3.
  • FIG. 14 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Example 4.
  • FIG. 15 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 5.
  • FIG. 16 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Comparative Example 1.
  • FIG. 17 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Comparative Example 2.
  • FIG. 18 is an SEM image (photograph) (magnification X 10,000) of the manufactured lithium nickel manganese composite oxide in Comparative Example 3.
  • FIG. 19 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Comparative Example 4.
  • FIG. 20 is an SEM image (photo) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 5.
  • FIG. 21 is a graph showing an XRD pattern of a lithium nickel manganese composite oxide produced in Example 1.
  • FIG. 22 is a graph showing an XRD pattern of a lithium nickel manganese composite oxide produced in Example 2.
  • FIG. 23 is a graph showing an XRD pattern of a lithium nickel manganese composite oxide produced in Example 3.
  • FIG. 24 is a graph showing the XRD pattern of the lithium nickel manganese composite oxide produced in Example 4.
  • FIG. 25 is a graph showing an XRD pattern of a lithium nickel manganese cobalt composite oxide produced in Example 5.
  • FIG. 26 is a graph showing the XRD pattern of the manufactured lithium nickel manganese composite oxide in Comparative Example 1.
  • FIG. 27 is a graph showing an XRD pattern of a manufactured lithium nickel manganese composite oxide in Comparative Example 2.
  • FIG. 28 is a graph showing an XRD pattern of a manufactured lithium nickel manganese composite oxide in Comparative Example 3.
  • FIG. 29 is a graph showing the XRD pattern of the manufactured lithium nickel manganese composite oxide in Comparative Example 4.
  • FIG. 30 is a graph showing an XRD pattern of a manufactured lithium nickel manganese cobalt composite oxide in Comparative Example 5.
  • FIG. 31 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 6.
  • FIG. 32 is a graph showing the pore distribution curve of the lithium nickel manganese composite oxide powder produced in Example 7.
  • FIG. 33 is a graph showing a pore distribution curve of a lithium nickel manganese cobalt composite oxide powder produced in Comparative Example 6.
  • FIG. 34 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 6.
  • FIG. 35 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Example 7.
  • FIG. 36 is an SEM image (photo) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 6.
  • FIG. 37 is a graph showing an XRD pattern of the lithium nickel manganese cobalt composite oxide produced in Example 6.
  • FIG. 38 is a graph showing an XRD pattern of a lithium nickel manganese composite oxide produced in Example 7.
  • FIG. 39 is a graph showing an XRD pattern of a manufactured lithium nickel manganese cobalt composite oxide in Comparative Example 6.
  • FIG. 40 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 8.
  • FIG. 41 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 9.
  • FIG. 42 is a graph showing a pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 10.
  • FIG. 43 is a graph showing a pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 11.
  • FIG. 44 is a graph showing a pore distribution curve of a powder of lithium nickel manganese cobalt composite oxide produced in Comparative Example 7.
  • FIG. 45 is a graph showing a pore distribution curve of a powder of lithium nickel manganese composite oxide produced in Comparative Example 8.
  • FIG. 46 is a graph showing a pore distribution curve of the lithium nickel manganese composite oxide powder produced in Comparative Example 9.
  • FIG. 47 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 8.
  • FIG. 48 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 9.
  • FIG. 49 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 10.
  • FIG. 50 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 11.
  • FIG. 51 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 7.
  • FIG. 52 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Comparative Example 8.
  • FIG. 53 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese composite oxide produced in Comparative Example 9.
  • FIG. 54 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese cobalt composite oxide produced in Example 8.
  • FIG. 55 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese cobalt composite oxide produced in Example 9.
  • FIG. 56 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese cobalt composite oxide produced in Example 10.
  • FIG. 57 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese cobalt composite oxide produced in Example 11.
  • FIG. 58 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 7.
  • FIG. 59 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese composite oxide produced in Comparative Example 8.
  • FIG. 60 is a graph showing a powder X-ray diffraction pattern of the lithium nickel manganese composite oxide produced in Comparative Example 9.
  • FIG. 61 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 12.
  • FIG. 62 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 13.
  • FIG. 63 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 14.
  • FIG. 64 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Example 15.
  • FIG. 65 is a graph showing a pore distribution curve of a powder of lithium nickel manganese cobalt composite oxide produced in Example 16.
  • FIG. 66 is a graph showing the pore distribution curve of the lithium nickel manganese cobalt composite oxide powder produced in Comparative Example 10.
  • FIG. 67 is a graph showing a pore distribution curve of a manufactured lithium nickel manganese cobalt composite oxide powder in Comparative Example 11.
  • FIG. 68 is a graph showing a pore distribution curve of a lithium nickel manganese cobalt composite oxide powder produced in Comparative Example 12.
  • FIG. 69 is a graph showing a pore distribution curve of a powder of lithium nickel manganese cobalt composite oxide produced in Comparative Example 13.
  • FIG. 70 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 12.
  • FIG. 71 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 13.
  • FIG. 72 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 14.
  • FIG. 73 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 15.
  • FIG. 74 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Example 16.
  • FIG. 75 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 10.
  • FIG. 76 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 11.
  • FIG. 77 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 12.
  • FIG. 78 is an SEM image (photograph) (magnification X 10,000) of the lithium nickel manganese cobalt composite oxide produced in Comparative Example 13.
  • FIG. 79 is a graph showing the XRD pattern of the lithium nickel manganese cobalt composite oxide produced in Example 12.
  • FIG. 80 is a graph showing an XRD pattern of the lithium nickel manganese cobalt composite oxide produced in Example 13.
  • FIG. 81 is a graph showing the XRD pattern of the lithium nickel manganese cobalt composite oxide produced in Example 14.
  • FIG. 82 is a graph showing the XRD pattern of the lithium nickel manganese cobalt composite oxide produced in Example 15.
  • FIG. 83 is a graph showing an XRD pattern of the lithium nickel manganese cobalt composite oxide produced in Example 16.
  • FIG. 84 is a graph showing an XRD pattern of a lithium nickel manganese cobalt composite oxide produced in Comparative Example 10.
  • FIG. 85 is a graph showing an XRD pattern of a lithium nickel manganese cobalt composite oxide produced in Comparative Example 11.
  • FIG. 86 is a graph showing an XRD pattern of a lithium nickel manganese cobalt composite oxide produced in Comparative Example 12.
  • FIG. 87 is a graph showing an XRD pattern of a lithium nickel manganese cobalt composite oxide produced in Comparative Example 13.
  • the mercury intrusion curve according to the mercury intrusion method has a mercury intrusion force of 0.8 cm 3 Zg or more and 3 cm 3 Zg or less when the pressure is increased from 3.86 kPa to 413 MPa.
  • the lithium transition metal compound powder for the secondary battery positive electrode material will be described in detail.
  • the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material of the present invention has a mercury intrusion amount of 0.8 cm 3 at a pressure of 3.86 kPa to 413 MPa in the mercury intrusion curve by the mercury intrusion method. Zg or more and 3 cm 3 Zg or less.
  • the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material of the present invention is characterized by satisfying specific conditions in measurement by a mercury intrusion method. Therefore, before describing the particles of the present invention, the mercury intrusion method will be briefly described first.
  • mercury intrusion method mercury is infiltrated into pores of a sample such as porous particles while applying pressure, and information such as specific surface area and pore size distribution is obtained from the relationship between the pressure and the amount of mercury injected. It is a technique to obtain.
  • the container containing the sample is evacuated and then filled with mercury.
  • Mercury does not penetrate into the pores of the sample surface as it has a high surface tension. 1S
  • the pores increase in diameter in order of increasing pore size. Mercury gradually enters the pores.
  • the size of the pore radius of the sample and its size are determined based on the obtained mercury intrusion curve.
  • a pore distribution curve representing the relationship with volume can be obtained. For example, when the pressure P is changed from 0. IMPa to 10 OMPa, it is possible to measure pores in the range from about 7500 nm force to about 7.5 nm.
  • the approximate measurement limit of the pore radius by the mercury intrusion method is that the lower limit is about 2 nm or more and the upper limit is about 200 m or less, and the pore radius is relatively large compared to the nitrogen adsorption method described later. It can be said that it is suitable for analysis of pore distribution in a range.
  • Measurement by the mercury intrusion method can be performed using an apparatus such as a mercury porosimeter.
  • a mercury porosimeter Specific examples include micropore autopores and Quantachrome pore masters.
  • the particles of the present invention are characterized in that, in the mercury intrusion curve by the mercury intrusion method, the amount of mercury intrusion at the time of pressurization up to 413 MPa is 0.8cm 3 Zg or more and 3cm 3 Zg or less.
  • Mercury intrusion volume is usually 0.8 cm 3 Zg or more, preferably 0.85 cm 3 Zg or more, more preferably 0.9 cm 3 Zg or more, and most preferably 1.0 cm 3 Zg above, Usually 3 cm 3 Zg less, preferably 2. 5 cm 3 Zg less, more preferably 2 cm 3 Zg hereinafter, most preferably 1. 8 cm 3 Zg below.
  • the "pore distribution curve” means the pore volume per unit weight (usually lg) of pores having a radius larger than the radius on the horizontal axis.
  • the value obtained by differentiating the sum of the values by the logarithm of the pore diameter is plotted on the vertical axis, and is usually expressed as a graph connecting the plotted points.
  • a pore distribution curve obtained by measuring the particles of the present invention by a mercury intrusion method is referred to as “a pore distribution curve that works on the present invention” in the following description.
  • the "main peak” refers to the largest peak among the peaks of the pore distribution curve
  • the "sub peak” refers to a peak other than the main peak of the pore distribution curve. Represents.
  • peak top refers to the point where the coordinate value on the vertical axis is the largest and takes the value V for each peak of the pore distribution curve.
  • the main peak of the pore distribution curve according to the present invention has a peak top whose pore diameter is usually 300 nm or more, preferably 310 nm or more, most preferably 325 nm or more, and usually lOOOnm or less, preferably 950 nm or less. More preferably, it is in the range of 900 nm or less, more preferably 850 nm or less, and most preferably 800 nm or less. If the upper limit of this range is exceeded, when a battery is produced using the porous particles of the present invention as the positive electrode material, lithium diffusion in the positive electrode material may be hindered or the conductive path may be insufficient, resulting in a decrease in load characteristics. 'I have sex.
  • the pore volume of the main peak of the pore distribution curve according to the present invention preferably is generally 0. 5 cm 3 Zg or more, preferably 0. 52cm 3 Zg or more, more preferably 0. 55CmVg more, most preferably 0. 57cm 3 Zg or more, and usually 1. 5 cm 3 Zg less, preferably lc m 3 Zg less, more preferably 0. 8 cm 3 Zg less, and most preferably 0. 7 cm 3 Zg below.
  • the upper limit of this range is exceeded, the voids become excessive, and when the particles of the present invention are used as the positive electrode material, the positive electrode active material filling rate of the positive electrode plate may be lowered, and the battery capacity may be limited. is there.
  • the pore distribution curve according to the present invention may have a plurality of sub-peaks in addition to the main peak described above, but does not exist within a pore radius range of 80 nm or more and 300 nm or less. To do.
  • the lithium transition metal compound of the present invention is a compound having a structure capable of desorbing and inserting Li ions, such as sulfides, phosphate compounds, lithium transition metal complex oxides, etc. Is mentioned.
  • Sulfur is a two-dimensional layered structure such as TiS or MoS.
  • MexMo S is various transition metals including Pb, Ag, Cu
  • Phosphate compounds include those belonging to the olivine structure, and are generally represented by LiMeP 2 O (Me is at least one transition metal), specifically LiFePO, LiCoP
  • LiNiPO LiNiPO, LiMnPO and the like.
  • lithium transition metal complex oxide LiNiPO, LiMnPO and the like.
  • Examples include spinel structures capable of three-dimensional diffusion and those belonging to a layered structure that enables two-dimensional diffusion of lithium ions.
  • Those having a spinel structure are generally expressed as Li Me O (Me is at least one transition metal), specifically, LiMn O, LiC oMnO, LiNi Mn O, CoLiVO and the like.
  • Those with a layered structure are generally expressed as Li Me O (Me is at least one transition metal), specifically, LiMn O, LiC oMnO, LiNi Mn O, CoLiVO and the like.
  • LiMeO LiMeO
  • LiMeO is at least one transition metal
  • the lithium transition metal-based compound of the present invention preferably includes a crystal structure belonging to an olivine structure, a spinel structure, or a layered structure in terms of the point of lithium ion diffusion.
  • a crystal structure belonging to a layered structure are particularly preferable.
  • Typical crystal systems that have a layered structure include those belonging to the ⁇ -NaFeO type such as LiCoO and LiNiO.
  • layered R (—3) m structure (Hereinafter sometimes referred to as “layered R (—3) m structure”).
  • the layered LiMe02 is not limited to the layered R (-3) m structure.
  • LiMn02 called so-called layered Mn is an orthorhombic and space group Pm2m layered compound, and Li MnO called so-called 213 phase can also be expressed as Li [Li Mn] 0.
  • the layered structure is not necessarily limited to the R (— 3) m structure, but R (—
  • Electrochemical performance is preferred that can be attributed to the m structure.
  • the layered structure is assumed to be the R (— 3) m structure below.
  • the ratio of Li [Ni Mn] 0 is (1 3x) (1— y),
  • the ratio of Li [Li Mn] 0 is 3x (l— y),
  • the percentage of LiCoO is y
  • (3a) and (3b) represent different metal sites in the layered R ( ⁇ 3) m structure, respectively.
  • Li is added in excess of z mol with respect to the composition of the formula (II) and is dissolved,
  • (3a) and (3b) represent different metal sites in the layered R (3) m structure, respectively.
  • each transition metal and Li are analyzed by an inductively coupled plasma emission spectrometer (ICP—AES), and Li / Ni / Calculated by determining the ratio of Mn / Co. That is, x and y are determined by the NiZMn and CoZNi ratios, and z is the LiZNi molar ratio.
  • ICP—AES inductively coupled plasma emission spectrometer
  • Li / Ni ⁇ 2 + 2z + 2x (l-y) ⁇ / ⁇ (l-3x) (l-y) ⁇
  • Li related to z and Li related to X are substituted by the same transition metal site.
  • the difference between Li related to X and Li related to z is whether or not the valence of Ni is greater than two (whether or not trivalent Ni is generated).
  • X is a value that is linked to the MnZNi ratio (Mn richness), so that Ni valence does not fluctuate only by this X value.
  • Ni remains divalent.
  • z can be regarded as Li, which raises the Ni valence, and z is an indicator of the Ni valence (ratio of Ni (III)).
  • the composition of Mn rich (X value is large) and Z or Co rich (y value is large) means that the Ni valence is high.
  • the rate characteristics and output characteristics are improved, but on the other hand, the capacity tends to decrease. From this, it can be said that the upper limit of the z value is more preferably specified as a function of X and y as described above.
  • the y value is 0 ⁇ y ⁇ 0.2 and the Co amount is in a small range, the cost is reduced and the lithium secondary battery is designed to be charged at a high charging potential. When used as a cycle, the cycle characteristics and safety are improved.
  • the battery using the lithium transition metal compound powder having the above composition as the positive electrode active material has the disadvantage that it is inferior in the conventional rate and output performance.
  • the lithium- nickel cobalt complex acid of the present invention Since the large amount of mercury intrusion during pressurization in the mercury intrusion curve is large and the pore volume between crystal particles is large, when the battery is fabricated using this, the surface of the positive electrode active material, the electrolyte solution, Therefore, it is possible to improve the load characteristics required as the positive electrode active material.
  • the lithium transition metal compound for a positive electrode material of a lithium secondary battery according to the present invention includes a crystal structure belonging to a layered structure preferred by a lithium nickel manganese cobalt compound oxide, and has the following composition:
  • the power represented by the formula (I) is more preferable.
  • the value of z is ⁇ 0.02 or more, preferably ⁇ 0.01 or more, more preferably 0 or more, still more preferably 0.01 (1 y) (1 ⁇ 3x) or more, Most preferably 0.02 (1—y) (1 3x) or more, 0.2 (l -y) (1 3x) or less, preferably 0.19 (1 y) (1-3x) ) Or less, more preferably 0.18 (1 ⁇ y) (l ⁇ 3x) or less, and most preferably 0.17 (1 ⁇ y) (l ⁇ 3x) or less. If the lower limit is not reached, the conductivity will decrease, and if the upper limit is exceeded, the amount of substitution to the transition metal site will be too much and the battery capacity will be reduced. There is.
  • the value of X is 0 or more, 0.33 or less, preferably 0.30 or less, more preferably 0.25 or less, and most preferably 0.20 or less. Below this lower limit, stability at high voltages may be reduced, and safety may be easily reduced. Exceeding the upper limit may result in the formation of heterogeneous phases and may lead to battery performance degradation.
  • the value of y is 0 or more, preferably 0.01 or more, 0.2 or less, preferably 0.18 or less, more preferably 0.15 or less, and most preferably 0.1 or less.
  • the z value is close to the lower limit of the constant ratio, and as the battery is used, the rate characteristics and output characteristics tend to be lower, and conversely z
  • the lower the X value that is, the closer the manganese Z nickel atomic ratio is to 1, the capacity comes out at a lower charging voltage, but the cycle characteristics and safety of batteries set at a high charging voltage tend to decrease
  • the closer the X value is to the upper limit the better the cycle characteristics and safety of batteries set at a higher charge voltage, while the discharge capacity, rate characteristics, and output characteristics tend to decrease.
  • the cycle characteristics and safety when set at a high charge voltage are reduced, and the raw material cost tends to increase.
  • the present invention has been completed as a result of intensive studies to overcome this contradictory tendency, and it is important that the composition parameters x, y, and z are within specified ranges.
  • the atomic ratio of the oxygen amount is described as 2 for convenience. There may be some non-stoichiometry.
  • the atomic ratio of oxygen can be in the range of 2 ⁇ 0.1.
  • the lithium transition metal compound of the present invention is a lithium nickel manganese cobalt compound oxide powder
  • a substitution element may be introduced into the structure.
  • the substitution element is selected from one or more of Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, Zr, Mo, W, and Sn. These substitution elements are appropriately replaced with Ni, Mn, Co elements in the range of 20 atomic% or less.
  • the lithium composite oxide particles of the present invention have a moderately large pore volume, it is possible to increase the contact area between the surface of the positive electrode active material and the electrolytic solution when a battery is produced using this. Therefore, it is presumed that the load characteristics necessary as the positive electrode active material have been improved. ⁇ Other preferences, aspects>
  • the median diameter of the lithium transition metal-based compound powder of the present invention is usually not less than 0, preferably not less than 0.8 ⁇ m, more preferably not less than 1 ⁇ m, most preferably not less than 1.1 ⁇ m. It is 5 ⁇ m or less, preferably 4.5 ⁇ m or less, more preferably 4 ⁇ m or less, further preferably 3. or less, and most preferably 3 m or less. If the lower limit is not reached, there may be a problem in applicability during the formation of the positive electrode active material layer, and if the upper limit is exceeded, battery performance may be reduced.
  • the 90% cumulative diameter (D) of the secondary particles of the lithium transition metal-based compound powder of the present invention is
  • the median diameter and 90% cumulative diameter (D) as the average particle diameter are:
  • the bulk density of the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material of the present invention is usually 0.5 gZcc or more, preferably 0.6 gZcc or more, more preferably 0.7 gZcc or more, and most preferably 0.8 gZcc or more. is there.
  • the powder filling property and electrode preparation may be adversely affected, and the positive electrode using this as an active material is usually 1.5 gZcc or less, preferably 1.4 gZcc or less, more preferably 1.3 gZcc. In the following, it is most preferably 1.2 g / cc or less.
  • the bulk density exceeding this upper limit is preferable for improving powder filling properties and electrode density, but the specific surface area may be too low, and the battery performance may be lowered.
  • the bulk density of lithium nickel manganese cobalt based composite oxide powder 5 ⁇ : LOg as a lithium transition metal compound is placed in a 10 ml glass graduated cylinder, and the stroke is about 20 mm.
  • the powder packing density (tap density) gZcc when tapped 200 times was determined.
  • Lithium-nickel-manganese composite Sani ⁇ powder of the present invention also includes, BET specific surface area, normally 1. 5 m 2 Zg or more, preferably 1. 7m 2 Zg or more, more preferably 2m 2 Zg above, better most favorable Ku is 2. 5 m 2 Zg more usually 5 m 2 Zg less, preferably 4. 5 m 2 Zg less, more preferred properly 4m 2 Zg less, or less and most preferably 3. 5 m 2 Zg. If the BET specific surface area is smaller than this range, the battery performance is lowered. If the BET specific surface area is too large, the bulk density rises, and there is a possibility that problems may occur in the coating properties when forming the positive electrode active material.
  • the BET specific surface area can be measured by a known BET powder specific surface area measuring device.
  • Okura Riken AMS8000 type automatic powder specific surface area measuring device is used.
  • Adsorption gas is nitrogen and carrier gas is helium. Measurements were made. Specifically, the powder sample is heated and degassed with a mixed gas at a temperature of 150 ° C, then cooled to liquid nitrogen temperature and adsorbed with a nitrogen-Z-helium mixed gas, and then heated to room temperature with water. The nitrogen gas adsorbed by heating was desorbed, the amount was detected by a heat conduction detector, and the specific surface area of the sample was calculated from this.
  • the C value of the lithium transition metal-based compound powder of the present invention is usually 0.005% by weight or more, preferably 0.01% by weight or more, more preferably 0.015% by weight or more, and most preferably 0.02% by weight. %, Usually 0.2% by weight or less, preferably 0.15% by weight or less, more preferably 0.12% by weight or less, and most preferably 0.1% by weight or less. If the lower limit is not reached, battery performance may be reduced, and if the upper limit is exceeded, swelling due to gas generation when the battery is formed may increase or battery performance may deteriorate.
  • the carbon concentration C of the lithium transition metal-based compound powder is measured by the combustion in an oxygen stream (high-frequency heating furnace type) infrared absorption method, as shown in the Examples section below. Desired.
  • the average primary particle size of the lithium transition metal compound of the present invention is preferably 0.05 / zm or more and 1 m or less.
  • the lower limit is more preferably 0.1 ⁇ m or more, even more preferably 0.15 / zm or more, most preferably 0. or more, and the upper limit is more preferably 0.8 ⁇ m or less, still more preferably 0.7 ⁇ m or less. Most preferably, it is 0.6 ⁇ m or less. If the above upper limit is exceeded, there is a possibility that the battery performance such as rate characteristics and output characteristics may be lowered because the powder filling property is adversely affected and the specific surface area is reduced. . If the lower limit is not reached, there is a possibility that problems such as inferior reversibility of charge and discharge may occur due to undeveloped crystals.
  • the average particle diameter of the primary particles in the present invention is an average diameter observed with a scanning electron microscope (SEM), and about 10 to 30 primary particles are obtained using a SEM image of 30,000 times. It can be obtained as an average value of the particle diameter of the particles.
  • SEM scanning electron microscope
  • the lower limit 1 ⁇ 10 3 ⁇ 'cm or more is preferred instrument 5 ⁇ 10 3 ⁇ ' cm or more preferred signaling 1Kai10 More preferably 4 ⁇ ⁇ « ⁇ or more.
  • the upper limit, 5 ⁇ 10 7 ⁇ ⁇ « ⁇ less favored signaling 1 ⁇ 10 7 ⁇ ⁇ « ⁇ less is more preferable and more preferably tool 5 ⁇ 10 6 ⁇ ⁇ « ⁇ below. If this volume resistivity exceeds this upper limit, there is a possibility that the load characteristics of the battery will be reduced. On the other hand, if the volume resistivity force S falls below this lower limit, the safety of the battery may decrease.
  • the volume resistivity of the lithium transition metal compound powder is a four-probe ring electrode, an electrode interval of 5.0 mm, an electrode radius of 1.0 mm, a sample radius of 12.5 mm, and an applied voltage. This is the volume resistivity measured when the limiter is 90 V and the lithium transition metal compound powder is consolidated at a pressure of 40 MPa.
  • the volume resistivity can be measured, for example, by using a powder resistance measuring device (for example, Lorester GP powder resistance measuring system manufactured by Dia Instruments Co., Ltd.) using a powder probe unit. Can be done on the body
  • “do not have” includes those having a diffraction peak of a degree that does not adversely affect the battery performance of the present invention. That is, when the diffraction peak includes a force spinel phase derived from the spinel phase, the capacity, rate characteristics, high-temperature storage characteristics, and high-temperature cycle characteristics of the battery are deteriorated.
  • the ratio of the diffraction peak area at ⁇ 1 ° is preferably 0.5% or less, more preferably 0.2% or less, and it is particularly preferable that there is no diffraction peak at all.
  • this diffraction peak is derived from the spinel phase, and if the spinel phase is included, the capacity, rate characteristics, high-temperature storage characteristics, and high-temperature cycle characteristics of the battery tend to decrease, so there is no such diffraction peak. It is preferable.
  • the present invention comprises a compound represented by the following composition formula ( ⁇ ), and includes a crystal structure belonging to a layered structure, and is used for powder X-ray diffraction measurement using CuKa line.
  • composition formula
  • the half-value width of the (110) diffraction peak existing near the diffraction angle of 20 force 4.5 ° is FWHM (110)
  • it is expressed as 0.01 ⁇ FWHM (110) ⁇ 0.2
  • the lithium nickel manganese cobalt based composite oxide powder for a lithium secondary battery positive electrode material characterized by the above will be described in more detail.
  • the lithium nickel manganese cobalt composite oxide powder for a lithium secondary battery positive electrode material of the present invention has a composition represented by the following formula ( ⁇ ) and includes a crystal structure belonging to a layered structure.
  • the half-value width of the (110) diffraction peak existing near the diffraction angle 2 ⁇ force 1 ⁇ 24.5 ° is FWHM (110), 0.01 ⁇ FWHM (110) ⁇ 0.2 It is represented by 2.
  • the value of x ′ is 0 or more, preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more, most preferably 0.04 or more, 0.1 or less. , Preferably 0.099 or less.
  • y ′ is —0.1 or more, preferably —0.08 or more, more preferably —0.05 or more, most preferably 0.03 or more, 0.1 or less, preferably 0.08 or less. More preferably, it is 0.05 or less, and most preferably 0.03 or less.
  • the value of z is (1 x,) (0. 05-0. 98y,) or more, preferably (1 ⁇ ') (0.0.06-0. 98y,) or more, more preferably (1 ⁇ ' ') (0. 07-0. 98y') or more, most preferably (1— ⁇ ') (0. 08 -0. 98y,) or more, ( ⁇ - ⁇ ') (0. 15— 0.88y, ), Preferably (1— ⁇ ,) (0.14 5-0. 88y ′) or less, more preferably (1— ⁇ ′) (0.14-0.88y ′), most preferably (1 ⁇ ') (0. 13 -0.
  • composition parameters x ′, y ′, and z ′ within a specified range is an important component of the present invention.
  • the atomic ratio of the oxygen amount may be a non-stoichiometric force with a force of 2 for convenience.
  • the atomic ratio of oxygen can be in the range of 2 ⁇ 0.1.
  • foreign elements may be introduced into the lithium nickel manganese cobalt based composite oxide powder of the present invention.
  • Foreign elements include B, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Sb, Te, Ba, Ta, W, Ir, Pt, Au, Pb, Bi, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , T m, Yb, Lu, N, F, P, S, CI, Br, I are selected from one or more.
  • These foreign elements may be incorporated into the crystal structure of the lithium nickel manganese cobalt based composite oxide, or may not be incorporated into the crystal structure of the lithium nickel manganese cobalt based composite oxide. It may be unevenly distributed as a simple substance or a compound on the grain surface or crystal grain boundary.
  • the lithium nickel manganese cobalt based composite oxide of the present invention includes a crystal structure belonging to a layered structure.
  • Typical crystal systems that have a layered structure include those belonging to the ⁇ -NaFeO type such as LiCoO and LiNiO.
  • the layered LiMeO is not limited to the layered R ( ⁇ 3) m structure. Besides this
  • Mn a loose layered LiMnO called Mn is an orthorhombic layered compound with a space group of Pm2m.
  • Li MnO can also be expressed as Li [Li Mn] 0
  • Monoclinic space group C2Zm structure but also Li and [Li Mn] layers and acid It is a layered compound in which a base layer is laminated.
  • the layered structure is not necessarily limited to the R ( ⁇ 3) m structure, but the electrochemical performance is also preferred because it can be attributed to the R ( ⁇ 3) m structure. ,.
  • each transition metal and Li are separated by an inductively coupled plasma emission spectrometer (ICP—AES). It is calculated by praying and finding the ratio of LiZNiZMnZCo.
  • Li related to z ' is substituted into the same transition metal site.
  • Li related to z ' causes the average valence of Ni to be greater than 2 due to the principle of charge neutrality (trivalent Ni is generated). Since z 'increases the average Ni valence, it becomes the target for the Ni valence (the harm ij of Ni (III)).
  • z ′ When z ′ is a negative value, it means that the amount of Li contained in the active material is less than the stoichiometric amount, and those having a very large negative value do not have the effect of the present invention. there is a possibility.
  • the Ni valence becomes higher as the composition of Ni rich (y' value is large) and Z or Co rich (chi 'value is large). If this occurs, the rate characteristics and output characteristics are improved, but on the other hand, the capacity tends to decrease. From this, it can be said that it is more preferable to specify the upper and lower limits of the z 'value as a function of x' and y.
  • the battery using the lithium nickel manganese cobalt composite oxide powder having the above composition as the positive electrode active material has the disadvantage that it has inferior conventional rate and output performance.
  • Ming's lithium nickel manganese cobalt based composite oxide is a crystal grain that has high crystallinity, has a very small presence of heterogeneous phase, and has a large amount of mercury intrusion during pressurization in the mercury intrusion curve. Since the pore capacity between the electrodes is large, it is possible to increase the contact area between the surface of the positive electrode active material and the electrolyte or conductive additive when a battery is produced using this. In addition, load characteristics can be improved.
  • the lithium nickel manganese cobalt based composite oxide powder of the present invention has a (110) diffraction peak half of the (110) diffraction peak present in the powder X-ray diffraction pattern using CuKa line.
  • the price range is FWHM (110), it is in the range of 0. 01 ⁇ FWHM (110) ⁇ 0.2.
  • FWHM (110) is usually 0.01 or more, preferably 0.05 or more, more preferably 0.110 or more, further preferably 0.12 or more, and most preferably 0.14 or more. 0.2 or less
  • it is 0.196 or less, More preferably, it is 0.19 or less, Most preferably, it is 0.185 or less.
  • the lithium nickel manganese cobalt based composite oxide powder of the present invention is present in the powder X-ray diffraction measurement using CuKa line, and there exists a diffraction angle 2 near ⁇ force 4 ° (018) diffraction.
  • the peak, (110) diffraction peak near 64.5 ° and (113) diffraction peak near 68 ° (113) Do not have a diffraction peak derived from a different phase on the higher angle side than the peak top?
  • it is preferable that the integrated intensity specific power of the different phase peak with respect to the diffraction peak of the original crystal phase is in the following range.
  • I 1 1 is the integrated intensity of the (018), (110), and (113) diffraction peaks, respectively.
  • I 1 1 is the peak of the (018), (110), and (113) diffraction peaks, respectively.
  • the diffraction peak may have a diffraction peak of a degree that does not adversely affect the battery performance of the present invention, but it is preferable that the ratio is in the above range.
  • the integrated intensity ratio of the derived diffraction peak is usually I
  • the lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material of the present invention preferably satisfies a specific condition in measurement by mercury porosimetry.
  • the particles of the present invention preferably have a mercury intrusion amount of 0.7 cm 3 Zg or more and 1.5 cmVg or less at a pressure of 3.86 kPa force up to 413 MPa.
  • Mercury intrusion volume is more preferably 0. 74cm 3 Zg above, yet good Mashiku is a 3 d Zg than the r, most ⁇ also good 3 d Zg or more, more preferably 1. More preferably 1. Most preferably 1.2 cm d Zg or less.
  • the lithium nickel manganese cobalt based composite oxide powder of the present invention usually has a specific main peak described below when the pore distribution curve is measured by the above-described mercury intrusion method. Appears.
  • the main peak of the pore distribution curve according to the present invention is such that the peak top has a pore radius of usually 300 nm or more, preferably 350 nm or more, most preferably 400 nm or more, and usually lOOOnm or less, preferably 980 nm or less. More preferably, it is 970 nm or less, more preferably 960 nm or less, and most preferably 950 nm or less.
  • the upper limit of this range is exceeded, when a battery is produced using the lithium nickel manganese condensate-based composite oxide powder of the present invention as a positive electrode material, lithium diffusion in the positive electrode material is inhibited, or the electric conductivity is reduced.
  • the pore volume of the main peak having a pore radius of 300 nm or more and having a peak top below lOOOnm in the pore distribution curve according to the present invention is preferably usually 0.3 cmVg or more, preferably is 0. 35cm 3 Zg or more, more preferably 0. 4cm 3 Zg or more, and most preferably 0. 5cm 3 Zg or more, and usually 1. 0cm 3 Zg or less, preferably 0. 8cm 3 Zg less, better and more virtuous Or 0.7 cm 3 Zg or less, and most preferably 0.6 cm 3 Zg or less.
  • the pore distribution curve according to the present invention may have a plurality of sub-peaks in addition to the main peak described above, but preferably does not exist within the pore radius range of 80 nm or more and 300 nm or less.
  • Lithium nickel manganese cobalt based composite oxide powder power of the present invention The details of the above-mentioned effects are not clear, but in addition to the highly developed crystallinity, it is also optimal in terms of composition. In addition, since the pore volume is reasonably large, it is possible to increase the contact area between the surface of the positive electrode active material and the electrolytic solution when a battery is produced using this, so that the positive electrode active material It is estimated that the necessary load characteristics are improved.
  • lithium nickel manganese cobalt based composite oxide powder of the present invention will be described. However, this is only a preferred embodiment and has the above-described features. If so, the other characteristics of the lithium nickel manganese cobalt based composite oxide powder of the present invention are not particularly limited.
  • the median diameter of the lithium nickel manganese cobalt based composite oxide powder of the present invention is usually 1 ⁇ m or more, preferably 1.2 ⁇ m or more, more preferably 1.5 ⁇ m or more, most preferably 2 ⁇ m. Thus, it is usually 5 ⁇ m or less, preferably 4.5 ⁇ m or less, more preferably 4 ⁇ m or less, further preferably 3. or less, and most preferably 3.5 m or less. Below this lower limit, there may be a problem in applicability during the formation of the positive electrode active material layer, and when the upper limit is exceeded, battery performance may be degraded.
  • the 90% cumulative diameter (D) of the secondary particles of the lithium nickel manganese cobalt based composite oxide powder of the present invention is usually 10 / z m or less, preferably 9 / z m or less, more preferably 8 m.
  • the bulk density of the lithium nickel manganese cobalt based composite oxide powder of the present invention is usually 0.5 gZcc or more, preferably 0.6 gZcc or more, more preferably 0.7 gZcc or more, and most preferably 0.8 gZcc or more. Usually, it is 1.7 gZcc or less, preferably 1.6 gZcc or less, more preferably 1.5 gZcc or less, and most preferably 1.3 gZcc or less. It is preferable for the bulk density to exceed this upper limit to improve the powder filling property and the electrode density, but the specific surface area may become too low, and the battery performance may be lowered. If the bulk density is below this lower limit, the powder filling property and electrode preparation may be adversely affected.
  • the bulk density can be measured by the same method as described above.
  • Lithium nickel manganese cobalt-based composite Sani ⁇ powder of the present invention also includes, BET specific surface area forces normally 1. 4m 2 Zg or more, preferably 1. 5 m 2 Zg or more, more preferably 1. 6 m g or more, most preferably at 1. 7m 2 Zg more usually 3m 2 Zg less, preferably 2. 8m 2 Zg hereinafter, more preferably 2. 5 m 2 Zg less, or less and most preferably 2. 3m 2 Zg. If the BET specific surface area is smaller than this range, the battery performance is deteriorated. If the BET specific surface area is too large, the bulk density is difficult to increase, and there is a possibility that a problem is likely to occur in the coating property when forming the positive electrode active material.
  • the BET specific surface area can be measured by the same method as described above.
  • the contained carbon concentration C (wt%) value of the lithium nickel manganese cobalt based composite oxide powder of the present invention is usually 0.005 wt% or more, preferably 0.01 wt% or more, more preferably 0.001 wt%. % By weight or more, most preferably 0.02% by weight or more, usually 0.05% by weight or less, preferably 0.045% by weight or less, more preferably 0.04% by weight or less, most preferably 0.035% by weight or less. % By weight or less. If the lower limit is not reached, battery performance may be reduced. If the upper limit is exceeded, swelling due to gas generation when the battery is formed increases or battery performance decreases. There is a possibility.
  • the carbon content C of the lithium nickel manganese cobalt based composite oxide powder can be measured by the same method as described above.
  • the C value is not limited to the specified range.
  • lithium nickel manganese cobalt composite oxide powder defined by the present invention a very small amount of lithium is present as carbonate, and the lithium composition defined by the composite oxide powder ( z) is not affected.
  • the average primary particle size of the lithium nickel manganese cobalt based composite oxide powder of the present invention is preferably 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the lower limit is more preferably 0.
  • the average primary particle size exceeds the above upper limit, it may adversely affect the powder filling property or decrease the specific surface area, which may increase the possibility that the battery performance such as rate characteristics and output characteristics will decrease. There is sex. If the lower limit is not reached, there is a possibility that problems such as inferior charge-discharge reversibility occur due to the undeveloped crystals.
  • the average primary particle size (average particle size of primary particles) can be measured by the same method as described above.
  • the lower limit of the volume resistivity value is preferably 1 ⁇ 10 3 ⁇ 'cm or more 5 X 10 3 ⁇ More preferably 'cm or more 1 x 10 4 ⁇ ' cm or more is more preferable.
  • the upper limit is preferably 1 ⁇ 10 6 ⁇ ⁇ cm or less, more preferably 5 ⁇ 10 5 ⁇ ⁇ cm or less, and further preferably 1 ⁇ 10 6 ⁇ ⁇ cm or less. If this volume resistivity exceeds this upper limit, the load characteristics of the battery may be reduced. On the other hand, when the volume resistivity falls below this lower limit, Safety may decrease.
  • volume resistivity can be measured by the same method as described above.
  • the main component is a lithium transition metal compound having a function capable of inserting and releasing lithium ions, and the main component material is subjected to grain growth and sintering during firing. What was fired after adding at least one additive to be added at a ratio of not less than 0.01 mol% and less than 2 mol% with respect to the total molar amount of transition metal elements in the main component raw material.
  • the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material which is characterized as follows, will be described in detail.
  • the lithium transition metal-based compound powder for a lithium secondary battery positive electrode material of the present invention (hereinafter sometimes referred to as “positive electrode active material”) has a function capable of inserting and desorbing lithium ions.
  • the main component raw material contains at least one additive that suppresses grain growth and sintering during firing relative to the total molar amount of transition metal elements in the main component raw material. It is characterized by being fired after being added in a proportion of not less than 01 mol% and less than 2 mol%.
  • the “lithium transition metal compound” is a compound having a structure capable of desorbing and inserting Li ions, such as sulfides, phosphate compounds, lithium transition metal composite oxides. Etc. Examples of the sulfide, phosphate compound, and lithium transition metal composite oxide include those described above.
  • the lithium transition metal-based compound powder of the present invention preferably comprises a crystal structure belonging to an olivine structure, a spinel structure, or a layered structure in terms of the point of lithium ion diffusion. Of these, those comprising a crystal structure belonging to a layered structure are particularly preferred.
  • foreign elements may be introduced into the lithium transition metal-based compound powder of the present invention.
  • Foreign elements include B, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Ru, Rh, Pd, Ag, In , Sn, Sb, Te, Ba, Os, Ir, Pt, Au, Pb, Bi, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, One or more of N, F, P, S, CI, Br, I is selected.
  • These foreign elements are lithium transition metal compounds. It may be incorporated into the crystal structure of the product, or may not be incorporated into the crystal structure of the lithium transition metal compound, and may be unevenly distributed as a single substance or as a compound on the particle surface or crystal grain boundary.
  • the “additive that suppresses grain growth and sintering during firing” refers to an active material that suppresses sintering between primary particles or between secondary particles during high-temperature firing. What has the effect of suppressing the growth of particles, achieving high crystallization, and obtaining a fine powder property having a large number of voids.
  • V is a metal element that can have a valence of 5 or 6 as an example. It is possible to have a stable high number state such as 5-7 valence, which is different from the deviation of the element, and as a result of almost no solid solution by solid phase reaction, it is unevenly distributed on the surface or grain boundary of lithium transition metal compound particles become. Therefore, it is presumed that the mass transfer due to the contact between the positive electrode active material particles is inhibited, and the growth and sintering of the particles are suppressed.
  • the type of additive is not particularly limited as long as it exhibits the above-mentioned effect, but the elemental power such as Mo, W, Nb, Ta, and Re, which is stable in the high number state, is also selected. Two or more of these elements, which are preferred for compounds containing elemental compounds, may be used in combination. Usually, oxide materials are usually used for compounds containing these elements. [0131] Exemplary compounds as additives include MoO, MoO, MoO, MoO, MoO, MoO, MoO, MoO, MoO, Mo
  • Examples include MoO, Li MoO, WO, Li WO, LiNbO, Ta O, LiTaO, and ReO.
  • the range of the amount of these additives is usually 0.01 mol% or more, preferably 0.03 mol% or more, based on the total molar amount of the transition metal elements constituting the main component raw material. Preferably it is 0.04 mol% or more, particularly preferably 0.05 mol% or more, usually less than 2 mol%, preferably 1.8 mol% or less, more preferably 1.5 mol% or less, particularly preferably 1 3 mol% or less. If the lower limit is not reached, the above effects may not be obtained. If the upper limit is exceeded, battery performance may be reduced.
  • the lithium transition metal-based compound powder of the present invention has a small amount selected from an additive-derived element (additive element), that is, preferably selected from Mo, W, Nb, Ta, and Re, on the surface portion of the primary particles.
  • additive element that is, preferably selected from Mo, W, Nb, Ta, and Re
  • the feature is that at least one element is concentrated.
  • the molar ratio of the total amount of the additive element to the total of metal elements other than Li and the additive element on the surface portion of the primary particle (that is, Li and the additive element) is usually the total particle size. It is more than 5 times the atomic ratio. The lower limit of this ratio is preferably 7 times or more, more preferably 8 times or more, and even more preferably 9 times or more.
  • the upper limit is not particularly limited, but it is preferably 150 times or less, more preferably 100 times or less, more preferably 50 times or less, and most preferably 30 times or less. preferable. If this ratio is too small, the effect of improving battery performance is small. On the other hand, if it is too large, battery performance may be deteriorated.
  • the composition of the surface part of the primary particles of the lithium transition metal compound powder was analyzed by X-ray photoelectron spectroscopy (XPS) using a monochromatic light ⁇ ⁇ as the X-ray source and an analysis area of 0.8 mm diameter. , Perform at a take-off angle of 65 °.
  • the range (depth) that can be analyzed varies depending on the composition of the primary particles, but is usually 0.1 nm or more and 50 nm or less, particularly 1 nm or more for the positive electrode active material. Onm or less. Accordingly, in the present invention, the surface portion of the primary particles of the lithium transition metal compound powder indicates a measurable range under these conditions.
  • the median diameter of the lithium transition metal-based compound powder of the present invention is usually 0.1 ⁇ m or more, preferably ⁇ or 0.3 ⁇ m or more, more preferably ⁇ or 0.6 ⁇ m or more, and further preferably 0.75 or more. 8 ⁇ m or more, most preferably 1.2 ⁇ m or more, usually 5 ⁇ m or less, preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less, more preferably 2.8 ⁇ m or less, most preferably Is 2.5 ⁇ m or less. If the median diameter is less than this lower limit, there may be a problem in applicability at the time of forming the positive electrode active material layer, and if it exceeds the upper limit, battery performance may be deteriorated.
  • the 90% cumulative diameter (D) of the secondary particles of the lithium transition metal-based compound powder of the present invention is
  • the average primary particle size (average primary particle size) of the lithium transition metal compound powder of the present invention is not particularly limited, but the lower limit is preferably 0.1 ⁇ m or more, and more preferably 0.15 m or more. m or more, more preferably ⁇ or 0.2 m or more, most preferably ⁇ or 0.25 m or more, and the upper limit is preferably 0.9 ⁇ m or less, more preferably 0.8 ⁇ m or less, and further Preferably it is not more than 0, and most preferably not more than 0.5 m. If the average primary particle diameter exceeds the above upper limit, the battery performance such as rate characteristics and output characteristics may decrease because the powder filling property will be adversely affected and the specific surface area will decrease. There is sex. If the lower limit is not reached, there is a possibility that problems such as inferior reversibility of charge / discharge due to undeveloped crystals.
  • the average primary particle size in the present invention can be determined in the same manner as described above. ⁇ BET specific surface area>
  • Lithium transition metal based compound powder of the present invention also includes, BET specific surface area is usually 1. 5 m 2 Zg or more, preferably 1. 6 m 2 Zg or more, more preferably 1. 7m 2 Zg above, most favorable Mashiku in 1. 8m 2 Zg more usually 5 m 2 Zg less, preferably 4m 2 Zg hereinafter further rather preferably is 3. 5 m 2 Zg, and most preferably not more than 3m 2 Zg. If the BET specific surface area is smaller than this range, the battery performance is deteriorated. If the BET specific surface area is too large, the bulk density is increased, and there is a possibility that a problem is likely to occur in the coating property at the time of forming the positive electrode active material.
  • the BET specific surface area can be measured in the same manner as described above.
  • the lithium transition metal compound powder for a lithium secondary battery positive electrode material of the present invention preferably satisfies a specific condition in measurement by mercury porosimetry.
  • the mercury intrusion method employed in the evaluation of the lithium transition metal compound powder of the present invention is as described above.
  • the lithium transition metal-based compound powder of the present invention has a mercury intrusion amount of 0.7 cm 3 Zg or more at a pressure of 3.86 kPa to 413 MPa in the mercury intrusion curve by this mercury intrusion method. It is preferably 5 cm 3 Zg or less.
  • Mercury intrusion volume is more preferably 0. 74cm 3 Zg or more, more preferably 0. 8 cm 3 Zg or more, and most preferably 0. 9cm 3 Zg or more, more preferably 1. 4 cm 3 Zg less, more preferably 1 3 cm 3 Zg or less, most preferably 1. 2 cm 3 Zg or less.
  • the main peak of the pore distribution curve according to the present invention is such that the peak top has a pore radius of usually 300 nm or more, preferably 350 nm or more, most preferably 400 nm or more, and usually lOOOnm or less, preferably 980 nm or less. More preferably, it is 970 nm or less, more preferably 960 nm or less, and most preferably 950 nm or less. If the upper limit of this range is exceeded, when a battery is produced using the lithium transition metal compound powder of the present invention as the positive electrode material, lithium diffusion in the positive electrode material is hindered or the conductive path is insufficient, resulting in a load. Properties may be degraded.
  • the pore volume of the peak having a pore top in the pore distribution curve according to the present invention having a pore radius of 300 nm or more and less than lOOOnm is preferably 0.4 cm 3 Zg or more, preferably 0. . 41cm 3 Zg or more, more preferably 0. 42cm 3 Zg or more, most preferably 0. 43cm 3 Zg or more, and usually lcm 3 Zg less, preferably 0. 8 cm 3 Zg less, more rather preferably 0. It is 7 cm 3 Zg or less, most preferably 0.6 cm 3 Zg or less.
  • the pore distribution curve according to the present invention may have a plurality of sub-peaks in addition to the main peak described above, but preferably does not exist within the pore radius range of 80 nm or more and 300 nm or less. ⁇ Bulk density>
  • the bulk density of the lithium transition metal-based compound powder of the present invention is usually 0.5 gZcc or more, preferably 0.6 gZcc or more, more preferably 0.7 gZcc or more, most preferably 0.8 gZcc or more, usually 1.7 gZcc or less. Preferably it is 1.6 gZcc or less, more preferably 1.5 gZcc or less, and most preferably 1.3 gZcc or less.
  • the bulk density exceeds this upper limit, it is preferable for improving powder filling properties and electrode density, but the specific surface area may become too low, and battery performance may be reduced. If the bulk density is below this lower limit, the powder filling property may adversely affect the electrode preparation.
  • the bulk density can be determined in the same manner as described above.
  • the value of the volume resistance rate when compacted lithium transition metal based compound powder at a pressure of 40MPa in the present invention the lower limit, 1 ⁇ 10 3 ⁇ 'cm or more is preferred instrument 5 ⁇ 10 3 ⁇ ' Ri is good or cm 1 ⁇ 10 4 ⁇ ⁇ « ⁇ or more is more preferable.
  • the upper limit is preferably 1 ⁇ 10 6 ⁇ ⁇ « ⁇ or less, more preferably 5 ⁇ 10 5 ⁇ ⁇ « ⁇ or less, and more preferably 1 ⁇ 10 6 ⁇ ⁇ « ⁇ or less. If this volume resistivity force exceeds this upper limit, the load characteristics of the battery may be reduced. On the other hand, if the volume resistivity falls below this lower limit, the safety of the battery may be reduced.
  • volume resistivity is measured in the same manner as described above.
  • the lithium transition metal based compound powder of the present invention is preferably composed mainly of a lithium nickel manganese cobalt based composite oxide containing a crystal structure belonging to a layered structure.
  • the layered LiMeO is not limited to the layered R (-3) m structure as described above.
  • the lithium transition metal compound powder of the present invention is preferably a lithium transition metal compound powder represented by the following composition formula ( ⁇ ′).
  • M is an element composed of Li, Ni and Mn, or Li, Ni, Mn and Co
  • the molar ratio of MnZNi is usually 0.8 or more, preferably 0.82 or more, more preferably 0. 85 or more, more preferably 0.88 or more, most preferably 0.9 or more, usually 5 or less, preferably 4 or less, more preferably 3 or less, more preferably 2.5 or less, most preferably 1.5 or less.
  • the CoZ (Mn + Ni + Co) molar ratio is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more, most preferably 0.05 or more, usually 0.30.
  • Li molar ratio in M is 0.001 or more, preferably 0.01 or more, more preferably 0.02 or more, more preferably 0.03 or more, most preferably 0.05 or more, usually 0.2 or less, Preferably it is 0.19 or less, more preferably 0.18 or less, further preferably 0.17 or less, and most preferably 0.15 or less.
  • the atomic ratio of the oxygen amount is described as 2 for the sake of convenience, but there may be some non-stoichiometry.
  • the atomic ratio of oxygen is usually in the range of 2 ⁇ 0.2, preferably in the range of 2 ⁇ 0.15, more preferably in the range of 2 ⁇ 0.12, and even more preferably 2 ⁇ 0. It is in the range of 10, particularly preferably in the range of 2 ⁇ 0.05.
  • the lithium transition metal-based compound powder of the present invention is preferably fired by high-temperature firing in an oxygen-containing gas atmosphere in order to improve the crystallinity of the positive electrode active material.
  • the lower limit of the firing temperature is usually 970 ° C or higher, preferably 975 ° C or higher, more preferably 980 ° C or higher, more preferably 985 ° C or higher, most preferably 990 ° C or higher
  • the upper limit is usually 1200 ° C or lower, preferably 1175 ° C or lower, more preferably 1150 ° C or lower, most preferably 1125 ° C or less.
  • the carbon concentration C (wt%) value of the lithium transition metal compound powder of the present invention is usually 0.005 wt% or more, preferably 0.01 wt% or more, more preferably 0.015 wt% or more, most preferably Preferably, it is 0.02% by weight or more, usually 0.05% by weight or less, preferably 0.045% by weight or less, more preferably 0.04% by weight or less, and most preferably 0.035% by weight or less. If the lower limit is not reached, battery performance may decrease, and if the upper limit is exceeded, swelling due to gas generation when the battery is formed may increase or battery performance may decrease.
  • the carbon content C of the lithium transition metal-based compound powder is determined in the same manner as described above.
  • the carbon content of the lithium transition metal-based compound powder obtained by the carbon analysis described later can be regarded as indicating information on the amount of carbonic acid compound, particularly lithium carbonate. This is because the carbon amount determined by carbon analysis is assumed to be derived from carbonate ions and the carbonate ion concentration analyzed by ion chromatography is almost the same.
  • a C amount exceeding the specified range may be detected.
  • the C value is not limited to the above specified range.
  • the lithium transition metal compound powder for a lithium secondary battery positive electrode material of the present invention is particularly preferably one in which the atomic configuration in the M site in the composition formula ( ⁇ ′) is represented by the following formula ( ⁇ ′).
  • M Li ⁇ (Ni Mn) Co ⁇
  • ⁇ ′ ′ is usually 0 or more, preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more, and most preferably 0.0. 04 or more, usually 0.1 or less, preferably 0.0 or less, most preferably 0.0 or less.
  • the value of y '' is usually at least 0.1, preferably at least 0.05, more preferably at least 0.03, most preferably at least 0.02, usually at most 0.1, preferably at 0. .05 or less, more preferably 0.03 or less, and most preferably 0.02 or less.
  • the value of z is usually (1 x,,) (0. 05-0. 98y,) or more, preferably (l—x,,) (0. 06 —0. 98,) or more
  • the cycle characteristics and safety of the battery set at a higher charge voltage improve, while the discharge capacity, rate characteristics, and output characteristics tend to decrease.
  • the closer the x '' value is to the lower limit the lower the load characteristics such as rate characteristics and output characteristics of the battery, and conversely, the closer the x '' value is to the upper limit. If the upper limit is exceeded, the cycle characteristics and safety when set at a high charge voltage will be reduced, and the raw material cost will increase. It is important for the present invention to set the composition parameters x ′ ′, y ′ ′, z ′ ′ within a specified range. It is an essential component.
  • the layered structure is not necessarily limited to the R ( ⁇ 3) m structure, but the electrochemical performance aspect is also preferable because it can be attributed to the R ( ⁇ 3) m structure. ,.
  • Li related to z '' is considered to be substituted at the same transition metal site.
  • Li related to z ' causes the average valence of Ni to be greater than 2 due to the principle of charge neutrality (trivalent Ni is produced).
  • z '' increases the Ni average valence, and is an indicator of the Ni valence (the ratio of Ni (III)).
  • the lithium- nickel manganese cobalt based composite oxide powder having a composition satisfying the composition formulas ( ⁇ ,) and ( ⁇ ,,) is a powder X-ray using CuKa line.
  • FWHM (l lO) 0.01 ⁇ FWHM (110) ⁇ 0.2 It is characterized by being in the range of.
  • the lithium transition metal-based compound powder of the present invention has fine crystal grains, and the amount of mercury intrusion at the time of pressurization in the mercury intrusion curve is large.
  • the crystallinity is highly developed and the presence ratio of heterogeneous phase.
  • the load characteristics required for the positive electrode active material are estimated to have been improved to a practical level.
  • the method for producing a lithium transition metal-based compound in the present invention is not limited to a specific production method.
  • a lithium nickel manganese condensate-based complex oxide will be described as an example.
  • a slurry in which a lithium compound, a nickel compound, a manganese compound, and a cobalt compound are dispersed in a liquid medium is spray-dried, and then the mixture is fired.
  • a liquid comprising a lithium compound, at least one transition metal compound selected from V, Cr, Mn, Fe, Co, Ni, and Cu, and an additive that suppresses grain growth and sintering during firing.
  • a slurry preparation step of obtaining a slurry in which the slurry is uniformly dispersed by pulverizing in a medium, a spray drying step of spray drying the obtained slurry, and firing the obtained spray dried powder And a method for producing a lithium transition metal compound powder for a positive electrode material for a lithium secondary battery according to the present invention.
  • lithium nickel manganese cobalt based composite oxide among the raw materials used in the preparation of the slurry, as the lithium compound, Li CO
  • Li 0, Li SO, dicarboxylic acid Li, citrate Li, fatty acid Li, alkyl lithium, etc.
  • lithium compounds that do not contain harmful substances such as SOx and NOx during firing are preferable because they do not contain nitrogen atoms, sulfur atoms, or halogen atoms, and decompose during firing. It is a compound that tends to form voids by generating gas in the secondary particles of spray-dried powder, etc., and taking these points into consideration, Li CO, LiOH, LiOH- H O power
  • Li CO is preferred because it is relatively inexpensive. These lithium compounds can be used alone.
  • Two or more types may be used in combination.
  • Nickel compounds include Ni (OH), NiO, NiOOH, NiCO, 2NiCO-3Ni
  • Nickel acid nickel halide and the like.
  • Ni (OH), NiO, NiOOH, NiCO, 2 in that no harmful substances such as SO x and NOX are generated during firing.
  • Ni (OH), NiOOH, and NiCO are particularly preferable from the viewpoint of easily forming voids in the secondary particles of the fog-dried powder. These nickel compounds are used alone.
  • Manganese oxides such as Mn O, MnO, Mn O, etc.
  • O does not generate SOx, NOx and other gases during firing, and is inexpensive as an industrial raw material
  • manganese compounds may be used alone or in combination of two or more.
  • Cobalt compounds include Co (OH), CoOOH ⁇ CoO, Co O, Co O, Co (
  • Co (OH), CoOOH, CoO, CoO, CoO, and CoCO are more preferable because they do not generate harmful substances such as SOx and NOX during the firing process.
  • Co (OH) and CoOOH are industrially inexpensively available and highly reactive.
  • Co (OH), CoOOH, and CoCO are particularly preferred from the viewpoint of easily forming voids in the secondary particles of the spray-dried powder by generating decomposition gas during firing.
  • substitution of other elements is performed to introduce the above-mentioned foreign elements, or voids in secondary particles formed by spray drying described later are formed. It is possible to use a compound group for the purpose of forming efficiently.
  • the addition step of the compound used here for the purpose of efficiently forming the voids of the secondary particles can be selected either before or after mixing the raw materials depending on the property. Is possible. In particular, it is easy to decompose due to mechanical shear stress applied by the mixing process. It is preferable to add the compound after the mixing process.
  • Exemplary compounds for additives that suppress grain growth and sintering during firing are as described above, and these additives may be used alone or in combination of two or more. May be.
  • the method of mixing the raw materials is not particularly limited, and may be wet or dry!
  • examples thereof include a method using an apparatus such as a ball mill, a vibration mill, and a bead mill.
  • Wet mixing in which the raw material compound is mixed in a liquid medium such as water or alcohol is preferable because more uniform mixing is possible and the reactivity of the mixture can be increased in the firing step.
  • the mixing time varies depending on the mixing method, but it is sufficient if the raw materials are uniformly mixed at the particle level.
  • ball mill (wet or dry) usually takes about 1 to 2 days, and bead mill (wet continuous method) stays. The time is usually about 0.1 to 6 hours.
  • the raw material is pulverized in parallel with the raw material mixing stage.
  • the degree of pulverization is based on the particle diameter of the raw material particles after pulverization, but the average particle diameter (median diameter) is usually 0.4 m or less, preferably 0.3 m or less, more preferably 0.25. / zm or less, most preferably 0.2 / zm or less. If the average particle diameter of the raw material particles after pulverization is too large, the reactivity in the firing process is lowered and the composition is difficult to be uniformized.
  • the average particle size is usually 0.01 ⁇ m or more, preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more. What is necessary is just to grind so that it may become.
  • a means for realizing such a degree of pulverization is not particularly limited, but a wet pulverization method is preferable. Specific examples include a dyno mill.
  • the median diameter of the pulverized particles in the slurry described in the examples of the present invention was measured as described above.
  • the median diameter of the spray-dried body described later is the same as that except that the measurement was performed after ultrasonic dispersion for 0, 1, 3, and 5 minutes, respectively.
  • the method is not particularly limited, but spray drying is preferred from the viewpoints of uniformity of the produced particulate matter, powder flowability, powder nodding performance, and efficient production of dry particles.
  • a powder obtained by pulverizing by wet pulverization and then spray drying to aggregate primary particles to form secondary particles Get the body.
  • the spray-dried powder formed by agglomerating primary particles to form secondary particles is a shape feature of the spray-dried powder of the present invention. Examples of the shape confirmation method include SEM observation and cross-sectional SEM observation.
  • the median diameter of the powder obtained by spray drying which is also the firing precursor of the lithium nickel manganese cobalt based composite oxide powder of the present invention (value measured without applying ultrasonic dispersion here) Is usually 15 m or less, more preferably 12 m or less, still more preferably 9 m or less, and most preferably 7 m or less. However, since it tends to be difficult to obtain a particle size that is too small, it is usually 3 ⁇ m or more, preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more. When the particulate matter is produced by the spray drying method, the particle size can be controlled by appropriately selecting the spraying format, the pressurized gas flow supply rate, the slurry supply rate, the drying temperature, and the like.
  • a slurry in which a lithium compound, a nickel compound, a manganese compound, and a cobalt compound are dispersed in a liquid medium is spray-dried, and the obtained powder is fired to obtain a lithium nickel manganese cobalt-based composite oxide.
  • the slurry viscosity during spray drying is V (cp)
  • the slurry supply amount is S (LZmin)
  • the gas supply amount is G (LZmin)
  • the slurry viscosity V force 50cp ⁇ V ⁇ Spray drying is performed under the condition of 4000 cp and a gas-liquid ratio GZS of 1500 ⁇ G / S ⁇ 5000.
  • the slurry viscosity V (cp) is usually 50 cp or more as a lower limit, preferably 100 cp or more, more preferably 300 cp or more, most preferably 500 cp, and the upper limit is usually 4000 cp or less, preferably 3500 cp or less. More preferably, it is 3000 cp or less, and most preferably 2500 cp or less.
  • the gas-liquid ratio GZS is usually 1500 or more, preferably 1600 or more, more preferably 1700 or more, most preferably 1800 or more as the lower limit, and the upper limit is usually 5000 or less, preferably 4700 or less, more preferably. 4500 or less, most preferably 4200 or less.
  • the slurry supply amount S and the gas supply amount G are appropriately set depending on the viscosity of the slurry used for spray drying, the specifications of the spray drying apparatus used, and the like.
  • the above-mentioned slurry viscosity V (cp) is satisfied and used for spray drying.
  • GZS gas-liquid ratio
  • spray drying of the slurry is usually 50 ° C or higher, preferably 70 ° C or higher, more preferably 120 ° C or higher, most preferably 140 ° C or higher, and usually 300 ° C or lower, preferably V, preferably performed at a temperature of 250 ° C or lower, more preferably 200 ° C or lower, most preferably 180 ° C or lower. If this temperature is too high, the resulting granulated particles may have many hollow structures, which may reduce the packing density of the powder. On the other hand, if it is too low, problems such as powder sticking and clogging due to water condensation at the powder outlet may occur.
  • the spray-dried powder of the lithium nickel manganese cobalt-based composite oxide powder according to the present invention is characterized by a weak cohesion between primary particles, which is accompanied by ultrasonic dispersion. This can be confirmed by examining changes in the median diameter.
  • the upper limit of the median diameter of spray-dried particles when measured after applying ultrasonic dispersion "Ultra Sonic" (output 30 W, frequency 22.5 kHz) for 5 minutes is usually 4 ⁇ m or less, preferably 3. 5 ⁇ m or less, more preferably 3 ⁇ m or less, even more preferably 2. or less, most preferably 2 m or less.
  • the lower limit is usually 0.01 ⁇ m or more, preferably ⁇ or 0.05 ⁇ m or more.
  • Lithium nickel manganese cobalt based composite oxide particles baked with spray-dried particles having a median diameter after ultrasonic dispersion larger than the above value do not improve the load characteristics due to the small number of voids between the particles.
  • the median diameter after ultrasonic dispersion is smaller than the above value! / Lithium nickel manganese cobalt based composite oxide particles fired using spray-dried particles have too many voids between the particles, resulting in bulkiness. Problems such as reduced density and poor coating properties may occur.
  • the bulk density of the spray-dried powder of the lithium nickel manganese cobalt composite oxide powder for the positive electrode material of the lithium secondary battery of the present invention is usually at least 0.1 lgZcc, preferably at least 0.3 g / cc, More preferably 0.5 gZcc or more, most preferably 0.7 gZcc or more. Below this lower limit, there is a possibility of adversely affecting powder filling properties and powder handling, and usually 1.7 gZcc or less, preferably 1.6 gZcc or less, more preferably 1.5 gZcc or less, and most preferably Is less than 1.4gZcc. If the bulk density exceeds this upper limit, powder filling properties While it is preferable for the handling of powder and powder, the specific surface area may be too low, and the reactivity in the firing process may be reduced.
  • the powder obtained by spray drying has a small specific surface area, the reactivity between the raw materials and the compound decreases in the next firing step. It is preferable that the specific surface area be as high as possible by means such as crushing the starting material. On the other hand, if an excessively high specific surface area is used, there is a possibility that the lithium transition metal compound of the present invention cannot be obtained as well as being industrially disadvantageous. Therefore, the spray-dried particles thus obtained usually have a BET specific surface area of usually 10 m 2 Zg or more, preferably 20 m 2 Zg or more, more preferably 30 m 2 Zg or more, and most preferably 35 m 2 Zg or more. 70 m 2 Zg or less, preferably 65 m 2 Zg or less, and most preferably 60 m 2 Zg or less.
  • more more preferably 30 m 2 Zg or more, most preferably 50 m 2 Zg or more, usually 100 m 2 Zg or less, preferably 80 m 2 Zg or less, more preferably 70 m 2 Zg or less, most preferably 65 m 2 Zg or less. I prefer that.
  • the firing precursor thus obtained is then fired in the following manner.
  • the “firing precursor” means a lithium transition metal compound precursor before firing obtained by treating a spray-dried product.
  • a compound that generates or sublimates decomposition gas during the above-described firing and forms voids in secondary particles is included in the spray-dried product, and may be used as a firing precursor.
  • the firing temperature is usually 800 ° C or higher, preferably 850 ° C or higher, more preferably 900 ° C or higher, most preferably 950 ° C or higher, and usually 1100 ° C or lower, preferably 1075 ° C or lower. More preferably, it is 1050 ° C or less, and most preferably 1025 ° C or less.
  • composition formula ( ⁇ ) It consists of a compound represented by the composition formula ( ⁇ ), and includes a crystal structure belonging to a layered structure.
  • a diffraction angle of 2 ⁇ force is around 1 ⁇ 24.5 °.
  • Lithium for lithium secondary battery cathode material characterized by the following expression: 0.01 ⁇ FWH M (110) ⁇ 0.2 when the half width of the existing (110) diffraction peak is FWHM (110) -
  • the firing temperature T is usually 940 ° C ⁇ T ⁇ 1200 ° C, preferably 950 ° C or more, more preferably 960 ° C or higher, most preferably 970 ° C or higher, usually 1200 ° C or lower, preferably 1175 ° C or lower, more preferably 1150 ° C or lower, most preferably 1125 ° C or lower.
  • the main component is a lithium transition metal compound having a function capable of inserting and desorbing lithium ions
  • the main component material contains a small amount of additives that suppress grain growth and sintering during firing. It is characterized in that at least one kind or more is added at a ratio of not less than 0.01 mol% and less than 2 mol% with respect to the total molar amount of transition metal elements in the main component raw material, and then fired.
  • the calcining temperature when producing the lithium transition metal compound powder for the positive electrode material of the lithium secondary battery is usually 700 ° C or higher, but the composition formula ( ⁇ ′) and ( ⁇ ′ ′)
  • 970 ° C or higher is preferred, more preferably 975 ° C or higher, more preferably 980 ° C or higher.
  • 980 ° C or higher is 990 ° C or higher, usually 1200 ° C or lower, preferably 1175 ° C or lower.
  • a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like can be used.
  • the firing process is usually divided into three parts: temperature increase, maximum temperature retention, and temperature decrease.
  • the second maximum temperature holding part is not necessarily limited to one time, but it means that aggregation can be eliminated to the extent that secondary particles that do not need to be broken by two or more stages depending on the purpose are destroyed. Repeat the process of raising temperature 'holding maximum temperature' or lowering temperature twice or more across the crushing process, which means crushing process or crushing to primary particles or even fine powder May be.
  • the temperature inside the furnace is usually raised at a rate of temperature rise of 1 ° CZ to 10 ° CZ. Even if this rate of temperature rise is too slow, it takes time and is industrially disadvantageous. However, if it is too fast, the temperature inside the furnace will not follow the set temperature depending on the furnace.
  • the rate of temperature rise is preferably 2 ° CZ min or more, more preferably 3 ° CZ min or more, preferably 7 ° CZ min or less, more preferably 5 ° CZ min or less.
  • the holding time in the maximum temperature holding step varies depending on the temperature, but usually 30 minutes or longer, preferably 3 hours or longer, more preferably 5 hours or longer, most preferably 6 within the above temperature range. More than the time, 50 hours or less, preferably 25 hours or less, more preferably 20 hours or less, and most preferably 15 hours or less. If the firing time is too short, it becomes difficult to obtain a lithium nickel manganese cobalt based composite oxide powder having good crystallinity, and it is not practical to use it too long. If the firing time is too long, then it will be necessary to crush or it will be difficult to crush, which is disadvantageous.
  • the temperature in the furnace is usually decreased at a temperature decreasing rate of 0.1 ° CZ or more and 10 ° CZ or less. If it is too slow, it is time consuming and industrially disadvantageous. However, if it is too fast, the object tends to be inhomogeneous or the container tends to deteriorate.
  • the temperature lowering rate is preferably 1 ° CZ or more, more preferably 3 ° CZ or more, preferably 7 ° CZ or less, more preferably 5 ° CZ or less.
  • an oxygen-containing gas atmosphere such as air
  • the atmosphere has an oxygen concentration of 1% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and 100% by volume or less, preferably 50% by volume or less, more preferably 25% by volume or less.
  • the lithium compound, nickel compound, manganese in order to produce the lithium transition metal-based compound powder having the specific composition of the present invention, can be produced under constant production conditions.
  • the molar ratio of the target LiZNiZMn ZM can be controlled by adjusting the mixing ratio of each compound when preparing a slurry in which a compound and a cobalt compound are dispersed in a liquid medium.
  • the lithium compound, the nickel compound, the manganese compound, and the cobalt compound can be used when the production conditions are constant.
  • the molar ratio of the target LiZNiZMnZCo is controlled by adjusting the mixing ratio of each compound be able to.
  • the lithium transition metal-based compound thus obtained has excellent load characteristics such as rate 'output with high capacity with less blistering due to gas generation, and excellent low-temperature output characteristics and storage characteristics.
  • a positive electrode material for a lithium secondary battery having a good performance balance is provided.
  • the positive electrode for a lithium secondary battery of the present invention has a positive electrode active material layer containing a lithium nickel manganese composite oxide powder for a lithium secondary battery positive electrode material of the present invention and a binder on a current collector. It is formed.
  • the positive electrode active material layer is usually formed by mixing a positive electrode material, a binder, and a conductive material and a thickener, which are used as necessary, in a dry form into a sheet, and then pressing the positive electrode current collector on the positive electrode current collector.
  • these materials are dissolved or dispersed in a liquid medium to form a slurry, which is applied to the positive electrode current collector and dried.
  • metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum, and carbon materials such as carbon cloth and carbon paper are usually used. Of these, aluminum is particularly preferable because metal materials are preferred.
  • shape in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc., and in the case of a carbon material, a carbon plate, a carbon thin film, A carbon cylinder etc. are mentioned.
  • metal thin films are preferred because they are currently used in industrial products. In addition, you may form a thin film suitably in mesh shape.
  • the thickness thereof is arbitrary, but usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 100 mm or less, preferably Is preferably in the range of lmm or less, more preferably 50 m or less. If it is thinner than the above range, the strength required for the current collector may be insufficient, whereas if it is thicker than the above range, The handling and performance may be impaired.
  • the binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of the coating method, any material that is stable with respect to the liquid medium used during electrode production may be used.
  • the ratio of the binder in the positive electrode active material layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less, more preferably 40% by weight or less, and most preferably 10% by weight or less. If the proportion of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate the battery performance such as the vital characteristics. If too much, battery capacity and conductivity may be reduced.
  • the positive electrode active material layer usually contains a conductive material in order to enhance conductivity.
  • a conductive material in order to enhance conductivity.
  • metal materials such as copper and nickel, natural graphite, black bells such as artificial black bells, carbon black such as acetylene black, needle coats, etc.
  • carbon materials such as amorphous carbon. These substances may be used alone or in combination of two or more in any combination and ratio. good.
  • the proportion of the conductive material in the positive electrode active material layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and usually 50% by weight or less. Is 30% by weight or less, more preferably 20% by weight or less. If the proportion of the conductive material is too low, the conductivity may be insufficient, and conversely if it is too high, the battery capacity may be reduced.
  • a lithium nickel mangan composite oxide powder as a positive electrode material, a binder, and a conductive material and a thickener used as necessary are dissolved or used.
  • the solvent can be dispersed, either an aqueous solvent or an organic solvent with no particular limitation may be used.
  • aqueous solvents include water and alcohol.
  • organic solvents include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, acrylics.
  • THF tetrahydrofuran
  • the content ratio of the lithium transition metal-based compound powder of the present invention as the positive electrode material in the positive electrode active material layer is usually 10 wt% or more, preferably 30 wt% or more, more preferably 50 wt% or more. In general, it is 99.9% by weight or less, preferably 99% by weight or less. If the proportion of the lithium transition metal compound powder in the positive electrode active material layer is too large, the strength of the positive electrode tends to be insufficient, and if it is too small, the capacity may be insufficient.
  • the thickness of the positive electrode active material layer is usually about 10 to 200 m.
  • the positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.
  • the positive electrode for a lithium secondary battery of the present invention can be prepared by force.
  • the lithium secondary battery of the present invention includes a positive electrode for a lithium secondary battery of the present invention that can occlude and release lithium, a negative electrode that can occlude and release lithium, and a lithium salt as an electrolytic salt.
  • a separator for holding a nonaqueous electrolyte may be provided between the positive electrode and the negative electrode. In order to effectively prevent a short circuit due to contact between the positive electrode and the negative electrode, it is desirable to interpose a separator in this way.
  • the negative electrode is usually formed by forming a negative electrode active material layer on the negative electrode current collector, as with the positive electrode.
  • the material of the negative electrode current collector is a metal material such as copper, nickel, stainless steel, nickel-plated steel, etc. Carbon materials such as carbon cloth and carbon paper are used.
  • a metal material a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, and the like are included.
  • metal thin films are preferred because they are currently used in industrial products. Note that the thin film may be formed in a mesh shape as appropriate.
  • the preferred thickness range is the same as the range described above for the positive electrode current collector.
  • the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode active material can be any kind of lithium ion that can be occluded / released electrochemically. There are no other restrictions on the type of the active material. Usually, lithium can be occluded / released in terms of safety. Carbon material is used.
  • the type of carbon material is not particularly limited, and examples thereof include graphite (graphite) such as artificial graphite and natural graphite, and pyrolysis products of organic substances under various pyrolysis conditions.
  • graphite graphite
  • pyrolysis products of organic matter include coal-based coatas, petroleum-type coatas, coal-type pitch carbides, petroleum-type pitch carbides, or those obtained by acid-treating these pitches, needle coaters, pitch coatus, phenol
  • carbons such as fat and crystalline cellulose, carbon materials partially graphitized thereof, furnace black, acetylene black, pitch-based carbon fibers, and the like. Of these, graphite is particularly preferred.
  • the d value (interlayer distance) of (002 plane) is usually 0.335 nm or more, usually 0.34 nm or less, and preferably 0.333 nm or less.
  • the ash content of the graphite material is usually 1% by weight or less with respect to the weight of the graphite material.
  • It is preferably 5% by weight or less, particularly preferably 0.1% by weight or less.
  • the crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 ⁇ m or more, preferably 50 nm or more, particularly preferably lOOnm or more.
  • the median diameter of graphite material obtained by laser diffraction / scattering method is usually 1 ⁇ m or more, especially 3 ⁇ m or more, more than 5 ⁇ m, especially 7 ⁇ m or more, and usually 100 ⁇ m or less.
  • it is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the BET specific surface area of the graphite material is usually 0.5 m 2 Zg or more, preferably 0.7 mg or more, more preferably 1.0 m 2 Zg or more, further preferably 1.5 m 2 Zg or more, Also usually 2
  • the half width of peak P is preferably 26cm _1 or less 25cm " 1
  • negative electrode active material for other materials capable of inserting and extracting lithium.
  • negative electrode active materials other than carbon materials include metal oxides such as tin oxide and silicon oxide, nitrides such as Li Co N, and lithium.
  • lithium and lithium alloys such as lithium aluminum alloys.
  • One of these materials other than carbon materials may be used alone, or two or more materials may be used in combination. Moreover, you may use in combination with the above-mentioned carbon material.
  • the negative electrode active material layer is usually bonded to the above-described negative electrode active material in the same manner as in the case of the positive electrode active material layer. It can be produced by applying a slurry of an adhesive and, if necessary, a conductive material and a thickener in a liquid medium to a negative electrode current collector and drying. As the liquid medium, the binder, the thickener, the conductive material, and the like that form the slurry, the same materials as those described above for the positive electrode active material layer can be used.
  • non-aqueous electrolyte for example, known organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes, and the like can be used. Of these, organic electrolytes are preferable.
  • the organic electrolyte is configured by dissolving a solute (electrolyte) in an organic solvent.
  • the type of the organic solvent is not particularly limited.
  • carbonates, ethers, ketones, sulfolane compounds, ratatones, nitriles, chlorinated hydrocarbons, ethers, amines, Esters, amides, phosphate ester compounds and the like can be used.
  • Typical examples are dimethyl carbonate, jetyl carbonate, ethynolemethinole carbonate, propylene carbonate, ethylene carbonate, vinylene power carbonate, butyl ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4 dioxane, 4-methyl-2-pentanone, 1, 2-dimethoxy E Tan, 1, 2-diethoxy E Tan, I Buchirorataton, 1, 3 Jiokisoran, 4 Mechinore 1, 3-di Okisoran, Jefferies chill ether, sulfolane, methyl sulfolane, Asetonitoriru, propylene Onitoriru , Benzonitrile, butyronitrile, valeronitryl, 1,2-dichloromouth ethane, dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, triethyl phosphate, and the like. Atoms may be partially substituted with a halogen atom
  • the above-mentioned organic solvent preferably contains a high dielectric constant solvent in order to dissociate the electrolytic salt.
  • the high dielectric constant solvent means a compound having a relative dielectric constant of 20 or more at 25 ° C.
  • the high dielectric constant solvents it is preferable that ethylene carbonate, propylene carbonate, and compounds obtained by substituting those hydrogen atoms with other elements such as halogens or alkyl groups are contained in the electrolytic solution.
  • the proportion of the high dielectric constant solvent in the electrolytic solution is preferably 20% by weight or more, more preferably 25% by weight or more, and most preferably 30% by weight or more.
  • organic electrolytes contain gases such as CO, N 0, CO, and SO
  • an additive such as polysulfide Sx 2_ that forms a good film that enables efficient charge and discharge of lithium ions on the negative electrode surface may be added at an arbitrary ratio.
  • biylene carbonate is particularly preferred.
  • the type of the electrolytic salt is not particularly limited, and any conventionally known solute can be used.
  • LiCIO LiCIO, LiAsF, LiPF, LiBF, LiB (C H), LiBOB, LiCl, L
  • Lithium ion efficiency is good on the negative electrode surface such as CO, SO gas and polysulfide Sx 2_
  • Additives that form a good coating that enables charging and discharging may be added in any proportion.
  • the lithium salt of the electrolytic salt is usually contained in the electrolytic solution so as to be 0.5 molZL or more and 1.5 molZL or less. Even if it is less than 0.5 molZL or more than 1.5 molZL, the electrical conductivity may be reduced, and the battery characteristics may be adversely affected.
  • the lower limit is preferably 0.75 molZL or more and the upper limit is 1.25 molZL or less.
  • a polymer solid electrolyte When a polymer solid electrolyte is used, the kind thereof is not particularly limited, and any crystalline 'amorphous inorganic substance known as a solid electrolyte can be used.
  • solid electrolytes examples include: 4.9 ⁇ -34. ILi O— 61B O, 33.3 Li O— 66 ⁇ 7
  • An oxide glass such as SiO may be used. Any one of these may be used alone
  • Two or more types may be used in any combination and ratio.
  • a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes.
  • the material and shape of the separator Although it does not restrict
  • Preferable examples include microporous films, sheets, and non-woven fabrics that have various polymer materials.
  • polymer material examples include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene.
  • polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene.
  • self-clogging temperature is one of the purposes of use of separators in batteries where polyolefin-based polymers are preferred. From the above, polyethylene is particularly desirable.
  • ultra-high molecular weight polyethylene from the viewpoint of maintaining high-temperature shape.
  • the lower limit of the molecular weight is preferably 500,000, more preferably 1 million, most preferably Preferably it is 1.5 million.
  • the upper limit of the molecular weight is preferably 500,000, more preferably 4 million, and most preferably 3 million. If the molecular weight is too large, the fluidity becomes too low, and the separator holes may not be blocked when heated.
  • the lithium secondary battery of the present invention is produced by assembling the above-described positive electrode for a lithium secondary battery of the present invention, a negative electrode, an electrolyte, and a separator used as necessary into an appropriate shape. Furthermore, other components such as an outer case can be used as necessary.
  • the shape of the lithium secondary battery of the present invention is not particularly limited, and can be appropriately selected from various commonly employed shapes according to the application.
  • V shape As an example of V shape that is generally adopted, a cylinder type with a sheet electrode and separator made into a spiral shape, an inside-out structure cylinder type in which a pellet electrode and a separator are combined, a pellet electrode and a separator are laminated.
  • the method for assembling the battery is not particularly limited, and can be appropriately selected from various methods usually used according to the shape of the target battery.
  • the lithium secondary battery of the present invention is preferably designed so that the initial charge potential of the positive electrode in a fully charged state is 4.5 V (vs. LiZLi +) or more. That is, the lithium transition metal compound powder for a positive electrode material of a lithium secondary battery according to the present invention is configured to be charged at a high charging potential of 4.5 V (vs. LiZLi +) or more for the first time by the specific composition described above. When used as a measured lithium secondary battery, it effectively demonstrates the effect of improving cycle characteristics and safety. However, it can be used with the charging potential less than 4.5V.
  • the power of the description of the general embodiment of the lithium secondary battery of the present invention has been described above.
  • the lithium secondary battery of the present invention is not limited to the above-described embodiment, but is not limited to the gist. Thus, various modifications can be implemented.
  • Micromeritics Autopore 9420 model was used as a measuring device by the mercury intrusion method.
  • the mercury intrusion method was measured while increasing the pressure from 3.86 kPa to 413 MPa at room temperature.
  • the surface tension value of mercury was 480 dynZcm and the contact angle value was 141.3 °.
  • An EMIA-520 carbon sulfur analyzer manufactured by HORIBA, Ltd. was used. Several dozen to lOOmg samples were weighed into an air-baked magnetic crucible, added with a combustion aid, and carbon was extracted by combustion in a high-frequency heating furnace in an oxygen stream. C02 in the combustion gas was quantified by non-dispersive infrared absorptiometry. For sensitivity calibration, 150-15 low alloy steel No. 1 (C guaranteed value: 0.469 wt%) manufactured by Japan Iron and Steel Federation was used.
  • the sample weight is 3g
  • the probe unit for powder four probe ring electrode, electrode
  • the volume resistivity values below were compared.
  • Reading width 0.05 °, scanning speed: 3.0 ° / min.
  • the refractive index was set to 1.24, and the particle diameter standard was measured as a volume standard.
  • 0.1% by weight aqueous sodium hexametaphosphate was used as the dispersion medium, and ultrasonic dispersion for 5 minutes (output 30W, frequency 22.5k). Hz) after measurement.
  • the refractive index was set to 1.24, and the particle diameter standard was measured as a volume standard.
  • ethyl alcohol was used as a dispersion medium, and measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz).
  • the morphology was confirmed by SEM observation and cross-sectional SEM observation.
  • the median diameter and 90% cumulative diameter (D90) as the average particle diameter were determined by setting the refractive index to 1.24 using a known laser diffraction Z-scattering particle size distribution analyzer (Horiba, LA-920). The diameter standard was measured as the volume standard.
  • a 0.1% by weight sodium hexametaphosphate aqueous solution was used as a dispersion medium, and measurement was performed after ultrasonic dispersion (output 30 W, frequency 22.5 kHz) for 0 minutes, 1 minute, 3 minutes, and 5 minutes.
  • the specific surface area was determined by the BET method.
  • the bulk density was determined as the powder packing density when 4 to 6 g of sample powder was placed in a 10 ml glass graduated cylinder and tapped 200 times with a stroke of about 20 mm.
  • the half-value width and area are calculated using the diffraction pattern measured in the fixed slit mode of the concentration method.
  • Light receiving side Semiconductor array detector (X 'Celerator)
  • Quantitation method Bls, Mn2p, Co2p, Ni2p, Nb3d, Mo3d, Sn3d, W4f
  • the density was 0.8 g Zcc and the BET specific surface area was 3. lm 2 Zg.
  • Particulate powder obtained by spray-drying the slurry with a spray dryer about 15 g, was charged into an aluminum crucible and fired at 1000 ° C for 12 hours in an air atmosphere (heating rate 5 ° C / min. ) and then, they were disintegrated, the volume resistivity is 9. 2 ⁇ 10 5 ⁇ -cm, containing carbon concentration 0.0 59 wt 0/0, the composition is Li (Li Ni Mn) 0 of the lithium nickel-manganese double
  • Particulate powder obtained by spray-drying the slurry with a spray dryer about 15 g, is placed in an aluminum crucible and calcined at 900 ° C for 12 hours in an air atmosphere (heating rate 5 ° CZ min.) After pulverization, the volume resistivity is 2.0 ⁇ 10 5 ⁇ 'cm, and the carbon concentration is 0.084 weight 0 /.
  • Particulate powder obtained by spray-drying the slurry with a spray dryer about 15 g is charged into an aluminum crucible and fired at 950 ° C for 12 hours in an air atmosphere (temperature rise / fall rate of 5 ° CZ min.) And then pulverized to obtain a lithium nickel manganese composite oxide with a volume resistivity of 4.6 ⁇ 10 4 ⁇ 'cm, a carbon concentration of 0.050 wt%, and a composition of Li (Ni Mn) 0 (
  • This average primary particle size was 0.6 ⁇ m, median diameter was 3.8 m, D was 6.1 m, bulk density was 1. Og / cc, and BET specific surface area was 1.9 m 2 Zg.
  • Particulate powder obtained by spray-drying the slurry with a spray dryer about 15 g, is charged in an aluminum crucible and calcined in an air atmosphere at 950 ° C for 12 hours (heating rate 5 ° CZ min.) after, and then disintegrated, the volume resistivity of 5.0 ⁇ 10 5 ⁇ 'cm, the carbon concentration is 0.052 wt 0/0, the yarn ⁇ is Li (Li Ni Mn Co) 0 of the lithium nickel cartoon
  • gZcc and BET specific surface area was 2.6 m 2 Zg.
  • Particulate powder obtained by spray-drying the slurry with a spray dryer about 15 g, was placed in an aluminum crucible and calcined at 925 ° C for 6 hours in an air atmosphere (heating rate of 3.33 ° C / min. ) and then, they were disintegrated, the volume resistivity is 1.9 ⁇ 10 4 ⁇ -cm, containing carbon concentration 0.043 wt 0/0, the composition is Li (Ni Mn Co) 0 of the lithium nickel manganese
  • Li CO, Ni (OH), Mn 04 with a molar ratio of Li: Ni: Mn l.15: 0.50: 0.50
  • Particulate powder obtained by spray-drying the slurry with a spray dryer about 15 g, was placed in an aluminum crucible and calcined at 1000 ° C for 6 hours in an air atmosphere (heating temperature rate 3.33 ° C / min. ) And then pulverized to obtain a lithium nickel manganese composite acid having a volume resistivity of 2.1 X 10 4 ⁇ -cm, a carbon concentration of 0.045% by weight, and a composition of Li (Ni Mn) 0
  • the specific surface area was 2.0 m 2 Zg.
  • Li CO powder having a median diameter of 9 m was added to and mixed with the particulate powder obtained by spray-drying the slurry with a spray dryer. About 15.9 g of this mixed powder is made into an alumina crucible.
  • the crystal structure was composed of a layered R (-3) m structure. This average primary particle size is 0.4 m, median diameter is 5.9 m, D is 8.8 m, bulk density is 1.5 g / cc, BET specific surface area is 1. lm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウム二次電池正極材料としての使用において、低コスト化、耐高電圧化及び高安全化と電池性能向上との両立が可能なリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が、0.8cm3/g以上、3cm3/g以下であることを特徴とするリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。 

Description

明 細 書
リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造 方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二 次電池用正極およびリチウム二次電池
発明の分野
[0001] 本発明は、リチウム二次電池正極材料として用いられるリチウム遷移金属系化合物 粉体、その製造方法、噴霧乾燥体、および焼成前駆体と、このリチウム遷移金属系化 合物粉体を用いたリチウム二次電池用正極、並びにこのリチウム二次電池用正極を 備えるリチウム二次電池に関する。
発明の背景
[0002] リチウム二次電池は、エネルギー密度及び出力密度等に優れ、小型、軽量化に有 効であるため、ノート型パソコン、携帯電話及びハンディビデオカメラ等の携帯機器 の電源としてその需要は急激な伸びを示している。リチウム二次電池はまた、電気自 動車や電力のロードレべリング等の電源としても注目されており、近年ではハイブリツ ド電気自動車用電源としての需要が急速に拡大しつつある。特に電気自動車用途に おいては、低コスト、安全性、寿命 (特に高温下)、負荷特性に優れることが必要であ り、材料面での改良が望まれている。
[0003] リチウム二次電池を構成する材料のうち、正極活物質材料としては、リチウムイオン を脱離 '挿入可能な機能を有する物質が使用可能である。これら正極活物質材料は 種々あり、それぞれ特徴を持っている。また、性能改善に向けた共通の課題として負 荷特性向上が挙げられ、材料面での改良が強く望まれている。
[0004] さらに、低コスト、安全性、寿命 (特に高温下)にも優れた、性能バランスの良 、材料 が求められている。
[0005] 現在、リチウム二次電池用の正極活物質材料としては、スピネル構造を有するリチ ゥムマンガン系複合酸ィ匕物、層状リチウムニッケル系複合酸化物、層状リチウムコバ ルト系複合酸ィ匕物などが実用化されて 、る。これらのリチウム含有複合酸化物を用い たリチウム二次電池は、いずれも特性面で利点と欠点を有する。即ち、スピネル構造 を有するリチウムマンガン系複合酸ィ匕物は、安価かつ合成が比較的容易であり、電 池とした時の安全性に優れる一方、容量が低ぐ高温特性 (サイクル、保存)が劣る。 層状リチウムニッケル系複合酸ィ匕物は、容量が高ぐ高温特性に優れる反面、合成 が難しぐ電池とした時の安全性に劣り、保管にも注意を要する等の欠点を抱えてい る。層状リチウムコバルト系複合酸ィ匕物は、合成が容易かつ電池性能バランスが優れ ているため、携帯機器用の電源として広く用いられているが、安全性が不十分な点や 高コストである点が大きな欠点となって 、る。
[0006] こうした現状にぉ 、て、これらの正極活物質材料が抱えて 、る欠点が克服な 、しは 極力低減され、かつ電池性能バランスに優れる活物質材料の有力候補として、層状 構造を有するリチウムニッケルマンガンコバルト系複合酸ィ匕物が提案されて 、る。特 に近年における低コストィヒ要求、高電圧化要求、安全ィヒ要求の高まりの中で、いず れの要求にも応え得る正極活物質材料として有望視されている。
[0007] ただし、その低コスト化、高電圧化、及び安全性の程度は、組成比によって変化す るため、更なる低コスト化、より高い上限電圧を設定しての使用、より高い安全性の要 求に対しては、マンガン Zニッケル原子比を 1以上としたり、コバルト比率を低減させ たりするなど、限られた組成範囲のものを選択して使用する必要がある。しかしながら 、このような組成範囲のリチウムニッケルマンガンコバルト系複合酸化物を正極材料と して使用したリチウム二次電池は、レートや出力特性等の負荷特性が低下するため、 実用化に際しては、更なる改良が必要であった。
[0008] 従来、マンガン Zニッケル原子比が 1以上かつコバルト比率力 本発明が規定する 値以下まで低減された組成範囲のリチウムニッケルマンガンコバルト系複合酸ィ匕物 について、特許文献 1〜3、非特許文献 1〜24に開示されている。
[0009] し力しながら、特許文献 1〜3、非特許文献 1〜24によれば、本発明が規定するとこ ろの活物質粒子の細孔制御に関する記載がなぐ本発明における電池性能の改善 を図るための必要条件を満たしておらず、これらの技術だけでは本発明が示すところ の電池性能の改善を図ることは極めて困難である。
[0010] 一方、特許文献 4には、 Co、 Ni, Mnの群力も選ばれる 1種以上の元素とリチウムと を主成分とするリチウム複合酸ィ匕物力 なる多孔質の粒子であって、水銀圧入法によ る細孔分布測定での細孔平均径が 0. 1〜1 μ mの範囲であり、 0. 01〜1 μ mの径を もつ細孔の容積の合計が 0. 01cm3Zg以上である粒子を非水系二次電池用正極活 物質に用いることが開示されており、これにより、正極への正極活物質の充填性を損 なうことなく電池の負荷特性を高めることができると記載されている。
[0011] し力しながら、特許文献 4に記載されたリチウム複合酸ィ匕物粒子においては、塗布 性は改善されるものの、依然として負荷特性が十分でないという課題があった。
[0012] これに対し、特許文献 5には、水銀圧入法による測定において、特定の高圧負荷条 件下における水銀圧入量が所定の上限値以下であるリチウム複合酸ィ匕物粒子であ つて、且つ、前記の水銀圧入量が所定の下限値以上であるか、平均細孔半径が所 定の範囲内であるとともに、細孔分布曲線において従来のメインピークの他に、特定 の細孔半径領域にピークトップが存在するサブピークを有するリチウム複合酸ィ匕物粒 子が、リチウム二次電池の正極材として利用した場合に、リチウム二次電池の低温負 荷特性を改善することができるとともに、正極作製時の塗布性にも優れ、好適なリチウ ムニ次電池正極材となり得ると記載されて 、る。
[0013] し力しながら、特許文献 5に記載されたリチウム複合酸ィ匕物粒子においては、コバ ルト比率の比較的多 1、組成では改善効果を示すものの、本発明が規定する組成範 囲に対しては依然として負荷特性が十分でないという課題があった。
[0014] また、マンガン /ニッケル原子比が 1近傍かつコバルト比率が本発明の規定する値 以下まで低減された組成範囲のリチウムニッケルマンガンコバルト系複合酸ィ匕物に ついては、特許文献 6〜30、非特許文献 25〜57に開示されている。
[0015] し力し、特許文献 6には、一般式 Li[Li Co A ]0 (式中、 Aは [Mn Ni ]を x 1— χ— 2 z 1— z 表し、 xは 0. 00〜0. 16の範囲の数値を表し、 yは 0. 1〜0. 30の範囲の数値を表し 、 zは 0. 40〜0. 65の範囲の数値を表し、 Liは前記構造体の遷移金属層に含まれ る。)で表される単相力ソード材料が開示されており、コバルトのドーピングを全遷移 金属の略 10%より多いものとすることにより優れた電気化学特性を有する力ソード材 料を得ることが記載されており、コバルトのドーピング量が前記規定割合より少な 、組 成の力ソード材料においては、優れた電気化学特性を得難いという問題があった。さ らに、特許文献 1の規定する組成領域を詳細にみると、コバルトのモル比率 (y)の下 限値は、遷移金属層に含まれるリチウム (X)の量によらず 0. 1であるが、本発明で規 定する組成領域 (組成式 (I) )の場合、遷移金属層に含まれるリチウム (zZ (2 + z) ) 量が 0を超えると、コバルトのモル比率は 10%未満となり、そもそも本発明の組成範 囲を満足するものではな力つた。
[0016] また、特許文献 7〜30、非特許文献 25〜57によれば、本発明が規定するところの 組成領域において、活物質結晶の特定半価幅に着目した記載はなぐまた特定の回 折ピークのピークトップよりも高角側に現れる異相ピークの有無を捉えた記載もない。 さらには、より好ましい要件である粒子の細孔制御に関する記載がなぐ本発明にお ける電池性能の改善を図るための必要条件を満たしておらず、これらの技術だけで は本発明が示すところの電池性能の改善を図ることは極めて困難である。
[0017] 特許文献 31には、組成式 Li Mn Ni M O (ただし 0< a< 1. 3、 一 0. 1 a 0. 5-x 0. 5-y x+y 2
≤x-y≤0. 1、 Mは Li, Mn, Ni以外の元素)で表される複合酸ィ匕物を含有する正 極活物質の全細孔容積が 0. OOlmlZg以上 0. 006mlZg以下であり、かつ、 CuK α線を使用した粉末エックス線回折図の、 2 Θ : 18. 6± 1° における回折ピークに対 する 2 0 :44. 1 ± 1° における回折ピークの相対強度比が 0. 65以上 1. 05以下で あること、前記 2 0 : 18. 6± 1° における回折ピークの半値幅が 0. 05° 以上 0. 20 ° 以下であり、前記 2 0 :44. 1 ± 1° における回折ピークの半値幅が 0. 10° 以上 0 . 20° 以下とすることが開示されており、これにより、高いエネルギー密度を有し、充 放電サイクル性能に優れたものとすることができると記載されている。つまり、特許文 献 31によれば、本発明が規定するところの組成領域において、活物質結晶の特定 半価幅に着目した記載と、より好ましい要件である粒子の細孔制御に関する記載が 認められる。
[0018] さらに、特許文献 32、特許文献 33によれば、本発明が規定するところの組成領域 において、活物質結晶の特定半価幅に着目した記載はなぐまた特定の回折ピーク のピークトップよりも高角側に現れる異相ピークの有無に言及した記載もないが、より 好ま 、要件である粒子の細孔制御に関する記載が認められる。特許文献 27には、 少なくともリチウムとマンガンとニッケルとを構成元素とする Li Mn— Ni複合酸ィ匕物 を含有するリチウム二次電池用正極活物質であって、前記 Li Mn— Ni複合酸化物 は、全細孔容積が 0. 0015mlZg以上であることが開示されており、これにより高い 放電容量を有し、サイクル性能に優れたものとすることができると記載されて ヽる。
[0019] し力しながら、特許文献 31に記載された、 Ni/Mn= lZlの原子比からなる Li— Mn—Ni系複合酸ィ匕物については、より高い性能を発現する力否かを判断するのに 有用な(110)回折ピークの半価幅に関する言及がなされておらず、更に全細孔容積 の値が本発明で規定する値に比較して極めて小さなものとなっており、依然として負 荷特性が十分でないという課題があった。また、特許文献 27に記載された Li— Mn — Ni複合酸化物につ 、ては、特許文献 31に比べてより大き 、細孔容量値を規定し たものとなって ヽるが、 ヽずれの実施例にっ 、ても全細孔容量の値が本発明で規定 する値に比較して極めて小さなものとなっており、依然として負荷特性が十分でない という課題があった。
[0020] これに対し、特許文献 33には、水銀圧入法による測定において、特定の高圧負荷 条件下における水銀圧入量が所定の上限値以下であるリチウム複合酸ィヒ物粒子で あって、且つ、前記の水銀圧入量が所定の下限値以上である力、平均細孔半径が 所定の範囲内であるとともに、細孔分布曲線において従来のメインピークの他に、特 定の細孔半径領域にピークトップが存在するサブピークを有するリチウム複合酸ィ匕物 粒子が、リチウム二次電池の正極材料として利用した場合に、リチウム二次電池の低 温負荷特性を改善することができるとともに、正極作製時の塗布性にも優れ、好適な リチウム二次電池正極材となり得ると記載されて 、る。
[0021] し力しながら、特許文献 33に記載されたリチウム複合酸ィ匕物粒子においては、コバ ルト比率の比較的多 1、組成では改善効果を示すものの、本発明が規定する組成範 囲に対しては依然として負荷特性が十分でないという課題があった。
[0022] また、マンガン /ニッケル原子比及びコノ レト比率が、本発明の規定する値に相当 する組成範囲のリチウムニッケルマンガンコノ レト系複合酸ィ匕物にっ 、ては、特許文 献 34〜65、非特許文献 58〜130に開示されている。
[0023] しかし、特許文献 34〜65、非特許文献 58〜 130では、本発明が規定するところの 組成領域にぉ 、て、焼成時における活物質粒子の成長及び焼結を抑制する添加剤 に着目した記載はなぐ本発明における電池性能の改善を図るための必要条件を満 たしておらず、これらの技術だけでは本発明が示すところの電池性能の改善を図るこ とは極めて困難である。
[0024] また、本発明が示すところの「焼成時における活物質粒子の成長及び焼結を抑制 する」ことを記載した文献はないが、正極活物質材料の改良を目的として、リチウム- ッケルマンガンコバルト系複合酸化物に、 W, Mo, Nb, Ta, Reを含む化合物等を 添加処理又は置換処理した公知の文献として、以下の特許文献 66〜74及び非特 許文献 131が開示されて ヽる。
[0025] 特許文献 66、特許文献 67には、層状構造を有するリチウムニッケル系複合酸化物 において、遷移金属サイトへの置換元素として W, Mo, Ta, Nbを用いることが開示 されており、これにより、充電状態における熱安定性が向上すると記載されている。し カゝしながら、ここで開示される複合酸化物は、 Liと Niを主成分とした組成であるため 依然として種々電池特性バランスに優れた活物質を得ることができな 、と 、う問題が めつに。
[0026] 特許文献 68には、リチウムニッケルマンガンコバルトニオブ系複合酸ィ匕物を用いる ことが開示されている。し力しながら、遷移金属サイト中の Mnモル比率が 0. 1以下と 少なぐ依然として種々電池特性バランスに優れた活物質を得ることができな 、と 、う 問題があった。
[0027] 特許文献 69には、リチウムニッケルマンガンコバルト系複合酸化物において、 W,
Moを含んだものを用いることが開示されており、これにより、 LiCo02より安価かつ高 容量で充電状態での熱安定性に優れたものとなることが記載されて 、る。しかしなが ら、実施例における MnZNiモル比が 0. 6と低い組成であることに加え、焼成温度が 920〜950°Cと低いために結晶が十分に発達せず、更には添加金属元素 (W, Mo) の含有量が多すぎる結果、依然として種々電池特性バランスに優れた活物質を得る ことができな 、という問題があった。
[0028] 特許文献 70には、層状構造を有するリチウムニッケルマンガンコバルト系酸ィ匕物に おいて、遷移金属サイトへの置換元素として Ta, Nbを用いることが開示されており、 これにより、使用可能な電圧範囲が広ぐ充放電サイクル耐久性が良好であるととも に、容量が高く安全性の高いものとなることが記載されている。し力しながら、実施例 における焼成温度が 900°Cと低いため、結晶が十分に発達せず、依然として種々電 池特性バランスに優れた活物質を得ることができな!/、と!、う問題があった。
[0029] 特許文献 71には、リチウムニッケルマンガンコバルト系複合酸ィ匕物において、遷移 金属サイトに Wを置換した実施例が開示されている。し力しながら、遷移金属サイト中 の Mnモル比率が 0. 01と極めて少なぐ Niモル比率が 0. 8と極めて多い組成である ため、依然として種々電池特性バランスに優れた活物質を得ることができな 、と 、う 問題があった。
[0030] 特許文献 72には、単斜晶構造のリチウムマンガンニッケル系複合酸ィ匕物において 、その遷移金属サイトに Nb, Mo, Wが置換されたものを正極活物質とすることが開 示されており、これにより、高エネルギー密度、高電圧で、信頼性の高いリチウム二次 電池を提供することができると記載されている。し力しながら、実施例によれば、焼成 温度が 950°Cと低いため、結晶が十分に発達せず、さらに該元素のモル比率が 5モ ル%と高すぎるため、依然として種々電池特性バランスに優れた活物質を得ることが できな 、と!/、う問題があった。
[0031] 特許文献 73には、層状構造のリチウム遷移金属酸ィ匕物粒子の少なくとも表面にモ リブデン、タングステンを有する化合物を有することが開示されており、これにより、よ り一層厳し ヽ使用環境下にお 、ても優れた電池特性を有することが記載されて 、る。 しかしながら、実施例によれば、 CoZ (Ni+Co + Mn)モル比率が 0. 33と多すぎる ことに加え、焼成温度が 900°Cと低いために結晶が十分に発達せず、依然として種 々電池特性バランスに優れた活物質を得ることができな 、と 、う問題があった。
[0032] 特許文献 74には、層状構造を有するリチウムニッケルマンガンコバルトモリブデン 系複合酸ィ匕物を用いることが開示されている。しかしながら、実施例組成は、 Co/ ( Ni+Mn+Co)モル比が 0. 34と Co比率が高ぐ依然として種々電池特性バランス に優れた活物質を得ることができな 、と 、う問題があった。
[0033] 非特許文献 131には、層状構造を有する LiNi Mn Mo O複合酸化物が
1/3 1/3 1/3 2
開示されている。し力しながら、 Moの含有量が高すぎるため、依然として種々電池特 性バランスに優れた活物質を得ることができな 、と 、う問題があった。
特許文献 1 :特開 2004— 6267 特許文献 2 :US6, 680, 143B2
特許文献 3 :特許第 3571671号
特許文献 4:特許第 3110728号
特許文献 5 :特開 2005— 123179
特許文献 6 :日本特許第 3571671号公報 特許文献 7:特開平 11― 307094号公報 特許文献 8 :特開 2000— 133262号公報 特許文献 9: WO 2002— 040404号パンフレッド 特許文献 10 WO2002- -073718号パンフレツ卜 特許文献 11 特開 2002- — 145623号公報 特許文献 12 WO2003- -044881号パンフレツ卜 特許文献 13 WO2003- -044882号パンフレツ卜 特許文献 14特開 2003- — 031219号公報 特許文献 15 特開 2003- — 081639号公報 特許文献 16 特開 2003- - 178756号公報 特許文献 17 特開 2003- — 203633号公報 特許文献 18 特開 2003- — 221236号公報 特許文献 19 特開 2003- — 238165号公報 特許文献 20 特開 2003- — 297354号公報 特許文献 21 特開 2004- — 031091号公報 特許文献 22 特開 2004- — 139853号公報 特許文献 23 特開 2004- — 265849号公報 特許文献 24特開 2004- — 281253号公報 特許文献 25 特開 2004- - 311427号公報 特許文献 26 特表 2004- — 528691号公報 特許文献 27 特開 2005- — 150057号公報 特許文献 28 特開 2005- — 150093号公報 特許文献 29 特開 2005- - 150102号公報 特許文献 30特開 2005- - 187282号公報 特許文献 31 WO2002- -086993号パンフレツ卜 特許文献 32特開 2003- —051308号公報 特許文献 33特開 2005- - 123179号公報 特許文献 34 日本特許第 3110728号公報 特許文献 35 日本特許第 3571671号公報 特許文献 36米国特許第 6, 680, 143号公報 特許文献 37特開平 11 - - 307094号公報 特許文献 38特開 2000- - 294242号公報 特許文献 39特開 2000- - 133262号公報 特許文献 40 WO2002- -040404号パンフレツ卜 特許文献 41 WO2002- -073718号パンフレツ卜 特許文献 42 WO2002- -086993号パンフレツ卜 特許文献 43特開 2002- — 145623号公報 特許文献 44 WO2003- -044881号パンフレツ卜 特許文献 45 WO2003- -044882号パンフレツ卜 特許文献 46特開 2003- -031219号公報 特許文献 47特開 2003- — 081639号公報 特許文献 48特開 2003- - 178756号公報 特許文献 49特開 2003- — 203633号公報 特許文献 50特開 2003- - 221236号公報 特許文献 51 特開 2003- - 238165号公報 特許文献 52特開 2003- - 297354号公報 特許文献 53特開 2004- — 031091号公報 特許文献 54特開 2004- -006267号公報 特許文献 55特開 2004- — 139853号公報 特許文献 56特開 2004- — 265849号公報 特許文献 57特開 2004- — 281253号公報 特許文献 58 特開 2004- -311427号公報 特許文献 59 特表 2004- — 528691号公報
特許文献 60 特開 2005- — 150057号公報
特許文献 61 特開 2005- — 150093号公報
特許文献 62 特開 2005- — 150102号公報
特許文献 63 特開 2005- — 187282号公報
特許文献 64特開 2003- —051308号公報
特許文献 65 特開 2005- -123179号公報
特許文献 66 日本特許第 3088716号公報
特許文献 67 日本特許第 3362025号公報
特許文献 68 特開 2002- -151071号公報
特許文献 69 WO2002- -041419号パンフレツ卜
特許文献 70 特開 2003- — 68298号公報
特許文献 71 特開 2004- — 303673号公報
特許文献 72 特開 2005- — 235628号公報
特許文献 73 特開 2005- -251716号公報
特許文献 74特開 2006- -164934号公報
非特許文献 1 :Electrochem.Solid- State Lett.,4(2001)A191- A194 非特許文献 2: J . Power sources ,119-121(2003)166
非特許文献 3: J.Power sources, 129(2004)288
非特許文献 4: Electrochem. Solid-State Lett.,7(2004)A167 非特許文献 5: J . Power sources ,119-121(2003)161
非特許文献 6: Solid State Ionics, 164(2003)43
非特許文献 7:J.Electrochem.Soc.,149(2002)A815
非特許文献 8: Electrochem. Com .6(2004) 1085
非特許文献 9: J. Mater. Chem. , 14(2004)1424
非特許文献 10: Chem.Mater.16(2004)1996
非特許文献 ll:Solid State Ionics, 176(2005)1035 非特許文献 12 Electrochem. Solid-State Lett.,7(2004)A290 非特許文献 13 Electrochem. Solid-State Lett.,7(2004)A294 非特許文献 14 J.Electrochem.Soc.,149(2002)A778
非特許文献 15 J.Power sources, 146(2005)598
非特許文献 16 J.Power sources, 112(2002)634
非特許文献 17 J.Electrochem.Soc.,149(2002)A1332
非特許文献 18 J.Power sources, 112(2002)41
非特許文献 19 J.Power sources, 119-121(2003)150
非特許文献 20 J.Electrochem.Soc.,152(2005)A746
非特許文献 21 J.Electrochem.Soc.,151(2004)A504
非特許文献 22 Electrochemistry, 71 (2003) 1214
非特許文献 23 J.Electrochem.Soc.,152(2005)A566
非特許文献 24 J.Electrochem.Soc.,150(2003)A1299
非特許文献 25 J. Electrochem. Soc, 149 (2002) A1332.
非特許文献 26 J. Electrochem. Soc, 150 (2003) A1299.
非特許文献 27 J. Power sources, 112 (2002) 41.
非特許文献 28 J. Power sources, 119—121 (2003) 150.
非特許文献 29 J. Electrochem. Soc, 152 (2005) A746.
非特許文献 30 J. Electrochem. Soc, 151 (2004) A504.
非特許文献 31 Electrochemistry, 71 (2003) 1214.
非特許文献 32 Electrochim. Acta, 50 (2004) 427.
非特許文献 33 J. Electrochem. Soc, 152 (2005) A566.
非特許文献 34 Trans. Nonferrous Met. Soc. China, 15 (2005) 1185. 非特許文献 35 J. Power sources, 146 (2005) 626.
非特許文献 36 Solid State Ionics, 176 (2005) 2577.
非特許文献 37 Chem. Lett., (2001) 744.
非特許文献 38 Electrochem. Solid-State Lett., 5 (2002) A145. 非特許文献 39 Electrochem. Solid-State Lett., 5 (2002) A263. 非特許文献 40 J. Power sources, 119-121(2003)156.
非特許文献 41 J. Power sources, 124(2003)170.
非特許文献 42 Electrochim. Acta, 48(2003)1505.
非特許文献 43 Electrochim. Acta, 48 (2003) 2589.
非特許文献 44 Electrochim. Acta, 49(2004) 803.
非特許文献 45 Electrochem. Solid— State Lett., 7 (2004) A 5. 非特許文献 46 Electrochim. Acta, 49(2004)1565.
非特許文献 47 J. Power sources, 135(2004)262.
非特許文献 48 Electrochim. Acta, 50(2004)449.
非特許文献 49 J. Electrochem. Soc, 151 (2004) A246.
非特許文献 50 J. Power sources, 146(2005)650.
非特許文献 51 Electrochim. Acta, 50 (2005) 5349.
非特許文献 52 J. Power sources, 146(2005)645.
非特許文献 53 Electrochem. Solid- State Lett., 8(2005)A637. 非特許文献 54 Mater. Lett., 59(2005)2693.
非特許文献 55 Chem. Mater., 18(2006)1658.
非特許文献 56 J. Mater. Chem., 16(2006)359.
非特許文献 57 J. Appl. Phys., 99(2006)06371.
非特許文献 58 J. Mater. Chem., 6(1996)1149.
非特許文献 59 Chem. Lett., (2001)744.
非特許文献 60 Electrochem. Solid— State Lett., 4(2001)A191. 非特許文献 61 Electrochem. Solid— State Lett., 4(2001)A200. 非特許文献 62 Electrochem. Solid- State Lett., 5(2002)A145. 非特許文献 63 Electrochem. Solid— State Lett., 5(2002)A263. 非特許文献 64 J. Electrochem. Soc, 149 (2002) A778.
非特許文献 65 J. Electrochem.Soc, 149 (2002) A815.
非特許文献 66 J. Electrochem. Soc, 149 (2002) A1332.
非特許文献 67 J. Power sources, 112(2002)41. 非特許文献 68:J. Power sources, 112(2002)634.
非特許文献 69: Electrochemistry, 71 (2003) 1214.
非特許文献 70:Electrochim. Acta, 48(2003)1505.
非特許文献 71:Electrochim. Acta, 48(2003)2589.
非特許文献 72: J. Electrochem. Soc, 150(2003) A1299.
非特許文献 73: : J. Power sources, 119-121(2003)139.
非特許文献 74: : J. Power sources, 119-121(2003)150.
非特許文献 75: : J. Power sources, 119-121(2003)156.
非特許文献 76: : J. Power sources, 119-121(2003)161.
非特許文献 77: : J. Power sources, 119-121(2003)166.
非特許文献 78: : J. Power sources, 124(2003)170.
非特許文献 79: : J. Power sources, 124(2003)533.
非特許文献 80: Solid State Ionics, 164(2003)43.
非特許文献 81:Chem. Mater., 16(2004)1996.
非特許文献 82: Electrochem.Com., 6 (2004) 1085.
非特許文献 83: Electrochem. Solid- State Lett., 7(2004)A155. 非特許文献 84: Electrochem. Solid- State Lett., 7(2004)A167. 非特許文献 85: Electrochem. Solid-State Lett., 7(2004)A290. 非特許文献 86: Electrochem. Solid-State Lett., 7(2004)A294. 非特許文献 87:Electrochim. Acta, 49(2004)803.
非特許文献 88:Electrochim. Acta, 49(2004)1565.
非特許文献 89:Electrochim. Acta, 49(2004)4425.
非特許文献 90:Electrochim. Acta, 50(2004)427.
非特許文献 91:Electrochim. Acta, 50(2004)449.
非特許文献 92:J. Electrochem. Soc, 151 (2004) A246.
非特許文献 93:J. Electrochem. Soc, 151 (2004) A504.
非特許文献 94:J. Electrochem. Soc, 151 (2004) A1789.
非特許文献 95:J. Mater. Chem., 14(2004)1424. 非特許文献 96: J. Power sources, 129(2004)288.
非特許文献 97: J. Power sources, 135(2004)262.
非特許文献 98: Adv. Mater., 17(2005)2834.
非特許文献 99:Chem. Mater., 17(2005)3695.
非特許文献 100: Electrochem. Solid-State Lett., 8(2005)A637. 非特許文献 101:Electrochim. Acta, 50(2005)4778.
非特許文献 102:Electrochim. Acta, 50(2005)5349.
非特許文献 103: J. Electrochem. Soc, 152 (2005) A566.
非特許文献 104: J. Electrochem. Soc, 152 (2005) A746.
非特許文献 105: J. Electrochem. Soc, 152 (2005) A1879.
非特許文献 106 J. Mater. Chem., 15(2005)2257.
非特許文献 107 J. Power sources 146(2005)598.
非特許文献 108 J. Power sources 146(2005)617.
非特許文献 109 J. Power sources 146(2005)626.
非特許文献 110 J. Power sources 146(2005)630.
非特許文献 111 J. Power sources 146(2005)645.
非特許文献 112 J. Power sources 146(2005)650.
非特許文献 113 J. Power sources 146(2005)654.
非特許文献 114 J. Power sources 146(2005)658.
非特許文献 115 : J. Power sources 148(2005)85.)
非特許文献 116 : Mater. Lett., 59(2005)2693.
非特許文献 117: Mater. Res. Soc. Symp. Proc, 835 (2005) KIO.8.1. 非特許文献 118: Mater. Res. Soc. Symp. Proc, 835(2005) Kll.3.1. 非特許文献 119: Solid State Ionics, 176(2005)1035.
非特許文献 120: Solid State Ionics, 176(2005)2577.
非特許文献 121: Trans. Nonferrous Met. Soc. China, 15(2005)1185. 非特許文献 122: Chem. Mater., 18(2006)1658.
非特許文献 123: Electrochem. Solid-State Lett., 9(2006)A27. 非特許文献 124 : Electrochim. Acta, 51 (2006) 3413.
非特許文献 125 :J. Am. Chem. So , 128 (2006) 8694.
非特許文献 126 :J. Appl. Phys., 99 (2006) 06371.
非特許文献 127 :J. Electrochem. Soc, 153 (2006) A261.
非特許文献 128 :J. Electrochem. Soc, 153 (2006) A390.
非特許文献 129 : J. Mater. Chem., 16 (2006) 359.
非特許文献 130 : J. Power sources, 158 (2006) 524.
非特許文献 131 : Microelectronics Journal, 36 (2005) 491.
発明の概要
[0034] 本発明の目的は、リチウム二次電池正極材料としての使用において、レート'出力 特性といった負荷特性の向上が図られ、さらに好ましくは低コスト化、耐高電圧化及 び高安全性化との両立が可能なリチウム二次電池正極材料用リチウム遷移金属系 化合物粉体及びその製造方法と、このリチウム遷移金属系化合物粉体を用いたリチ ゥム二次電池用正極、並びにこのリチウム二次電池用正極を備えるリチウム二次電 池を提供することにある。
[0035] 本発明者らは、上記課題を達成すベぐ鋭意検討の結果、リチウム遷移金属系化 合物において、水銀圧入法による昇圧時の水銀圧入量が上記範囲となるように粉体 性状に制御し、かつ細孔分布曲線のピークが上記のような特徴を有するように制御 することにより、リチウム二次電池正極材料として、低コスト化、耐高電圧化、高安全 化に加え、レートや出力特性といった負荷特性の向上との両立が可能なリチウム遷 移金属系化合物粉体を得ることができることを見出し、本発明を完成するに至った。 また、本発明者らは、上記課題を達成すベぐ鋭意検討の結果、リチウムニッケルマ ンガンコバルト系複合酸ィ匕物にぉ 、て、粉末 X線回折測定における特定回折ピーク の半価幅を制御し、かつ組成を特定領域に制御することにより、リチウム二次電池正 極材料として、低コスト化、耐高電圧化、高安全化に加え、レートや出力特性といった 負荷特性の向上との両立が可能なリチウムニッケルマンガンコバルト系複合酸ィ匕物 粉体を得ることができることを見出し、本発明を完成するに至った。
[0036] さらに、本発明者らは、レート'出力特性といった負荷特性向上という課題を解決す るためには、活物質を焼成する段階にぉ 、て十分に結晶性の高 、ものとしつつも粒 成長及び焼結を抑えて微細な粒子を得ることが重要と考え、鋭意検討した結果、とり わけ層状リチウムニッケルマンガンコバルト系複合酸ィ匕物において、主成分原料に焼 成時の粒成長を抑制する化合物を添加後に焼成することにより、リチウム二次電池正 極材料として、低コスト化、耐高電圧化、高安全化に加え、レートや出力特性といった 負荷特性の向上との両立が可能なリチウム遷移金属系化合物粉体を得ることができ ることを見出し、本発明を完成するに至った。
即ち、本発明の要旨は、以下のとおりである。
1. 水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa力ら 413MPaまでの 昇圧時における水銀圧入量が、 0. 8cm3Zg以上、 3cm3Zg以下であることを特徴と するリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
2. 水銀圧入法による細孔分布曲線が、細孔半径 300nm以上、 lOOOnm以下にピ ークトップが存在するメインピークを有し、かつ細孔半径 80nm以上、 300nm未満に ピークトップが存在するサブピークを有さないことを特徴とする前記 1に記載のリチウ ム遷移金属系化合物粉体。
3. 水銀圧入法による細孔分布曲線において、細孔半径 300nm以上、 lOOOnm以 下にピークトップが存在するメインピークに係る細孔容量が 0. 5cm3Zg以上、 1. 5c m3Zg以下であることを特徴とする前記 1または 2に記載のリチウム遷移金属系化合 物粉体。
4. レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し、 粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kHz) 後に測定されたメジアン径が 0. 6 m以上、 5 m以下であることを特徴とする前記 1 な 、し 3の 、ずれかに記載のリチウム遷移金属系化合物粉体。
5. 下記組成式 (I)で表されるリチウムニッケルマンガンコノ レト系複合酸ィ匕物であ ることを特徴とする前記 1ないし 4のいずれかに記載のリチウム遷移金属系化合物粉 体。 Li[Li {(Li Ni Mn ) Co } )]0…組成式(I)
z/(2+z) x (l -3x) /2 (l +x) /2 l _y y 2/(2+z 2
ただし、組成式(I)中、 0≤x≤0. 33、 0≤y≤0. 2、—0. 02≤z≤0. 2 (1— y) (1 3x)である。 6. 嵩密度が 0. 5〜1. 5gZcm3であることを特徴とする前記 1ないし 5のいずれか に記載のリチウム遷移金属系化合物粉体。
7. BET比表面積が 1. 5〜5m2Zgであることを特徴とする前記 1ないし 6のいずれ かに記載のリチウム遷移金属系化合物粉体。
8. 含有炭素濃度を C (重量%)とした時、 C値が 0. 005重量%以上、 0. 2重量% 以下であることを特徴とする前記 1ないし 7のいずれかに記載のリチウム遷移金属系 化合物粉体。
9. リチウム化合物、及び少なくとも一種以上の遷移金属化合物を、液体媒体中で 粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体を酸 素含有ガス雰囲気中で焼成することを特徴とする前記 1ないし 8のいずれかに記載の リチウム遷移金属系化合物粉体の製造方法。
10. 噴霧乾燥体が、噴霧乾燥体の二次粒子内に空隙を形成させる化合物を少なく とも 1種以上含ませて、焼成前駆体として用いるものであることを特徴とする前記 9に 記載の製造方法。
11. 空隙を形成させる化合物が、焼成時に分解ガスを発生又は昇華して、二次粒 子内に空隙を形成させる化合物であることを特徴とする前記 10に記載の製造方法。
12. 分解ガスの一つが、炭酸ガス (CO )であることを特徴とする前記 11に記載の
2
製造方法。
13. リチウム化合物が炭酸リチウムであることを特徴とする前記 9ないし 12のいずれ かに記載の製造方法。
14. リチウム化合物、及び少なくとも一種以上の遷移金属化合物を、液体媒体中で 粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体であ つて、レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し
、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kH z)後に測定された該噴霧乾燥体のメジアン径が 0. 01 μ m以上、 4 μ m以下であるこ とを特徴とするリチウム遷移金属系化合物の噴霧乾燥体。
15. BET比表面積が 10〜70m2/gであることを特徴とする前記 14に記載の噴霧 乾燥体。 16. 前記 14ないし 15に記載の噴霧乾燥体に、さらに二次粒子内に空隙を形成さ せる化合物を少なくとも 1種以上含んでいることを特徴とするリチウム遷移金属系化合 物の焼成前駆体。
17. 前記 1ないし 8のいずれかに記載のリチウム遷移金属系化合物粉体と結着剤と を含有する正極活物質層を集電体上に有することを特徴とするリチウム二次電池用 正極。
18. リチウムを吸蔵 ·放出可能な負極、リチウム塩を含有する非水電解質、及びリチ ゥムを吸蔵 ·放出可能な正極を備えたリチウム二次電池であって、正極として前記 17 に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。
19. 下記組成式 (Γ)で表される化合物よりなり、層状構造に帰属する結晶構造を 含んで構成され、 CuKa線を使用した粉末 X線回折測定において、回折角 2 Θが 6 4. 5° 付近に存在する(110)回折ピークの半価幅を FWHM( 110)とした時に、 0. 01≤FWHM(110)≤0. 2で表されることを特徴とするリチウム二次電池正極材料 用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
Li [Li {(Ni Mn ) Co } ]0 ···(Γ)
(ただし、組成式(Γ)中、 0≤χ'≤0. 1、 -0. l≤y'≤0. 1、 (Ι-χ') (0. 05— 0. 9 8y,)≤ζ,≤ (Ι-χ') (0. 15-0. 88y,)である。 )
20. 糸且成式(Γ)【こお!/、て、 0. 04≤χ'≤0. 099、 一0. 03≤y'≤0. 03、(1— x,) (0. 08-0. 98y,)≤z,≤ (l— x,)(0. 13-0. 88y,)であることを特徴とする前記 19に記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合 酸化物粉体。
21. CuK a線を使用した粉末 X線回折測定にぉ 、て、回折角 2 Θ力 ½4° 付近に 存在する(018)回折ピーク、 64. 5° 付近に存在する(110)回折ピーク、及び 68° 付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に 、異相由来の回折ピークを持たないか、あるいは異相由来の回折ピークを有する場 合、本来の結晶相の回折ピークに対する異相ピークの積分強度比力 各々、以下の 範囲内にあることを特徴とする前記 19又は 20に記載のリチウム二次電池正極材料 用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。 0≤I /\ ≤0. 20
018 * 018
0≤I Λ ≤0. 25
110 * 110
0≤I
113 * Λ ≤0. 30
113
ここで、 I 、1 、1 は、それぞれ (018)、(110)、(113)回折ピークの積分強度を
018 110 113
表し、 I 、1 、1 は、それぞれ (018)、(110)、(113)回折ピークのピークトツ
018 * 110 * 113 *
プよりも高角側に現れる異相由来の回折ピークの積分強度を表す。
22. 水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa力ら 413MPaまで の昇圧時における水銀圧入量力 0. 7cm3Zg以上、 1. 5cm3Zg以下であることを 特徴とする前記 19ないし 21のいずれかに記載のリチウム二次電池正極材料用リチウ ムニッケルマンガンコバルト系複合酸ィ匕物粉体。
23. 水銀圧入法による細孔分布曲線が、細孔半径 300nm以上、 lOOOnm以下に ピークトップが存在するメインピークを有し、かつ細孔半径 80nm以上、 300nm未満 にピークトップが存在するサブピークを有さないことを特徴とする前記 19ないし 22の いずれかに記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系 複合酸化物粉体。
24. 水銀圧入法による細孔分布曲線において、細孔半径 300nm以上、 lOOOnm 以下にピークトップが存在するメインピークに係る細孔容量が 0. 3cm3Zg以上、 1. 0 cm3Zg以下であることを特徴とする前記 19ないし 23のいずれかに記載のリチウム二 次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
25. レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し 、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kH z)後に測定されたメジアン径が 1 μ m以上、 5 μ m以下であることを特徴とする前記 1 9ないし 24のいずれかに記載のリチウム二次電池正極材料用リチウムニッケルマンガ ンコバルト系複合酸化物粉体。
26. 嵩密度が 0. 5〜1. 7gZcm3であることを特徴とする前記 19ないし 25のいず れかに記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合 酸化物粉体。
27. BET比表面積が 1. 4〜3m2/gであることを特徴とする前記 19ないし 26のい ずれかに記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複 合酸化物粉体。
28. 含有炭素濃度を C (重量%)とした時、 C値が 0. 005重量%以上、 0. 05重量 %以下であることを特徴とする前記 19ないし 27のいずれかに記載のリチウム二次電 池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
29. 40MPaの圧力で圧密した時の体積抵抗率が 1 X 103Ω 'cm以上、 1 X 106 Ω •cm以下であることを特徴とする前記 19ないし 28のいずれかに記載のリチウム二次 電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
30. リチウム化合物、ニッケル化合物、マンガンィ匕合物、及びコバルト化合物を、液 体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得 られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を酸素含有 ガス雰囲気中で、 940°C≤T≤ 1200°Cの温度 T(°C)で焼成する焼成工程とを含む ことを特徴とする前記 19ないし 29のいずれかに記載のリチウム二次電池正極材料用 リチウムニッケルマンガンコバルト系複合酸化物粉体の製造方法。
31. リチウム化合物が炭酸リチウムであることを特徴とする前記 30に記載のリチウム 二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィヒ物粉体の製造方 法。
32. スラリー調製工程において、リチウム化合物、ニッケル化合物、マンガンィ匕合物
、及びコバルト化合物を、液体媒体中で、レーザー回折 Z散乱式粒度分布測定装置 によって、屈折率を 1. 24に設定し、粒子径基準を体積基準として、 5分間の超音波 分散(出力 30W、周波数 22. 5kHz)後に測定するメジアン径が 0. 以下になる まで粉砕し、噴霧乾燥工程において、噴霧乾燥時のスラリー粘度を V (cp)、スラリー 供給量を(LZmin)、ガス供給量を G (LZmin)とした際、 50cp≤V≤4000cp、 15 00≤ GZS≤ 5000となる条件で噴霧乾燥を行うことを特徴とする請求項 30又は 31 に記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕 物粉体の製造方法。
33. リチウム化合物、ニッケル化合物、マンガンィ匕合物、及びコバルト化合物を、液 体媒体中で粉砕して、これらを均一に分散させてなるスラリーを噴霧乾燥して得られ る、リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉 体の前駆体となる噴霧乾燥粉体であって、レーザー回折 Z散乱式粒度分布測定装 置によって、屈折率を 1. 24に設定し、粒子径基準を体積基準として、 5分間の超音 波分散(出力 30W、周波数 22. 5kHz)後に測定された該噴霧乾燥粉体のメジアン 径が 0. 01 μ m以上、 4 μ m以下であることを特徴とするリチウムニッケルマンガンコ バルト系複合酸化物の噴霧乾燥粉体。
34. BET比表面積が 10〜: L00m2Zgであることを特徴とする前記 33に記載の噴 霧乾燥粉体。
35. 前記 19ないし 29のいずれかに記載のリチウム二次電池正極材料用リチウム- ッケルマンガンコバルト系複合酸化物粉体と結着剤とを含有する正極活物質層を集 電体上に有することを特徴とするリチウム二次電池用正極。
36. リチウムを吸蔵 ·放出可能な負極、リチウム塩を含有する非水電解質、及びリチ ゥムを吸蔵 ·放出可能な正極を備えたリチウム二次電池であって、正極として請求項 35に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。
37. 満充電状態における正極の充電電位が 4. 35V (vs. LiZLi+)以上となるよう に設計されていることを特徴とする前記 36に記載のリチウム二次電池。
38. リチウムイオンの挿入'脱離が可能な機能を有するリチウム遷移金属系化合物 を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なく とも 1種以上を、主成分原料中の遷移金属元素の合計モル量に対して 0. 01モル% 以上、 2モル%未満の割合で添加した後、焼成されたものであることを特徴とするリチ ゥム二次電池正極材料用リチウム遷移金属系化合物粉体。
39. 前記添加剤が、 Mo、 W、 Nb、 Ta、及び Reから選ばれる少なくとも一種以上の 元素(以下「添加元素」と称す。 )を含有する酸化物であることを特徴とする前記 38〖こ 記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
40. 一次粒子の表面部分の Li及び前記添加元素以外の金属元素の合計に対す る該添加元素の合計の原子比が、粒子全体の該原子比の 5倍以上であることを特徴 とする請求項 38または 39に記載のリチウム二次電池正極材料用リチウム遷移金属 系化合物粉体。 41. レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し 、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kH z)後に測定されたメジアン径が 0. 1 μ m以上、 3 μ m未満であることを特徴とする前 記 38ないし 40のいずれかに記載のリチウム二次電池正極材料用リチウム遷移金属 系化合物粉体。
42. 一次粒子の平均径が 0. 1 μ m以上、 0. 9 m以下であることを特徴とする前 記 38ないし 41のいずれかに記載のリチウム二次電池正極材料用リチウム遷移金属 系化合物粉体。
43. BET比表面積が 1. 5m2Zg以上、 5m2Zg以下であることを特徴とする請求項 38ないし 42のいずれ力 1項に記載のリチウム二次電池正極材料用リチウム遷移金属 系化合物粉体。
44. 水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa力ら 413MPaまで の昇圧時における水銀圧入量力 0. 7cm3Zg以上、 1. 5cm3Zg以下であることを 特徴とする前記 38ないし 43のいずれに記載のリチウム二次電池正極材料用リチウム 遷移金属系化合物粉体。
45. 水銀圧入法による細孔分布曲線が、細孔半径 300nm以上、 lOOOnm以下に ピークトップが存在するメインピークを少なくとも 1つ以上有し、かつ細孔半径 80nm 以上、 300nm未満にピークトップが存在するサブピークを有さな 、ことを特徴とする 前記 38ないし 44のいずれかに記載のリチウム二次電池正極材料用リチウム遷移金 属系化合物粉体。
46. 水銀圧入法による細孔分布曲線において、細孔半径 300nm以上、 lOOOnm 以下にピークトップが存在するピークに係る細孔容量が 0. 4cm3Zg以上、 lcm3Zg 以下であることを特徴とする前記 38な 、し 45の 、ずれかに記載のリチウム二次電池 正極材料用リチウム遷移金属系化合物粉体。
47. 嵩密度が 0. 5gZcm3以上、 1. 7gZcm3以下であることを特徴とする請求項 3 8ないし 46のいずれ力 1項に記載のリチウム二次電池正極材料用リチウム遷移金属 系化合物粉体。
48. 40MPaの圧力で圧密した時の体積抵抗率が 1 X 103 Q 'cm以上、 1 X 106 Ω •cm以下であることを特徴とする前記 38ないし 47のいずれかに記載のリチウム二次 電池正極材料用リチウム遷移金属系化合物粉体。
49. 層状構造に帰属する結晶構造を含んで構成されるリチウムニッケルマンガンコ バルト系複合酸化物を主成分としたことを特徴とする前記 38な 、し 48の ヽずれかに 記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
50. 組成が、下記組成式 (Γ ' )で示されることを特徴とする請求項 49に記載のリチ ゥム二次電池正極材料用リチウム遷移金属系化合物粉体。
[0039] LiMO
2
ただし、上記式(Γ ')中、 Mは、 Li、 Ni及び Mn、或いは、 Li、 Ni、 Mn及び Coから 構成される元素であり、 MnZNiモル比は 0. 8以上、 5以下、 CoZ(Mn+Ni+Co) モル比は 0以上、 0. 30以下、 M中の Liモル比は 0. 001以上、 0. 2以下である。
51. 酸素含有ガス雰囲気下において、焼成温度 970°C以上で焼成されたものであ ることを特徴とする前記 49又は 50に記載のリチウム二次電池正極材料用リチウム遷 移金属系化合物粉体。
52. 含有炭素濃度を C (重量%)とした時、 C値が 0. 005重量%以上、 0. 05重量 %以下であることを特徴とする前記 49ないし 51のいずれかに記載のリチウム二次電 池正極材料用リチウム遷移金属系化合物粉体。
53. 前記組成式 (Γ ')中の M力 下記式 (ΙΓ ')で表されることを特徴とする前記 50 ないし 52のいずれかに記載のリチウム二次電池正極材料用リチウム遷移金属系化 合物粉体。
[0040] M=Li {(Ni Mn ) Co }
z"/(2 + z") (l + y")/2 (l-y")/2 1-x" x" 2/(2 + z") ただし、上記式(11,,)中、 0≤χ,,≤0. 1、 一0. l≤y,,≤0. 1、 (1 x,,) (0. 05 —0. 98y")≤z' '≤ (1-χ") (0. 20-0. 88y,,)である。
55. CuKa線を使用した粉末 X線回折測定において、回折角 2 Θ力 ½4. 5° 付近 に存在する(110)回折ピークの半価幅を FWHM( 110)とした時に、 0. 01≤FWH M(110)≤0. 2で表されることを特徴とする前記 53に記載のリチウム二次電池正極 材料用リチウム遷移金属系化合物粉体。
55. CuK a線を使用した粉末 X線回折測定にぉ 、て、回折角 2 Θ力 ½4° 付近に 存在する(018)回折ピーク、 64. 5° 付近に存在する(110)回折ピーク、及び 68° 付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に 、異相由来の回折ピークを持たないか、或いは異相由来の回折ピークを有する場合 、本来の結晶相の回折ピークに対する異相ピークの積分強度比力 各々、以下の範 囲内にあることを特徴とする前記 53又は 54に記載のリチウム二次電池正極材料用リ チウム遷移金属系化合物粉体。
0≤1 /\ ≤0. 20
018 * 018
0≤1 /\ ≤0. 25
110 * 110
0≤1 /\ ≤0. 30
113 * 113
ここで、 I 、1 、1 は、それぞれ (018)、 (110)、 (113)回折ピークの積分強度を
018 110 113
表し、 I 、1 、1 は、それぞれ (018)、(110)、(113)回折ピークのピークトツ
018 * 110 * 113 *
プよりも高角側に現れる異相由来の回折ピークの積分強度を表す。
56. リチウム化合物と、 V、 Cr、 Mn、 Fe、 Co、 Ni、及び Cuから選ばれる少なくとも 1 種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、 液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、 得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成す る焼成工程とを含むことを特徴とする前記 38な 、し 55の 、ずれかに記載のリチウム 二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
57. スラリー調製工程において、リチウム化合物と、遷移金属化合物と、添加剤とを
、液体媒体中で、レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1.
24に設定し、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波 数 22. 5kHz)後に測定するメジアン径が 0. 4 m以下になるまで粉砕し、噴霧乾燥 工程において、噴霧乾燥時のスラリー粘度を V (cp)、スラリー供給量を S (L/min)、 ガス供給量を G (L/min)とした際、 50cp≤V≤4000cp, 1500≤G/S≤5000と なる条件で噴霧乾燥を行うことを特徴とする前記 56に記載のリチウム二次電池正極 材料用リチウム遷移金属系化合物粉体の製造方法。
58. 遷移金属化合物として少なくともニッケルィ匕合物、マンガンィ匕合物及びコバル ト化合物を含み、焼成工程において、噴霧乾燥粉体を、酸素含有ガス雰囲気下、 97 0°C以上で焼成することを特徴とする前記 56又は 57に記載のリチウム二次電池正極 材料用リチウム遷移金属系化合物粉体の製造方法。
59. リチウム化合物が炭酸リチウムであることを特徴とする前記 56ないし 58のいず れかに記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造 方法。
60. リチウム化合物と、 V、 Cr、 Mn、 Fe、 Co、 Ni、及び Cuから選ばれる少なくとも 1 種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、 液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られる、リ チウムニ次電池正極材料用リチウム遷移金属系化合物粉体の前駆体となる噴霧乾 燥体であって、レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24 に設定し、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 2 2. 5kHz)後に測定された該噴霧乾燥体のメジアン径が 0. 01 m以上、4 m以下 であることを特徴とする噴霧乾燥体。
61. BET比表面積が 10m2Zg以上、 100m2Zg以下であることを特徴とする前 記 60に記載の噴霧乾燥体。
62. 前記 38ないし 55のいずれか 1項に記載のリチウム二次電池正極材料用リチウ ム遷移金属系化合物粉体と結着剤とを含有する正極活物質層を集電体上に有する ことを特徴とするリチウム二次電池用正極。
63. リチウムを吸蔵 ·放出可能な負極、リチウム塩を含有する非水電解質、及びリチ ゥムを吸蔵 ·放出可能な正極を備えたリチウム二次電池であって、正極として前記 62 に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。
[0042] 本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物は、リチウム二次 電池正極材料として用いた場合、低コスト化及び高安全性化と負荷特性の向上との 両立を図ることができる。このため、本発明によれば、安価で安全性が高ぐし力も高 い充電電圧で使用しても、性能の優れたリチウム二次電池が提供される。
図面の簡単な説明
[0043] [図 1]実施例 1において、製造されたリチウムニッケルマンガン複合酸化物粉体の細 孔分布曲線を示すグラフである。 圆 2]実施例 2において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
圆 3]実施例 3において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
圆 4]実施例 4において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
[図 5]実施例 5において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の 粉体の細孔分布曲線を示すグラフである。
圆 6]比較例 1において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
圆 7]比較例 2において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
圆 8]比較例 3において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
[図 9]比較例 4にお 、て、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
[図 10]比較例 5において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 11]実施例 1において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 12]実施例 2において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 13]実施例 3において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 14]実施例 4において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 15]実施例 5において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。 [図 16]比較例 1において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 17]比較例 2において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 18]比較例 3において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 19]比較例 4において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 20]比較例 5において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 21]実施例 1において、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 22]実施例 2において、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 23]実施例 3において、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 24]実施例 4にお 、て、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 25]実施例 5において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 26]比較例 1にお 、て、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 27]比較例 2において、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 28]比較例 3において、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 29]比較例 4にお 、て、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。 [図 30]比較例 5において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 31]実施例 6において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。
圆 32]実施例 7において、製造されたリチウムニッケルマンガン複合酸化物の粉体の 細孔分布曲線を示すグラフである。
[図 33]比較例 6において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 34]実施例 6において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 35]実施例 7において、製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM 画像 (写真)(倍率 X 10, 000)である。
[図 36]比較例 6において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 37]実施例 6において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 38]実施例 7において、製造されたリチウムニッケルマンガン複合酸ィ匕物の XRDパ ターンを示すグラフである。
[図 39]比較例 6において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
圆 40]実施例 8において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物粉 体の細孔分布曲線を示すグラフである。
圆 41]実施例 9において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物粉 体の細孔分布曲線を示すグラフである。
[図 42]実施例 10において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。
[図 43]実施例 11にお 、て製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。 [図 44]比較例 7において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の 粉体の細孔分布曲線を示すグラフである。
[図 45]比較例 8において製造されたリチウムニッケルマンガン複合酸ィ匕物の粉体の細 孔分布曲線を示すグラフである。
[図 46]比較例 9において製造されたリチウムニッケルマンガン複合酸化物の粉体の細 孔分布曲線を示すグラフである。
[図 47]実施例 8において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の SEM画像 (写真)(倍率 X 10, 000)である。
[図 48]実施例 9において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の SEM画像 (写真)(倍率 X 10, 000)である。
[図 49]実施例 10において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 50]実施例 11にお 、て製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 51]比較例 7において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の SEM画像 (写真)(倍率 X 10, 000)である。
[図 52]比較例 8において製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM画 像 (写真)(倍率 X 10, 000)である。
[図 53]比較例 9において製造されたリチウムニッケルマンガン複合酸ィ匕物の SEM画 像 (写真)(倍率 X 10, 000)である。
[図 54]実施例 8において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の 粉末 X線回折パターンを示すグラフである。
[図 55]実施例 9において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の 粉末 X線回折パターンを示すグラフである。
[図 56]実施例 10において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉末 X線回折パターンを示すグラフである。
[図 57]実施例 11にお 、て製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉末 X線回折パターンを示すグラフである。 [図 58]比較例 7において製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物の 粉末 X線回折パターンを示すグラフである。
[図 59]比較例 8において製造されたリチウムニッケルマンガン複合酸ィ匕物の粉末 X線 回折パターンを示すグラフである。
[図 60]比較例 9において製造されたリチウムニッケルマンガン複合酸ィ匕物の粉末 X線 回折パターンを示すグラフである。
[図 61]実施例 12において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。
[図 62]実施例 13において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。
[図 63]実施例 14において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。
[図 64]実施例 15において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 粉体の細孔分布曲線を示すグラフである。
[図 65]実施例 16において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 66]比較例 10において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 67]比較例 11にお 、て、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 68]比較例 12において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 69]比較例 13にお 、て、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の粉体の細孔分布曲線を示すグラフである。
[図 70]実施例 12において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 71]実施例 13において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。 [図 72]実施例 14において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 73]実施例 15において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 74]実施例 16において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 75]比較例 10において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 76]比較例 11にお 、て、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 77]比較例 12において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 78]比較例 13において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の SEM画像(写真)(倍率 X 10, 000)である。
[図 79]実施例 12において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 80]実施例 13において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 81]実施例 14において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 82]実施例 15において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 83]実施例 16において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 84]比較例 10において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 85]比較例 11にお 、て、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。 [図 86]比較例 12において、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
[図 87]比較例 13にお 、て、製造されたリチウムニッケルマンガンコバルト複合酸ィ匕物 の XRDパターンを示すグラフである。
詳細な説明
[0044] 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要 件の説明は、本発明の実施態様の一例 (代表例)であり、これらの内容に特定はされ ない。
まず、本発明のうち、水銀圧入法による水銀圧入曲線において、圧力 3. 86kPaか ら 413MPaまでの昇圧時における水銀圧入量力 0. 8cm3Zg以上、 3cm3Zg以下 であることを特徴とするリチウム二次電池正極材料用リチウム遷移金属系化合物粉体 について、詳細に説明する。
[リチウム遷移金属系化合物粉体]
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、水銀圧 入法による水銀圧入曲線において、圧力 3. 86kPaから 413MPaまでの昇圧時にお ける水銀圧入量が、 0. 8cm3Zg以上、 3cm3Zg以下であることを特徴とする。
<水銀圧入法 >
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、水銀圧 入法による測定において、特定の条件を満たすことを特徴としている。よって、本発 明の粒子について説明する前に、まず水銀圧入法について簡単に説明する。
[0045] 水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀 を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布などの 情報を得る手法である。
[0046] 具体的には、まず、試料の入った容器内を真空排気した上で、容器内に水銀を満 たす。水銀は表面張力が高ぐそのままでは試料表面の細孔には水銀は浸入しない 1S 水銀に圧力を力ゝけ、徐々に昇圧していくと、径の大きい細孔力 順に径の小さい 孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら水 銀液面の変化(つまり細孔への水銀圧入量)を検出していけば、水銀に加えた圧力と 水銀圧入量との関係を表す水銀圧入曲線が得られる。
[0047] ここで、細孔の形状を円筒状と仮定し、その半径を r、水銀の表面張力を δ、接触角 を
Θとすると、細孔力 水銀を押し出す方向への大きさは 2 πΓδ (cos 0 )で表される (Θ >90° なら、この値は正となる)。また、圧力 P下で細孔へ水銀を押し込む方向へ の力の大きさは πΐ:2Ρで表されることから、これらの力の釣り合いから以下の数式(1) 、数式(2)が導かれることになる。
[0048] —2πΓδ (cos0) = 7ur2P ··· (1)
Pr=-26 (cos0) ··· (2)
水銀の場合、表面張力 δ =480dynZcm程度、接触角 Θ =140° 程度の値が一 般的に良く用いられる。これらの値を用いた場合、圧力 P下で水銀が圧入される細孔 の半径は以下の数式(3)で表される。
[0049] r(nm)=7.5X108ZP(Pa) · · · (3)
すなわち、水銀にカ卩えた圧力 Pと水銀が浸入する細孔の半径 rとの間には相関があ ることから、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積 との関係を表す細孔分布曲線を得ることができる。例えば、圧力 Pを 0. IMPaから 10 OMPaまで変化させると、 7500nm程度力ら 7.5nm程度までの範囲の細孔につい て測定が行えることになる。
[0050] なお、水銀圧入法による細孔半径のおおよその測定限界は、下限が約 2nm以上、 上限が約 200 m以下であり、後述する窒素吸着法に比べて、細孔半径が比較的 大きな範囲における細孔分布の解析に向いていると言える。
[0051] 水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水 銀ポロシメータの具体例としては、 Micromeritics社製オートポア、 Quantachrome 社製ポアマスター等が挙げられる。
[0052] 本発明の粒子は、この水銀圧入法による水銀圧入曲線において、圧力 3.86kPa 力も 413MPaまでの昇圧時における水銀圧入量が 0.8cm3Zg以上、 3cm3Zg以下 であることを特徴とする。水銀圧入量は通常 0.8cm3Zg以上、好ましくは 0.85cm3 Zg以上、更に好ましくは 0.9cm3Zg以上、最も好ましくは 1.0cm3Zg以上であり、 通常 3cm3Zg以下、好ましくは 2. 5cm3Zg以下、更に好ましくは 2cm3Zg以下、最 も好ましくは 1. 8cm3Zg以下である。この範囲の上限を超えると空隙が過大となり、 本発明の粒子を正極材として用いる際に、正極板への正極活物質の充填率が低くな つてしまい、電池容量が制約されてしまう。一方、この範囲の下限を下回ると、粒子間 の空隙が過小となってしまうため、本発明の粒子を正極材として電池を作製した場合 に、粒子間のリチウム拡散が阻害され、負荷特性が低下する。
本発明の粒子は、後述の水銀圧入法によって細孔分布曲線を測定した場合に、通 常、以下に説明する特定のメインピークが現れる。
[0053] なお、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以 上の半径を有する細孔の単位重量 (通常は lg)当たりの細孔体積の合計を、細孔半 径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結ん だグラフとして表す。特に本発明の粒子を水銀圧入法により測定して得られた細孔分 布曲線を、以下の記載では適宜「本発明に力かる細孔分布曲線」という。
[0054] また、本明細書において「メインピーク」とは、細孔分布曲線が有するピークの内で 最も大きいピークをいい、「サブピーク」とは、細孔分布曲線が有するメインピーク以 外のピークを表す。
[0055] また、本明細書において「ピークトップ」とは、細孔分布曲線が有する各ピークにお V、て縦軸の座標値が最も大き 、値をとる点を!、う。
<メインピーク >
本発明に係る細孔分布曲線が有するメインピークは、そのピークトップが、細孔半 径が通常 300nm以上、好ましくは 310nm以上、最も好ましくは 325nm以上、また、 通常 lOOOnm以下、好ましくは 950nm以下、より好ましくは 900nm以下、更に好ま しくは 850nm以下、最も好ましくは 800nm以下の範囲に存在する。この範囲の上限 を超えると、本発明の多孔質粒子を正極材として電池を作成した場合に、正極材内 でのリチウム拡散が阻害され、又は導電パスが不足して、負荷特性が低下する可能 '性がある。
[0056] 一方、この範囲の下限を下回ると、本発明の多孔質粒子を用いて正極を作製した 場合に、導電材ゃ結着剤の必要量が増加し、正極板 (正極の集電体)への活物質の 充填率が制約され、電池容量が制約される可能性がある。また、微粒子化に伴い、 塗料化時の塗膜の機械的性質が硬ぐ又は脆くなり、電池組立て時の捲回工程で塗 膜の剥離が生じ易くなる可能性がある。
また、本発明に係る細孔分布曲線が有するメインピークの細孔容量は、好適には、 通常 0. 5cm3Zg以上、好ましくは 0. 52cm3Zg以上、より好ましくは 0. 55cmVg 以上、最も好ましくは 0. 57cm3Zg以上、また、通常 1. 5cm3Zg以下、好ましくは lc m3Zg以下、より好ましくは 0. 8cm3Zg以下、最も好ましくは 0. 7cm3Zg以下である 。この範囲の上限を超えると空隙が過大となり、本発明の粒子を正極材として用いる 際に、正極板への正極活物質の充填率が低くなつてしまい、電池容量が制約されて しまう可能性がある。一方、この範囲の下限を下回ると、粒子間の空隙が過小となつ てしまうため、本発明の粒子を正極材として電池を作製した場合に、二次粒子間のリ チウム拡散が阻害され、負荷特性が低下する可能性がある。
<サブピーク >
本発明に係る細孔分布曲線は、上述のメインピークに加えて、複数のサブピークを 有していてもよいが、 80nm以上、 300nm以下の細孔半径の範囲内には存在しない ことを特徴とする。
<組成>
本発明のリチウム遷移金属系化合物とは、 Liイオンを脱離、挿入することが可能な 構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複 合酸ィ匕物などが挙げられる。硫ィ匕物としては、 TiSや MoSなどの二次元層状構造
2 2
をもつ化合物や、一般式 MexMo S (Meは Pb, Ag, Cuをはじめとする各種遷移金
6 8
属)で表される強固な三次元骨格構造を有するシュブレルィ匕合物などが挙げられる。 リン酸塩ィ匕合物としては、オリビン構造に属するものが挙げられ、一般的には LiMeP O (Meは少なくとも 1種以上の遷移金属)で表され、具体的には LiFePO、 LiCoP
4 4
O、 LiNiPO、 LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては
4 4 4
、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能に する層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的に Li Me O (Meは少なくとも 1種以上の遷移金属)と表され、具体的には LiMn O、 LiC oMnO、 LiNi Mn O、 CoLiVOなどが挙げられる。層状構造を有するものは
4 0. 5 1. 5 4 4
、一般的に LiMeO (Meは少なくとも 1種以上の遷移金属)と表され、具体的には Li
2
CoO、 LiNiO、 LiNi Co O、 LiNi Co Mn O、 LiNi Mn O、 Li Cr
2 2 1 -x x 2 1 -x-y x y 2 0. 5 0. 5 2 1. 2
Mn O、 Li Cr Ti O、 LiMnOなどが挙げられる。
0. 4 0. 4 2 1. 2 0. 4 0. 4 2 2
[0058] 本発明のリチウム遷移金属系化合物は、リチウムイオン拡散の点力もオリビン構造、 スピネル構造、層状構造に帰属する結晶構造を含んで構成されるものが好まし 、。 中でも層状構造に帰属する結晶構造を含んで構成されるものが特に好ましい。
[0059] ここで、層状構造に関してさらに詳しく述べる。層状構造を有するものの代表的な結 晶系としては、 LiCoO、 LiNiOのような α— NaFeO型に属するものがあり、これら
2 2 2
は六方晶系であり、その対称性力 空間群
[0060] [数 1]
R3m
(以下「層状 R (— 3) m構造」と表記することがある。)に帰属される。
[0061] ただし、層状 LiMe02とは、層状 R(— 3) m構造に限るものではない。これ以外にも いわゆる層状 Mnと呼ばれる LiMn02は斜方晶系で空間群 Pm2mの層状ィ匕合物で あり、また、いわゆる 213相と呼ばれる Li MnOは、 Li[Li Mn ]0とも表記でき
2 3 1/3 2/3 2
、単斜晶系の空間群 C2Zm構造であるが、やはり Li層と [Li Mn ]層および酸
1/3 2/3
素層が積層した層状化合物である。
[0062] ここで本発明のリチウム遷移金属系化合物における Li組成 (zおよび X)の化学的な 意味について、以下により詳細に説明する。
[0063] 前述のように層状構造は必ずしも R(— 3) m構造に限られるものではないが、 R (—
3) m構造に帰属しうるものであることが電気化学的な性能面力 好ましい。詳細に説 明するため、以下層状構造を R (— 3) m構造に仮定して説明する。
[0064] 本発明では、層状構造を有するリチウム遷移金属の中でも、
Li[Ni Mn ]0の割合が(1 3x) (1— y)、
1/2 1/2 2
Li [Li Mn ]0の割合が 3x (l— y)、
1/3 2/3 2
LiCoOの割合が y
2 で固溶したと仮定される層状リチウム遷移金属複合酸化物、すなわち
[Li](3a)[Li Ni Mn ) Co ](3b)0 … (II)
χ (l-3x)/2 (l+x)/2 (1-y) y 2
を基本構造に持つものが好ま 、。
[0065] ここで、(3a)、(3b)はそれぞれ層状 R (— 3) m構造中の異なる金属サイトを表す。
[0066] ただし、本発明では、さらに(II)式の組成に対して Liを zモルだけ過剰にカ卩え、固溶 させたものであり、
[Li](3a)[Li {Li Ni Mn ) Co } ](3b)0 … (I)
z/(2 + z) x (l-3x)/2 (l+x)/2 (l-y) y 2/(2 + z) 2
で表されるリチウム遷移金属が好ま 、。
[0067] ただし、 0≤x≤0.33、 0≤y≤0.2、—0.02≤z≤0.2 (l-y) (1— 3x))、また、
(3a)、 (3b)はそれぞれ層状 R ( 3) m構造中の異なる金属サイトを表す。
[0068] なお、この表記は、 LiMe02 (Meは遷移金属)と表される層状リチウム遷移金属複 合酸ィ匕物において、 zモル分の過剰 Liが遷移金属サイト(3bサイト)に固溶する場合
、 [Li](3a)[Li Me ](3b)0
z/(2 + z) 2/(2 + z) 2
と表される事と同様に表したものである。
[0069] 上記リチウム遷移金属系化合物の組成式の x、 y、 zを求めるには、各遷移金属と Li を誘導結合プラズマ発光分光分析装置 (ICP— AES)で分析して、 Li/Ni/Mn/ Coの比を求める事で計算される。すなわち、 x、 yは NiZMn及び CoZNi比で求め られ、 zは LiZNiモル比が
Li/Ni={2 + 2z + 2x(l-y)}/{(l-3x) (l-y)}
で表されることから求めることが出来る。
[0070] 構造的視点では、 zに係る Liも Xに係る Liも同じ遷移金属サイトに置換されて入って いると考えられる。ここで、 Xに係る Liと zに係る Liとの差異は、 Niの価数が 2価より大 きくなるか否か(3価の Niが生成するか否力)ということになる。即ち、 Xは、 MnZNi比 (Mnリッチ度合い)と連動した値であるから、この X値のみによって Ni価数が変動する ことはなぐ Niは 2価のままとなる。一方、 zは Ni価数を上昇させる Liと捉えることがで き、 zは、 Ni価数 (Ni (III)の割合)の指標となる。
[0071] なお、上記組成式から、 zの変化に伴う Ni価数 (m)を計算すると、 Co価数は 3価、 Mn価数は 4価であるとの前提で、 m=2zZ{ (l-y) (l— 3x) } + 2となる。この計算 結果は、 Ni価数は zのみで決まるのではなぐ X及び yの関数となっていることを意味 している。 z = 0であれば、 X及び yの値に関係なく Ni価数は 2価のままである。 zが負 の値になる場合は、活物質中に含まれる Li量が化学量論量より不足して 、ることを意 味し、あまり大きな負の値を有するものは本発明の効果が出ない可能性がある。一方 、同じ z値であっても、 Mnリッチ (X値が大きい)及び Z又は Coリッチ (y値が大きい)な 組成ほど Ni価数は高くなるということを意味し、電池に用いた場合、レート特性や出 力特性が高くなるが、反面、容量低下しやすくなる結果となる。このことから、 z値の上 限は上述の如く X及び yの関数として規定するのがより好ましいと言える。
[0072] また、 y値が 0≤y≤0. 2と、 Co量が少ない範囲にあると、コストが低減されることに 加え、高い充電電位で充電するように設計されたリチウム二次電池として使用した場 合において、サイクル特性や安全性が向上する。
[0073] このように、上記組成のリチウム遷移金属系化合物粉体を正極活物質として用いた 電池は、従来レートや出力性能に劣るという欠点がある力 本発明のリチウム-ッケ ルコバルト系複合酸ィ匕物は、水銀圧入曲線における昇圧時の水銀圧入量が多ぐ結 晶粒子間の細孔容量が大きいため、これを用いて電池を作製した場合に、正極活物 質表面と電解液との接触面積を増加させることが可能となるため、正極活物質として 必要な、負荷特性を改善することができる。
<リチウムニッケルマンガンコバルト系複合酸化物 >
また、本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物は、リチウ ムニッケルマンガンコバルト系複合酸ィ匕物が好ましぐ層状構造に帰属する結晶構造 を含んで構成され、組成が下記 (I)式で表されるもの力 さらに好ましい。
Li[Li {(Li Ni Mn ) Co } )]0…組成式(I)
z/(2+z) x (l -3x) /2 (l +x) /2 l _y y 2/(2+z 2
ただし、 0≤x≤0. 33
0≤y≤0. 2
-0. 02≤z≤0. 2 ( l -y) (1— 3x)
上記組成式 (I)において、 zの値は—0. 02以上、好ましくは—0. 01以上、より好ま しくは 0以上、更に好ましくは 0. 01 (1 y) (1— 3x)以上、最も好ましくは 0. 02 (1— y) (1 3x)以上であり、 0. 2 ( l -y) (1 3x)以下、好ましくは 0. 19 (1 y) (1— 3x )以下、より好ましくは 0. 18 (1— y) (l— 3x)以下、最も好ましくは 0. 17 (1— y) (l— 3x)以下である。この下限を下回ると導電性が低下し、上限を超えると遷移金属サイ トに置換する量が多くなり過ぎて電池容量が低くなる等、これを使用したリチウム二次 電池の性能低下を招く可能性がある。
[0074] また、 zが大きすぎると、活物質粉体の炭酸ガス吸収性が増大するため、大気中の 炭酸ガスを吸収しやすくなる。その結果、含有炭素濃度が大きくなると推定される。
[0075] 一方、 zが小さすぎると、層状構造を主体とする層を形成するための Li量が明らか に不足するため、スピネル相などの異相が出現するものと推定される。
[0076] Xの値は 0以上、 0. 33以下、好ましくは 0. 30以下、より好ましくは 0. 25以下、最も 好ましくは 0. 20以下である。この下限を下回ると、高電圧での安定性が低下したり、 安全性が低下しやすくなつたりする。上限を超えると異相が生成しやすくなつたり、電 池性能低下を招きやすくなつたりする可能性がある。
[0077] yの値は 0以上、好ましくは 0. 01以上、 0. 2以下、好ましくは 0. 18以下、より好まし くは 0. 15以下、最も好ましくは 0. 1以下である。
[0078] 上記 (I)式の組成範囲にぉ 、て、 z値が定比である下限に近 、程、電池とした時の レート特性や出力特性が低くなる傾向が見られ、逆に z値が上限に近い程、電池とし た時のレート特性や出力特性が高くなるが、一方で容量が低下するという傾向が見ら れる。また、 X値が下限、つまりマンガン Zニッケル原子比が 1に近い程、低い充電電 圧で容量が出るが、高い充電電圧を設定した電池のサイクル特性や安全性が低下 する傾向が見られ、逆に X値が上限に近い程、高い充電電圧で設定した電池のサイ クル特性や安全性が向上する一方で放電容量やレート特性、出力特性が低下する 傾向が見られる。また、 y値が下限に近い程、電池とした時のレート特性や出力特性 といった負荷特性が低くなるという傾向が見られ、逆に、 y値が上限に近い程、電池と した時のレート特性や出力特性が高くなるが、一方で高い充電電圧で設定した場合 のサイクル特性や安全性が低下し、原料コストが高くなる傾向にある。本発明は、とり わけこの相反する傾向を打破すべく鋭意検討を行った結果、完成されたものであり、 前記組成パラメータ x、 y、 zを規定範囲内とすることが重要である。
[0079] なお、前記式 (I)の組成においては、酸素量の原子比は便宜上 2と記載しているが 、多少の不定比性があってもよい。例えば、酸素の原子比は 2±0. 1の範囲とするこ とがでさる。
[0080] また、本発明のリチウム遷移金属系化合物がリチウムニッケルマンガンコバルト系複 合酸化物粉体である場合、その構造内に置換元素が導入されても良い。置換元素と しては、 Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, Nb, Zr, Mo, W, Snの何れ力一種以 上の中から選択される。これらの置換元素は、適宜 Ni, Mn, Co元素と 20原子%以 下の範囲で置き換えられる。
<本発明の粒子が上述の効果をもたらす理由 >
本発明のリチウム複合酸ィ匕物粒子は、細孔体積が適度に多いことから、これを用い て電池を作製した場合に正極活物質表面と電解液との接触面積を増カロさせることが 可能となるため、正極活物質として必要な負荷特性が改良されたものと推定される。 <その他の好まし 、態様 >
以下の記載では、本発明の粒子のその他の特性についても詳説するが、これはあ くまでも好ましい態様であって、上述の特徴を備えるものであれば、本発明の粒子の その他の特性につ ヽては特に制限されるものではな 、。
くメジアン径及び 90%積算径 (D ) >
90
本発明のリチウム遷移金属系化合物粉体のメジアン径は通常 0. 以上、好ま しくは 0. 8 μ m以上、より好ましくは 1 μ m以上、最も好ましくは 1. 1 μ m以上で、通 常 5 μ m以下、好ましくは 4. 5 μ m以下、より好ましくは 4 μ m以下、更に好ましくは 3 . 以下、最も好ましくは 3 m以下である。下限を下回ると、正極活物質層形成 時の塗布性に問題を生ずる可能性があり、上限を超えると電池性能の低下を来たす 可能性がある。
[0081] また、本発明のリチウム遷移金属系化合物粉体の二次粒子の 90%積算径 (D )は
90 通常 10 m以下、好ましくは 9 m以下、より好ましくは 8 m以下、最も好ましくは 7 μ m以下で、通常 1 μ m以上、好ましくは 2 μ m以上、より好ましくは 3 μ m以上、最も 好ましくは 3. 5 m以上である。上記上限を超えると電池性能の低下を来たす可能 性があり、下限を下回ると正極活物質層形成時の塗布性に問題を生ずる可能性があ る。 [0082] なお、本発明にお 、て、平均粒子径としてのメジアン径及び 90%積算径 (D )は、
90 公知のレーザー回折 Z散乱式粒度分布測定装置によって、屈折率 1. 24を設定し、 粒子径基準を体積基準として測定されたものである。本発明では、測定の際に用い る分散媒として、 0. 1重量%へキサメタリン酸ナトリウム水溶液を用い、 5分間の超音 波分散 (出力 30W、周波数 22. 5kHz)後に測定を行った。
<嵩密度 >
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の嵩密度 は通常 0. 5gZcc以上、好ましくは 0. 6gZcc以上、より好ましくは 0. 7gZcc以上、 最も好ましくは 0. 8gZcc以上である。この下限を下回ると粉体充填性や電極調製に 悪影響を及ぼす可能性があり、また、これを活物質とする正極は通常 1. 5gZcc以下 、好ましくは 1. 4gZcc以下、より好ましくは 1. 3gZcc以下、最も好ましくは 1. 2g/c c以下である。嵩密度がこの上限を上回ることは、粉体充填性や電極密度向上にとつ て好ましい一方、比表面積が低くなり過ぎる可能性があり、電池性能が低下する可能 '性がある。
[0083] なお、本発明では、嵩密度は、リチウム遷移金属系化合物としてリチウムニッケルマ ンガンコバルト系複合酸ィ匕物粉体 5〜: LOgを 10mlのガラス製メスシリンダーに入れ、 ストローク約 20mmで 200回タップした時の粉体充填密度(タップ密度) gZccを求め た。
< BET比表面積 >
本発明のリチウムニッケルマンガン複合酸ィ匕物粉体はまた、 BET比表面積が、通 常 1. 5m2Zg以上、好ましくは 1. 7m2Zg以上、更に好ましくは 2m2Zg以上、最も好 ましくは 2. 5m2Zg以上で、通常 5m2Zg以下、好ましくは 4. 5m2Zg以下、更に好ま しくは 4m2Zg以下、最も好ましくは 3. 5m2Zg以下である。 BET比表面積がこの範 囲よりも小さいと電池性能が低下しやすぐ大きいと嵩密度が上がりに《なり、正極 活物質形成時の塗布性に問題が発生しやすくなる可能性がある。
[0084] なお、 BET比表面積は、公知の BET式粉体比表面積測定装置によって測定でき る。本発明では、大倉理研製: AMS8000型全自動粉体比表面積測定装置を用い 、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動法による BET1点式法 測定を行った。具体的には粉体試料を混合ガスにより 150°Cの温度で加熱脱気し、 次 、で液体窒素温度まで冷却して窒素 Zヘリウム混合ガスを吸着させた後、これを 水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導検出器 によって検出し、これから試料の比表面積を算出した。
<含有炭素濃度 C >
本発明のリチウム遷移金属系化合物粉体の C値は、通常 0. 005重量%以上、好ま しくは 0. 01重量%以上、更に好ましくは 0. 015重量%以上、最も好ましくは 0. 02 重量%以上であり、通常 0. 2重量%以下、好ましくは 0. 15重量%以下、更に好まし くは 0. 12重量%以下、最も好ましくは 0. 1重量%以下である。この下限を下回ると 電池性能が低下する可能性があり、上限を超えると電池とした時のガス発生による膨 れが増大したり電池性能が低下したりする可能性がある。
[0085] 本発明において、リチウム遷移金属系化合物粉体の含有炭素濃度 Cは、後述の実 施例の項で示すように、酸素気流中燃焼 (高周波加熱炉式)赤外吸収法による測定 で求められる。
[0086] なお、後述の炭素分析により求めたリチウムリチウム遷移金属系化合物粉体の含有 炭素濃度から、当該炭素を全て炭酸イオン由来と仮定した数値と、イオンクロマトダラ フィ一により分析したリチウム遷移金属系化合物粉体中の炭素は概ね炭酸塩として 存在すると考えられ、従って、 C値は、炭酸化合物、特に炭酸リチウムの付着量につ いての情報を示すものとみなすことができる。
[0087] 一方、リチウムリン酸鉄系化合物(一般式: LiFePO )のように、活物質自体の電子
4
伝導性が極めて低い化合物に導電性を付与すべくカーボンと複合ィ匕させたり、比較 的電子伝導性の高いリチウム遷移金属系化合物であっても、更に電子伝導性を高め るための手法として導電性カーボンと複合ィ匕処理したりする場合には、前記規定範 囲を超える C量が検出されることがある力 そのような処理が施された場合におけるリ チウム遷移金属系化合物粉体の c値は、前記規定範囲に限定されるものではない。 一方、本発明が規定するリチウム遷移金属系化合物粉体において、炭酸塩として 存在するリチウムは極めて少量であり、該複合酸化物粉体が規定するリチウム組成 ( x、 z)には影響を与えない。 <平均一次粒子径>
本発明のリチウム遷移金属系化合物体の平均一次粒子径としては、 0.05/zm以 上、 1 m以下であることが好ましい。下限は、より好ましくは 0.1 μ m以上、更に好ま しくは 0.15/zm以上、最も好ましくは 0. 以上、また、上限は、より好ましくは 0. 8 μ m以下、さらに好ましくは 0.7 μ m以下、最も好ましくは 0.6 μ m以下である。上 記上限を超えると、粉体充填性に悪影響を及ぼしたり、比表面積が低下したりするた めに、レート特性や出力特性等の電池性能が低下する可能性が高くなる可能性があ る。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題 を生ずる可能性がある。
[0088] なお、本発明における一次粒子の平均粒子径は、走査型電子顕微鏡 (SEM)で観 察した平均径であり、 30, 000倍の SEM画像を用いて、 10〜30個程度の一次粒子 の粒子径の平均値として求めることができる。
<体積抵抗率 >
本発明のリチウム遷移金属系化合物を 40MPaの圧力で圧密した時の体積抵抗率 の値は、下限としては、 1Χ103Ω 'cm以上が好ましぐ 5Χ103Ω 'cm以上がより好ま しぐ 1Χ104Ω·«η以上がさらに好ましい。上限としては、 5Χ107Ω·«η以下が好ま しぐ 1Χ107Ω·«η以下がより好ましぐ 5Χ106Ω·«η以下がさらに好ましい。この 体積抵抗率がこの上限を超えると電池とした時の負荷特性が低下する可能性がある 。一方、体積抵抗率力 Sこの下限を下回ると、電池とした時の安全性などが低下する可 能性がある。
[0089] なお、本発明にお 、て、リチウム遷移金属系化合物粉体の体積抵抗率は、四探針 •リング電極、電極間隔 5.0mm、電極半径 1.0mm、試料半径 12.5mmで、印加 電圧リミッタを 90Vとして、リチウム遷移金属系化合物粉体を 40MPaの圧力で圧密し た状態で測定した体積抵抗率である。体積抵抗率の測定は、例えば、粉体抵抗測定 装置 (例えば、ダイァインスツルメンッ社製、ロレスター GP粉体抵抗測定システム)を 用い、粉体用プローブユニットにより、所定の加圧下の粉体に対して行うことができる
<粉末 X線回折ピーク > 本発明のリチウム遷移金属系化合物粉体は、 CuK a線を使用した粉末 X線回折パ ターンにおいて、 20 =31±1° における回折ピークを持たないことが好ましい。ここ で「持たな 、」とは、本願発明の電池性能に悪影響を与えな 、程度の回折ピークを有 するものも含む。即ち、この回折ピークはスピネル相に由来するものである力 スピネ ル相が含まれると、電池とした時の容量やレート特性、高温保存特性や高温サイクル 特性が低下する。このため、回折ピークは本願発明の電池性能に悪影響を与えない 程度の回折ピークを有していてもよいが、 20 =18. 5±1° の(003)ピーク面積を 基準として、 20 =31±1° における回折ピーク面積が 0. 5%以下の割合であること が好ましぐ 0. 2%以下の割合であることがさらに好ましぐこの回折ピークが全く無い ことが特に好ましい。即ち、この回折ピークはスピネル相に由来し、スピネル相が含ま れると、電池とした時の容量やレート特性、高温保存特性や高温サイクル特性が低 下する傾向があるため、この回折ピークは無いことが好ましい。
次に、本発明のうち、下記組成式 (Γ)で表される化合物よりなり、層状構造に帰属 する結晶構造を含んで構成され、 CuK a線を使用した粉末 X線回折測定にぉ ヽて、 回折角 20力 4. 5° 付近に存在する(110)回折ピークの半価幅を FWHM( 110) とした時〖こ、 0. 01≤FWHM(110)≤0. 2で表されることを特徴とするリチウム二次 電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体にっ 、て、更 に詳細に述べる。
Li [Li {(Ni Mn ) Co } ]0 ···(Γ)
ζ'/(2 + ζ') (l+y')/2 (l_y')/2 Ι-χ' χ' 2/(2 + ζ') 2
ただし、組成式(Γ)中、 0≤χ'≤0. 1、 -0. l≤y'≤0. 1、 (Ι-χ') (0. 05— 0. 9 8y,)≤ζ,≤ (Ι-χ') (0. 15-0. 88y,)である。
[リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体]
本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸 化物粉体は、組成が下記 (Γ)式で表され、かつ層状構造に帰属する結晶構造を含 んで構成され、 CuK α線を使用した粉末 X線回折測定において、回折角 2 Θ力 ½4. 5° 付近に存在する(110)回折ピークの半価幅を FWHM (110)とした時に、 0. 01 ≤FWHM(110)≤0. 2で表されることを特徴とする。
Li [Li {(Ni Mn ) Co } ]0 ···(Γ)
ζ'/(2 + ζ') (l+y')/2 (l_y')/2 Ι-χ' χ' 2/(2 + ζ') 2 ただし、組成式 (Γ)中、
0≤χ'≤0. 1
-0. l≤y'≤0. 1
(Ι -χ' ) (0. 05-0. 98y' )≤z'≤ (Ι -χ' ) (0. 15— 0. 88y,)
である。
<組成及び結晶構造 >
上記(Γ)式において、 x'の値は 0以上、好ましくは 0. 01以上、より好ましくは 0. 02 以上、更に好ましくは 0. 03以上、最も好ましくは 0. 04以上、 0. 1以下、好ましくは 0 . 099以下である。
[0091] y'の値は— 0. 1以上、好ましくは— 0. 08以上、より好ましくは— 0. 05以上、最も 好ましくは 0. 03以上、 0. 1以下、好ましくは 0. 08以下、より好ましくは 0. 05以下 、最も好ましくは 0. 03以下である。
[0092] z,の値は(1 x,) (0. 05-0. 98y,)以上、好ましくは(1 χ' ) (0. 06-0. 98y, )以上、より好ましくは(1 χ' ) (0. 07-0. 98y' )以上、最も好ましくは(1— χ' ) (0. 08 -0. 98y,)以上、 (Ι -χ' ) (0. 15— 0. 88y,)以下、好ましくは(1— χ,)(0. 14 5-0. 88y' )以下、より好ましくは(1— χ' ) (0. 14-0. 88y' )、最も好ましくは(1 χ' ) (0. 13 -0. 88y' )以下である。 z'がこの下限を下回ると導電性が低下し、上限 を超えると遷移金属サイトに置換する量が多くなり過ぎて電池容量が低くなる等、これ を使用したリチウム二次電池の性能低下を招く可能性がある。また、 z'が大きすぎる と、活物質粉体の炭酸ガス吸収性が増大するため、大気中の炭酸ガスを吸収しやす くなる。その結果、含有炭素濃度が大きくなると推定される。
[0093] 上記 (Γ)式の組成範囲において、 z'値が定比である下限に近い程、電池とした時 のレート特性や出力特性が低くなる傾向が見られ、逆に z'値が上限に近い程、電池 とした時のレート特性や出力特性が高くなるが、一方で容量が低下するという傾向が 見られる。また、 y'値が下限、つまりマンガン Zニッケル原子比が小さい程、低い充 電電圧で容量が出るが、高!ヽ充電電圧を設定した電池のサイクル特性や安全性が 低下する傾向が見られ、逆に y'値が上限に近い程、高い充電電圧で設定した電池 のサイクル特性や安全性が向上する一方で、放電容量やレート特性、出力特性が低 下する傾向が見られる。また、 X'値が下限に近い程、電池とした時のレート特性や出 力特性といった負荷特性が低くなるという傾向が見られ、逆に、 X '値が上限に近い程
、電池とした時のレート特性や出力特性が高くなるが、この上限を超えると、高い充電 電圧で設定した場合のサイクル特性や安全性が低下し、また原料コストが高くなる。 前記組成パラメータ x'、 y'、 z'を規定範囲とすることは、本発明の重要な構成要素で ある。
[0094] なお、前記式 (Γ )の糸且成においては、酸素量の原子比は便宜上 2としている力 多 少の不定比性があってもよい。例えば、酸素の原子比は 2±0. 1の範囲とすることが できる。
[0095] また、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体は、異元素が 導入されてもよ ヽ。異元素としては、 B, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Fe, C u, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Sb, Te, Ba, T a, W, Ir, Pt, Au, Pb, Bi, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, T m, Yb, Lu, N, F, P, S, CI, Br, Iの何れか 1種以上の中から選択される。これらの 異元素は、リチウムニッケルマンガンコバルト系複合酸ィ匕物の結晶構造内に取り込ま れていてもよぐあるいは、リチウムニッケルマンガンコバルト系複合酸ィ匕物の結晶構 造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏 在していてもよい。
[0096] 本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物は、層状構造に帰属する 結晶構造を含んで構成される。
[0097] ここで、層状構造に関してさらに詳しく述べる。層状構造を有するものの代表的な結 晶系としては、 LiCoO、 LiNiOのような α— NaFeO型に属するものがあり、これら
2 2 2
は六方晶系であり、その対称性力も空間群「層状 R (— 3) m構造」(ここで、層上 R (― 3) m構造は前述数式 (4)と同義である)に帰属される。
[0098] ただし、層状 LiMeOとは、層状 R (— 3) m構造に限るものではない。これ以外にも
2
V、わゆる層状 Mnと呼ばれる LiMnOは斜方晶系で空間群 Pm2mの層状ィ匕合物で
2
あり、また、いわゆる 213相と呼ばれる Li MnOは、 Li[Li Mn ]0とも表記でき
2 3 1/3 2/3 2
、単斜晶系の空間群 C2Zm構造であるが、やはり Li層と [Li Mn ]層および酸 素層が積層した層状化合物である。
[0099] ここで本発明のリチウムニッケルマンガンコバルト系複合酸化物における Li組成 (ζ' および χ' )の化学的な意味について、以下により詳細に説明する。
[0100] 前述のように層状構造は必ずしも R(— 3) m構造に限られるものではないが、 R (— 3) m構造に帰属しうるものであることが電気化学的な性能面力も好ま 、。
[0101] 上記リチウムニッケルマンガンコバルト系複合酸化物の組成式の x'、 y'、 z'を求め るには、各遷移金属と Liを誘導結合プラズマ発光分光分析装置 (ICP— AES)で分 祈して、 LiZNiZMnZCoの比を求める事で計算される。
[0102] 構造的視点では、 z'に係る Liは、同じ遷移金属サイトに置換されて入っていると考 えられる。ここで、 z'に係る Liによって、電荷中性の原理により Niの平均価数が 2価よ り大きくなる(3価の Niが生成する)。 z'は Ni平均価数を上昇させるため、 Ni価数 (Ni( III)の害 ij合)の旨標となる。
[0103] なお、上記組成式から、 z'の変化に伴う Ni価数 (m)を計算すると、 Co価数は 3価、 Mn価数は 4価であるとの前提で、 m=2z,Z{ (l—y,)(l— 3x,)} + 2となる。この計 算結果は、 Ni価数は z'のみで決まるのではなぐ x'及び y,の関数となっていることを 意味している。 z' =0かつ y' =0であれば、 x'の値に関係なく Ni価数は 2価のままで ある。 z'が負の値になる場合は、活物質中に含まれる Li量が化学量論量より不足し ていることを意味し、あまり大きな負の値を有するものは本発明の効果が出ない可能 性がある。一方、同じ z'値であっても、 Niリッチ (y'値が大きい)及び Z又は Coリッチ (χ'値が大きい)な組成ほど Ni価数は高くなるということを意味し、電池に用いた場合 、レート特性や出力特性が高くなるが、反面、容量低下しやすくなる結果となる。この ことから、 z'値の上限と下限は x'及び y,の関数として規定するのがより好ましいと言 える。
[0104] また、 x'値が 0≤χ'≤0. 1と、 Co量が少ない範囲にあると、コストが低減されること に加え、高い充電電位で充電するように設計されたリチウム二次電池として使用した 場合において、充放電容量やサイクル特性、安全性が向上する。
[0105] このように、上記組成のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体を正極 活物質として用いた電池は、従来レートや出力性能に劣るという欠点がある力 本発 明のリチウムニッケルマンガンコバルト系複合酸ィ匕物は、高結晶であり、また異相の 存在比率が極めて少なく抑えられているのに加え、水銀圧入曲線における昇圧時の 水銀圧入量が多ぐ結晶粒子間の細孔容量が大きいため、これを用いて電池を作製 した場合に、正極活物質表面と電解液あるいは導電助剤との接触面積を増加させる ことが可能となるため、正極活物質として必要な、負荷特性を改善することができる。
<粉末 X線回折ピーク >
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体は、 CuK a線を使用 した粉末 X線回折パターンにおいて、回折角 2 0力 ½4. 5° 付近に存在する(110) 回折ピークの半価幅を FWHM ( 110)とした時に、 0. 01≤FWHM ( 110)≤0. 2の 範囲にあることを特徴とする。
[0106] 一般に、結晶性の尺度として X線回折ピークの半価幅が用いられることから、本発 明者らは、結晶性と電池性能の相関について鋭意検討を行った。その結果、回折角
2 Θ力 4. 5° 付近に存在する(110)回折ピークの半価幅の値が、規定した範囲内 にあるものが良好な電池性能を発現することを見出した。
[0107] 本発明において、 FWHM ( 110)は通常0. 01以上、好ましくは 0. 05以上、より好 ましくは 0. 10以上、更に好ましくは 0. 12以上、最も好ましくは 0. 14以上、 0. 2以下
、より好ましくは 0. 196以下、更に好ましくは 0. 19以下、最も好ましくは 0. 185以下 である。
[0108] また、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体は、 CuK a線 を使用した粉末 X線回折測定において、回折角 2 Θ力 4° 付近に存在する(018) 回折ピーク、 64. 5° 付近に存在する(110)回折ピーク、及び 68° 付近に存在する ( 113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異相由来の回 折ピークを持たないか、あるいは異相由来の回折ピークを有する場合、本来の結晶 相の回折ピークに対する異相ピークの積分強度比力 各々、以下の範囲内にあるこ とが好ましい。
[0109] 0≤1 /\ ≤0. 20
018 * 018
0≤1 /\ ≤0. 25
110 * 110
0≤1 /\ ≤0. 30
113 * 113 ここで、 I 1 1 は、それぞれ (018)、(110)、(113)回折ピークの積分強度
018 110 113
を表し、 I 1 1 は、それぞれ (018)、(110)、(113)回折ピークのピークト
018 * 110 * 113 *
ップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。
[0110] ところで、この異相由来の回折ピークの原因物質の詳細は明らかではないが、異相 が含まれると、電池とした時の容量やレート特性、サイクル特性等が低下する。このた め、回折ピークは本発明の電池性能に悪影響を与えな 、程度の回折ピークを有して いてもよいが、前記範囲の割合であることが好ましぐそれぞれの回折ピークに対す る異相由来の回折ピークの積分強度比は、通常 I
018 * Ζι ≤0. 20 1 /\ ≤0 018 110 * 110
. 25 I /\ ≤0. 30、好ましくは I /\ ≤0. 15 I /\ ≤0. 20 I
113 * 113 018 * 018 110 * 110 113 *
/\ ≤0. 25、より好ましくは I /\ ≤0. 10 I /\ ≤0. 16 I /\
113 018 * 018 110 * 110 113 * 113
≤0. 20、更【こ好ましく ίま I /\ ≤0. 05 I /\ ≤0. 10 I /\ ≤0.
018 * 018 110 * 110 113 * 113
15であり、最も好ましくは異相由来の回折ピークが無いことが特に好ましい。
<水銀圧入法による細孔特性 >
本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸 化物粉体は、好ましくは水銀圧入法による測定において、特定の条件を満たす。
[0111] 本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の評価で採用する水 銀圧入法については、前述のとおりである。
[0112] 本発明の粒子は、この水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa 力 413MPaまでの昇圧時における水銀圧入量が 0. 7cm3Zg以上、 1. 5cmVg 以下であることが好ましい。水銀圧入量はより好ましくは 0. 74cm3Zg以上、更に好 ましくは 3dZg以 r上、最 Θも好 3dZg以上であり、より好ましくは 1.
Figure imgf000051_0001
更に好ましくは 1. 最も好ましくは 1. 2cmdZg以下で ある。この範囲の上限を超えると空隙が過大となり、本発明のリチウムニッケルマンガ ンコバルト系複合酸ィ匕物粉体を正極材料として用いる際に、正極板 (正極の集電体) への正極活物質の充填率が低くなつてしまい、電池容量が制約されてしまう。一方、 この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチ ゥムニッケルマンガンコバルト系複合酸ィ匕物粉体を正極材料として電池を作製した場 合に、粒子間のリチウム拡散が阻害され、負荷特性が低下する。 [0113] また、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体は、上述の水 銀圧入法によって細孔分布曲線を測定した場合に、通常、以下に説明する特定のメ インピークが現れる。
[0114] なお、「細孔分布曲線」、「メインピーク」、「サブピーク」、「ピークトップ」とは、前述の とおりである。
<メインピーク >
本発明に係る細孔分布曲線が有するメインピークは、そのピークトップが、細孔半 径が通常 300nm以上、好ましくは 350nm以上、最も好ましくは 400nm以上、また、 通常 lOOOnm以下、好ましくは 980nm以下、より好ましくは 970nm以下、更に好ま しくは 960nm以下、最も好ましくは 950nm以下の範囲に存在する。この範囲の上限 を超えると、本発明のリチウムニッケルマンガンコノ レト系複合酸ィ匕物粉体を正極材 料として電池を作成した場合に、正極材料内でのリチウム拡散が阻害され、又は導 電パスが不足して、負荷特性が低下する可能性がある。一方、この範囲の下限を下 回ると、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体を用いて正極 を作製した場合に、導電材ゃ結着剤の必要量が増加し、正極板 (正極の集電体)へ の正極活物質の充填率が制約され、電池容量が制約される可能性がある。また、微 粒子化に伴い、塗料化時の塗膜の機械的性質が硬ぐ又は脆くなり、電池組立て時 の捲回工程で塗膜の剥離が生じ易くなる可能性がある。
[0115] また、本発明に係る細孔分布曲線が有する、細孔半径 300nm以上、 lOOOnm以 下にピークトップが存在するメインピークの細孔容量は、好適には、通常 0. 3cmVg 以上、好ましくは 0. 35cm3Zg以上、より好ましくは 0. 4cm3Zg以上、最も好ましくは 0. 5cm3Zg以上、また、通常 1. 0cm3Zg以下、好ましくは 0. 8cm3Zg以下、より好 ましくは 0. 7cm3Zg以下、最も好ましくは 0. 6cm3Zg以下である。この範囲の上限 を超えると空隙が過大となり、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕 物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなつて しまい、電池容量が制約されてしまう可能性がある。一方、この範囲の下限を下回る と、粒子間の空隙が過小となってしまうため、本発明のリチウムニッケルマンガンコバ ルト系複合酸化物粉体を正極材料として電池を作製した場合に、二次粒子間のリチ ゥム拡散が阻害され、負荷特性が低下する可能性がある。
<サブピーク >
本発明に係る細孔分布曲線は、上述のメインピークに加えて、複数のサブピークを 有していてもよいが、 80nm以上、 300nm以下の細孔半径の範囲内には存在しない ことが好ましい。
<本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体が上述の効果をも たらす理由 >
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体力 上述の効果をも たらす理由の詳細は明らかではないが、結晶性が高度に発達していることに加えて、 組成的にも最適な領域にあり、さらに細孔体積が適度に多いことから、これを用いて 電池を作製した場合に正極活物質表面と電解液との接触面積を増加させることが可 能となるため、正極活物質として必要な負荷特性が改良されたものと推定される。
[その他の好ましい態様]
以下の記載では、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の その他の好適な特性にっ 、て記述するが、これはあくまでも好ま 、態様であって、 上述の特徴を備えるものであれば、本発明のリチウムニッケルマンガンコバルト系複 合酸ィ匕物粉体のその他の特性については特に制限されるものではない。
くメジアン径及び 90%積算径 (D ) >
90
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体のメジアン径は通常 1 μ m以上、好ましくは 1. 2 μ m以上、より好ましくは 1. 5 μ m以上、最も好ましくは 2 μ m以上で、通常 5 μ m以下、好ましくは 4. 5 μ m以下、より好ましくは 4 μ m以下、 更に好ましくは 3. 以下、最も好ましくは 3. 5 m以下である。この下限を下回 ると、正極活物質層形成時の塗布性に問題を生ずる可能性があり、上限を超えると 電池性能の低下を来たす可能性がある。
また、本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の二次粒子の 90%積算径 (D )は通常 10 /z m以下、好ましくは 9 /z m以下、より好ましくは 8 m
90
以下、最も好ましくは 7 m以下で、通常 以上、好ましくは 2 m以上、より好ま しくは 3 μ m以上、最も好ましくは 3. 5 μ m以上である。上記上限を超えると電池性能 の低下を来たす可能性があり、下限を下回ると正極活物質層形成時の塗布性に問 題を生ずる可能性がある。
[0117] なお、平均粒子径としてのメジアン径及び 90%積算径 (D )は、前述と同様な方法
90
で測定できる。
<嵩密度 >
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の嵩密度は通常 0. 5gZcc以上、好ましくは 0. 6gZcc以上、より好ましくは 0. 7gZcc以上、最も好まし くは 0. 8gZcc以上で、通常 1. 7gZcc以下、好ましくは 1. 6gZcc以下、より好まし くは 1. 5gZcc以下、最も好ましくは 1. 3gZcc以下である。嵩密度がこの上限を上 回ることは、粉体充填性や電極密度向上にとって好ましい一方、比表面積が低くなり 過ぎる可能性があり、電池性能が低下する可能性がある。嵩密度がこの下限を下回 ると粉体充填性や電極調製に悪影響を及ぼす可能性がある。
[0118] 嵩密度は、前述と同様な方法で測定できる。
< BET比表面積 >
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体はまた、 BET比表面 積力 通常 1. 4m2Zg以上、好ましくは 1. 5m2Zg以上、更に好ましくは 1. 6m g 以上、最も好ましくは 1. 7m2Zg以上で、通常 3m2Zg以下、好ましくは 2. 8m2Zg以 下、更に好ましくは 2. 5m2Zg以下、最も好ましくは 2. 3m2Zg以下である。 BET比 表面積がこの範囲よりも小さいと電池性能が低下しやすぐ大きいと嵩密度が上がり にくくなり、正極活物質形成時の塗布性に問題が発生しやすくなる可能性がある。
[0119] BET比表面積は、前述と同様な方法で測定できる。
<含有炭素濃度 C >
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の含有炭素濃度 C ( 重量%)値は、通常 0. 005重量%以上、好ましくは 0. 01重量%以上、更に好ましく は 0. 015重量%以上、最も好ましくは 0. 02重量%以上であり、通常 0. 05重量%以 下、好ましくは 0. 045重量%以下、更に好ましくは 0. 04重量%以下、最も好ましく は 0. 035重量%以下である。この下限を下回ると電池性能が低下する可能性があり 、上限を超えると電池とした時のガス発生による膨れが増大したり電池性能が低下し たりする可能性がある。
[0120] リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の含有炭素濃度 Cは、前述の 同様な方法で測定できる。
[0121] 一方、更に電子伝導性を高めるための手法として導電性カーボンと複合化処理し たりする場合には、前記規定範囲を超える C量が検出されることがある力 そのような 処理が施された場合におけるリチウムニッケルマンガンコバルト系複合酸化物粉体の
C値は、前記規定範囲に限定されるものではない。
[0122] 他方、本発明が規定するリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体にお いて、炭酸塩として存在するリチウムは極めて少量であり、該複合酸化物粉体が規定 するリチウム組成 (z)には影響を与えない。
<平均一次粒子径>
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の平均一次粒子径と しては、 0. 05 μ m以上、 1 μ m以下であることが好ましい。下限は、より好ましくは 0.
1 μ m以上、更に好ましくは 0. 15 μ m以上、最も好ましくは 0. 2 μ m以上、また、上 限は、より好ましくは 0. 以下、さらに好ましくは 0. 以下、最も好ましくは 0
. 5 μ m以下(¾る。
平均一次粒子径が上記上限を超えると、粉体充填性に悪影響を及ぼしたり、比表面 積が低下したりするために、レート特性や出力特性等の電池性能が低下する可能性 が高くなる可能性がある。上記下限を下回ると結晶が未発達であるために充放電の 可逆性が劣る等の問題を生ずる可能性がある。
[0123] 平均一次粒子径 (一次粒子の平均粒子径)は、前述と同様な方法で測定できる。
<体積抵抗率 >
本発明のリチウムニッケルマンガンコバルト系複合酸化物粉体を 40MPaの圧力で 圧密した時の体積抵抗率の値は、下限としては、 1 Χ 103 Ω 'cm以上が好ましぐ 5 X 103 Ω 'cm以上がより好ましぐ 1 X 104 Ω 'cm以上がさらに好ましい。上限としては、 1 X 106 Ω · cm以下が好ましく、 5 X 105 Ω · cm以下がより好ましく、 1 X 106 Ω · cm以 下がさらに好ましい。この体積抵抗率がこの上限を超えると電池とした時の負荷特性 が低下する可能性がある。一方、体積抵抗率がこの下限を下回ると、電池とした時の 安全性などが低下する可能性がある。
[0124] 体積抵抗率は、前述と同様な方法で測定できる。
[0125] 次に、本発明のうち、リチウムイオンの挿入'脱離が可能な機能を有するリチウム遷 移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制す る添加剤の少なくとも 1種以上を、主成分原料中の遷移金属元素の合計モル量に対 して 0. 01モル%以上、 2モル%未満の割合で添加した後、焼成されたものであるこ とを特徴とするリチウム二次電池正極材料用リチウム遷移金属系化合物粉体につい て、詳細に説明する。
[リチウム遷移金属系化合物粉体]
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体 (以下「正 極活物質」と称す場合がある。)は、リチウムイオンの挿入'脱離が可能な機能を有す る遷移金属化合物を主成分とし、該主成分原料に焼成時の粒成長や焼結を抑制す る添加剤の少なくとも 1種以上を、主成分原料中の遷移金属元素の合計モル量に対 して 0. 01モル%以上、 2モル%未満の割合で添加した後、焼成されたものであるこ とを特徴とする。
<リチウム遷移金属系化合物 >
本発明において、「リチウム遷移金属系化合物」とは、 Liイオンを脱離、挿入するこ とが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム 遷移金属複合酸化物などが挙げられる。硫化物、リン酸塩化合物、リチウム遷移金属 複合酸化物としては、前述のものが挙げられる。
[0126] 本発明のリチウム遷移金属系化合物粉体は、リチウムイオン拡散の点力もオリビン 構造、スピネル構造、層状構造に帰属する結晶構造を含んで構成されるものが好ま L ヽ。中でも層状構造に帰属する結晶構造を含んで構成されるものが特に好ま ヽ。
[0127] また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異 元素としては、 B, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr , Y, Zr, Ru, Rh, Pd, Ag, In, Sn, Sb, Te, Ba, Os, Ir, Pt, Au, Pb, Bi, La, C e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, N, F, P, S, CI, Br, I の何れか 1種以上の中力 選択される。これらの異元素は、リチウム遷移金属系化合 物の結晶構造内に取り込まれていてもよぐ或いは、リチウム遷移金属系化合物の結 晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物とし て偏在していてもよい。
<焼成時の粒成長や焼結を抑制する添加剤 >
本発明において、「焼成時の粒成長や焼結を抑制する添加剤」とは、高温焼成時 における正極活物質の一次粒子間又は二次粒子間の焼結を抑制するなどして、活 物質粒子の成長を抑制し、高結晶化を図りつつ、微細で多数空隙を有する粉体性 状を得る効果があるものを 、う。
[0128] 例えば、本発明に好適な組成式 (Γ ' )で規定する組成領域のリチウムニッケルマン ガンコバルト系複合酸化物粉体を製造する場合、固体粉末原料の集合体を 970°C 以上の温度で焼成することにより、結晶性が高度に発達し、電池性能にとって好まし い結晶構造の正極活物質を得ることができる。しかし、一方では粒成長、焼結も著し く進行しやすくなるため、電池性能にとって好ましくない粉体性状となってしまう。つま り、双方を両立して改善することが極めて困難な状況となるが、「焼成時の粒成長や 焼結を抑制する添加剤」を添加して焼成することにより、このトレードオフの関係を克 服することが可能となる。
[0129] 本発明にお 、て、焼成時の粒成長や焼結を抑制する添加剤として添加する特定の 化合物が、焼成時の粒成長や焼結を抑制する効果を発現する機構は明らかではな V、が、実施例として原子価が 5価又は 6価をとり得る金属元素力 構成される化合物 が共通して効果を発現することから、これらが、リチウム遷移金属系化合物を構成す るカチオン元素の 、ずれとも異なる、 5〜7価と 、つた高価数状態を安定にとり得るも のであり、固相反応によって殆ど固溶しない結果、リチウム遷移金属系化合物粒子の 表面又は粒界に偏在することになる。そのため、正極材活物質粒子同士の接触によ る物質移動が阻害され、粒子の成長や焼結が抑制されたものと推察している。
[0130] 添加剤の種類としては、前記効果を発現するものであればその種類に格別の制限 はないが、高価数状態が安定な Mo、 W、 Nb、 Ta、 Reといった元素力も選ばれる元 素を含有する化合物が好ましぐこれらの元素が 2種以上を適宜組み合わせて用い ても良い。通常、これらの元素を含有する化合物は通常は酸化物材料が用いられる [0131] 添加剤としての例示化合物としては、 MoO、 MoO、 MoO、 MoO、 Mo O、 Mo
2 3 x 2 3
O、 Li MoO、 WO、 WO、 WO、 WO、W O、W O、W O 、W O 、W O
2 5 2 4 2 3 x 2 3 2 5 18 49 20 58 24
, W O 、 W O , Li WO、 NbO、 NbO、 Nb 0、 Nb O、 Nb 0、 Nb 0、 Li
70 25 73 40 118 2 4 2 2 2 5 4 6
NbO、 TaO、 TaO、 Ta O、 LiTaO、 ReO、 ReO、 Re Oなどが挙げられ、好ま
3 2 2 5 3 2 3 2 3
しくは MoO、 Li MoO、 WO、 Li WO、 LiNbO、 Ta O、 LiTaO、 ReOが挙げ
3 2 4 3 2 4 3 2 5 3 3 られ、特に好ましくは WO、 Li WO、 ReOが挙げられる。
3 2 4 3
[0132] これらの添加剤の添加量の範囲としては、主成分原料を構成する遷移金属元素の 合計モル量に対して、通常 0. 01モル%以上、好ましくは 0. 03モル%以上、より好ま しくは 0. 04モル%以上、特に好ましくは 0. 05モル%以上、通常 2モル%未満、好ま しくは 1. 8モル%以下、さらに好ましくは 1. 5モル%以下、特に好ましくは 1. 3モル %以下である。この下限を下回ると、前記効果が得られなくなる可能性があり、上限を 超えると電池性能の低下を招く可能性がある。
[0133] 本発明のリチウム遷移金属系化合物粉体は、その一次粒子の表面部分に、添加剤 由来の元素(添加元素)、即ち、好ましくは Mo、 W、 Nb、 Ta及び Reから選ばれる少 なくとも 1種以上の元素が濃化して存在していることが特徴である。具体的には、一次 粒子の表面部分の Li及び添加元素以外の金属元素(即ち、 Liと添加元素、以外の 金属元素)の合計に対する添加元素の合計のモル比が、通常、粒子全体の該原子 比の 5倍以上である。この比率の下限は 7倍以上であることが好ましぐ 8倍以上であ ることがより好ましぐ 9倍以上であることが特に好ましい。上限は通常、特に制限され ないが、 150倍以下であることが好ましぐ 100倍以下であることがより好ましぐ 50倍 以下であることが特に好ましぐ 30倍以下であることが最も好ましい。この比率が小さ すぎると電池性能の改善効果が小さぐ反対に大きすぎると電池性能の悪化を招く場 合がある。
[0134] リチウム遷移金属系化合物粉体の一次粒子の表面部分の組成の分析は、 X線光 電子分光法 (XPS)により、 X線源として単色光 ΑΙΚ αを用い、分析面積 0. 8mm径、 取り出し角 65° の条件で行う。一次粒子の組成により、分析可能な範囲 (深さ)は異 なるが、通常 0. lnm以上 50nm以下、特に正極活物質においては通常 lnm以上 1 Onm以下となる。従って、本発明において、リチウム遷移金属系化合物粉体の一次 粒子の表面部分とは、この条件において測定可能な範囲を示す。
くメジアン径及び 90%積算径 (D ) >
90
本発明のリチウム遷移金属系化合物粉体のメジアン径は通常 0. 1 μ m以上、好ま しく ίま 0. 3 μ m以上、より好ましく ίま 0. 6 μ m以上、更に好ましく ίま 0. 8 μ m以上、最 も好ましくは 1. 2 μ m以上で、通常 5 μ m以下、好ましくは 4 μ m以下、より好ましくは 3 μ m以下、更に好ましくは 2. 8 μ m以下、最も好ましくは 2. 5 μ m以下である。メジ アン径がこの下限を下回ると、正極活物質層形成時の塗布性に問題を生ずる可能 性があり、上限を超えると電池性能の低下を来たす可能性がある。
[0135] また、本発明のリチウム遷移金属系化合物粉体の二次粒子の 90%積算径 (D )は
90 通常 10 m以下、好ましくは 8 m以下、より好ましくは 6 m以下、最も好ましくは 5 μ m以下で、通常 0. 5 μ m以上、好ましくは 0. 8 μ m以上、より好ましくは 1 μ m以上 、最も好ましくは 1. 5 m以上である。 90%積算径 (D )が上記上限を超えると電池
90
性能の低下を来たす可能性があり、下限を下回ると正極活物質層形成時の塗布性 に問題を生ずる可能性がある。
[0136] なお、平均粒子径としてのメジアン径及び 90%積算径 (D )は、前記と同様の方法
90
により測定した。
<平均一次粒子径>
本発明のリチウム遷移金属系化合物粉体の一次粒子の平均径 (平均一次粒子径) としては、特に限定されないが、下限としては、好ましくは 0. 1 μ m以上、より好ましく ίま 0. 15 m以上、更に好ましく ίま 0. 2 m以上、最も好ましく ίま 0. 25 m以上、ま た、上限としては、好ましくは 0. 9 μ m以下、より好ましくは 0. 8 μ m以下、さらに好ま しくは 0. 以下、最も好ましくは 0. 5 m以下である。平均一次粒子径が、上記 上限を超えると、粉体充填性に悪影響を及ぼしたり、比表面積が低下したりするため に、レート特性や出力特性等の電池性能が低下する可能性が高くなる可能性がある 。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題を 生ずる可能性がある。
[0137] なお、本発明における平均一次粒子径は、前記と同様にして求めることができる。 < BET比表面積 >
本発明のリチウムリチウム遷移金属系化合物粉体はまた、 BET比表面積が、通常 1 . 5m2Zg以上、好ましくは 1. 6m2Zg以上、更に好ましくは 1. 7m2Zg以上、最も好 ましくは 1. 8m2Zg以上で、通常 5m2Zg以下、好ましくは 4m2Zg以下、更に好まし くは 3. 5m2Zg以下、最も好ましくは 3m2Zg以下である。 BET比表面積がこの範囲 よりも小さいと電池性能が低下しやすぐ大きいと嵩密度が上がりに《なり、正極活 物質形成時の塗布性に問題が発生しやすくなる可能性がある。
[0138] なお、 BET比表面積は、前記と同様にして測定できる。
<水銀圧入法による細孔特性 >
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、好まし くは水銀圧入法による測定において、特定の条件を満たす。なお、本発明のリチウム 遷移金属系化合物粉体の評価で採用する水銀圧入法につ!、ては、前記のとおりで ある。
[0139] 本発明のリチウム遷移金属系化合物粉体は、この水銀圧入法による水銀圧入曲線 において、圧力 3. 86kPaから 413MPaまでの昇圧時における水銀圧入量が 0. 7c m3Zg以上、 1. 5cm3Zg以下であることが好ましい。水銀圧入量はより好ましくは 0. 74cm3Zg以上、更に好ましくは 0. 8cm3Zg以上、最も好ましくは 0. 9cm3Zg以上 であり、より好ましくは 1. 4cm3Zg以下、更に好ましくは 1. 3cm3Zg以下、最も好ま しくは 1. 2cm3Zg以下である。この範囲の上限を超えると空隙が過大となり、本発明 のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板 (正極の集 電体)への正極活物質の充填率が低くなつてしま 、、電池容量が制約されてしまう。 一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明 のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、粒子間 のリチウム拡散が阻害され、負荷特性が低下する。
[0140] また、本発明のリチウム遷移金属系化合物粉体は、上述の水銀圧入法によって細 孔分布曲線を測定した場合に、通常、以下に説明する特定のメインピークが現れる。
[0141] なお、「細孔分布曲線」、「本発明に力かる細孔分布曲線」、「メインピーク」、「サブ ピーク」及び「ピークトップ」の定義は、前記のとおりである。 <メインピーク >
本発明に係る細孔分布曲線が有するメインピークは、そのピークトップが、細孔半 径が通常 300nm以上、好ましくは 350nm以上、最も好ましくは 400nm以上、また、 通常 lOOOnm以下、好ましくは 980nm以下、より好ましくは 970nm以下、更に好ま しくは 960nm以下、最も好ましくは 950nm以下の範囲に存在する。この範囲の上限 を超えると、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作成 した場合に、正極材料内でのリチウム拡散が阻害され、又は導電パスが不足して、負 荷特性が低下する可能性がある。一方、この範囲の下限を下回ると、本発明のリチウ ム遷移金属系化合物粉体を用いて正極を作製した場合に、導電材ゃ結着剤の必要 量が増加し、正極板 (正極の集電体)への正極活物質の充填率が制約され、電池容 量が制約される可能性がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性 質が硬ぐ又は脆くなり、電池組立て時の捲回工程で塗膜の剥離が生じ易くなる可能 '性がある。
また、本発明に係る細孔分布曲線が有する、細孔半径 300nm以上、 lOOOnm以 下にピークトップが存在するピークの細孔容量は、好適には、通常 0. 4cm3Zg以上 、好ましくは 0. 41cm3Zg以上、より好ましくは 0. 42cm3Zg以上、最も好ましくは 0. 43cm3Zg以上、また、通常 lcm3Zg以下、好ましくは 0. 8cm3Zg以下、より好まし くは 0. 7cm3Zg以下、最も好ましくは 0. 6cm3Zg以下である。この範囲の上限を超 えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として 用いる際に、正極板への正極活物質の充填率が低くなつてしまい、電池容量が制約 されてしまう可能性がある。一方、この範囲の下限を下回ると、粒子間の空隙が過小 となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池 を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下する可 能性がある。
<サブピーク >
本発明に係る細孔分布曲線は、上述のメインピークに加えて、複数のサブピークを 有していてもよいが、 80nm以上、 300nm以下の細孔半径の範囲内には存在しない ことが好ましい。 <嵩密度 >
本発明のリチウム遷移金属系化合物粉体の嵩密度は通常 0. 5gZcc以上、好まし くは 0.6gZcc以上、より好ましくは 0. 7gZcc以上、最も好ましくは 0.8gZcc以上 で、通常 1. 7gZcc以下、好ましくは 1.6gZcc以下、より好ましくは 1. 5gZcc以下 、最も好ましくは 1. 3gZcc以下である。嵩密度がこの上限を上回ることは、粉体充填 性や電極密度向上にとって好ましい一方、比表面積が低くなり過ぎる可能性があり、 電池性能が低下する可能性がある。嵩密度がこの下限を下回ると粉体充填性ゃ電 極調製に悪影響を及ぼす可能性がある。
[0143] なお、嵩密度は、前記と同様にして求めることができる。
<体積抵抗率 >
本発明のリチウム遷移金属系化合物粉体を 40MPaの圧力で圧密した時の体積抵 抗率の値は、下限としては、 1Χ103Ω 'cm以上が好ましぐ 5Χ103Ω 'cm以上がよ り好ましぐ 1Χ104Ω·«η以上がさらに好ましい。上限としては、 1Χ106Ω·«η以下 が好ましぐ 5Χ105Ω·«η以下がより好ましぐ 1Χ106Ω·«η以下がさらに好ましい 。この体積抵抗率力この上限を超えると電池とした時の負荷特性が低下する可能性 がある。一方、体積抵抗率がこの下限を下回ると、電池とした時の安全性などが低下 する可能性がある。
[0144] なお、体積抵抗率は、前記と同様にして測定する。
<結晶構造 >
本発明のリチウム遷移金属系化合物粉体は、層状構造に帰属する結晶構造を含 んで構成されるリチウムニッケルマンガンコバルト系複合酸ィ匕物を主成分としたもの が好ましい。
[0145] 層状構造を有するものの代表的な結晶系としては、前述したような a -NaFeO型
2 に属するものがあり、これらは六方晶系であり、その対称性力も空間群「層状 R (— 3) m構造」に帰属される。
[0146] ただし、層状 LiMeOとは、層状 R(— 3) m構造に限るものではないのは、前述した
2
とおりである。
<組成> 本発明のリチウム遷移金属系化合物粉体は、下記組成式 (Γ ' )で表されるリチウム 遷移金属系化合物粉体であることが好まし ヽ。
[0147] LiMO
2
ただし、 Mは、 Li、 Ni及び Mn、或いは、 Li、 Ni、 Mn及び Coから構成される元素で あり、 MnZNiモル比は、通常 0. 8以上、好ましくは 0. 82以上、より好ましくは 0. 85 以上、更に好ましくは 0. 88以上、最も好ましくは 0. 9以上、通常 5以下、好ましくは 4 以下、より好ましくは 3以下、更に好ましくは 2. 5以下、最も好ましくは 1. 5以下である 。 CoZ (Mn+Ni+Co)モル比は通常 0以上、好ましくは 0. 01以上、より好ましくは 0 . 02以上、更に好ましくは 0. 03以上、最も好ましくは 0. 05以上、通常 0. 30以下、 好ましくは 0. 20以下、より好ましくは 0. 15以下、更に好ましくは 0. 10以下、最も好 ましくは 0. 099以下である。 M中の Liモル比は 0. 001以上、好ましくは 0. 01以上、 より好ましくは 0. 02以上、さらに好ましくは 0. 03以上、最も好ましくは 0. 05以上、通 常 0. 2以下、好ましくは 0. 19以下、より好ましくは 0. 18以下、さらに好ましくは 0. 1 7以下、最も好ましくは 0. 15以下である。
[0148] なお、上記組成式 (Γ ' )においては、酸素量の原子比は便宜上 2と記載しているが 、多少の不定比性があってもよい。不定比性がある場合、酸素の原子比は通常 2±0 . 2の範囲、好ましくは 2±0. 15の範囲、より好ましくは 2±0. 12の範囲、さらに好ま しくは 2±0. 10の範囲、特に好ましくは 2±0. 05の範囲である。
[0149] また、本発明のリチウム遷移金属系化合物粉体は、正極活物質の結晶性を高める ために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものであることが好ま しい。特に、上記組成式 (Γ,)で示される組成を持つリチウムニッケルマンガンコバル ト系複合酸ィ匕物においては、焼成温度の下限は通常 970°C以上、好ましくは 975°C 以上、より好ましくは 980°C以上、更に好ましくは 985°C以上、最も好ましくは 990°C 以上であり、上限は通常 1200°C以下、好ましくは 1175°C以下、更に好ましくは 115 0°C以下、最も好ましくは 1125°C以下である。焼成温度が低すぎると異相が混在し、 また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎるも のとなる。逆に焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進 行し過ぎ、比表面積が小さくなり過ぎる。 <含有炭素濃度 c>
本発明のリチウム遷移金属系化合物粉体の含有炭素濃度 C (重量%)値は、通常 0 . 005重量%以上、好ましくは 0. 01重量%以上、更に好ましくは 0. 015重量%以上 、最も好ましくは 0. 02重量%以上であり、通常 0. 05重量%以下、好ましくは 0. 045 重量%以下、更に好ましくは 0. 04重量%以下、最も好ましくは 0. 035重量%以下 である。この下限を下回ると電池性能が低下する可能性があり、上限を超えると電池 とした時のガス発生による膨れが増大したり電池性能が低下したりする可能性がある
[0150] 本発明において、リチウム遷移金属系化合物粉体の含有炭素濃度 Cは、前記と同 様にして求められる。
[0151] なお、後述の炭素分析により求めたリチウム遷移金属系化合物粉体の含有炭素成 分は、炭酸化合物、特に炭酸リチウムの付着量についての情報を示すものとみなす ことができる。これは、炭素分析により求めた炭素量を、全て炭酸イオン由来と仮定し た数値と、イオンクロマトグラフィーにより分析した炭酸イオン濃度が概ね一致すること による。
[0152] 一方、電子伝導性を高めるための手法として導電性カーボンと複合ィ匕処理をしたり する場合には、前記規定範囲を超える C量が検出されることがあるが、そのような処 理が施された場合における C値は、前記規定範囲に限定されるものではない。
<好適組成 >
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、前記組 成式 (Γ ' )における Mサイト中の原子構成が下記式 (ΙΓ ' )で示されるものが特に好ま しい。
[0153] M=Li { (Ni Mn ) Co }
z" / (2 + z" ) (l + y") /2" (l -y") /2 1 -x" x" 2/ (2 + z" ) ただし、上記式 (ΙΓ ' )中、
0≤χ"≤0. 1
0. l≤y"≤0. 1、
(1 -x" ) (0. 05-0. 98y,,)≤z,,≤ (1 x,,) (0. 20— 0. 88y" ) である。 [0154] 上記(Π' ' )式において、 χ' 'の値は通常 0以上、好ましくは 0. 01以上、より好ましく は 0. 02以上、更に好ましくは 0. 03以上、最も好ましくは 0. 04以上、通常 0. 1以下 、好ましく ίま 0. 099以下、最ち好ましく ίま 0. 098以下である。
[0155] y' 'の値は通常一 0. 1以上、好ましくは一 0. 05以上、より好ましくは一 0. 03以上、 最も好ましくは 0. 02以上、通常 0. 1以下、好ましくは 0. 05以下、より好ましくは 0 . 03以下、最も好ましくは 0. 02以下である。
[0156] z,,の値は通常(1 x, , ) (0. 05-0. 98y,,)以上、好ましくは(l—x, , ) (0. 06 —0. 98 ,,)以上、ょり好ましくは(1ー , ,) (0. 07-0. 98y,,)以上、さらに好まし くは(1 x, , ) (0. 08-0. 98y,,)以上、最も好ましくは(1— x, ,) (0. 10-0. 98y, ,)以上、通常(l—x, ,) (0. 20-0. 88 ,,)以下、好ましくは(1ー , ,) (0. 18-0. 88y' ' )以下、より好ましくは(1— x' ' ) (0. 17-0. 88y' ' )、最も好ましくは(1— x' , ) (0. 16-0. 88y' ' )以下である。 z' 'がこの下限を下回ると導電性が低下し、上限 を超えると遷移金属サイトに置換する量が多くなり過ぎて電池容量が低くなる等、これ を使用したリチウム二次電池の性能低下を招く可能性がある。また、 zが大きすぎると 、活物質粉体の炭酸ガス吸収性が増大するため、大気中の炭酸ガスを吸収しやすく なる。その結果、含有炭素濃度が大きくなると推定される。
[0157] 上記(ΙΓ ' )式の組成範囲において、 ζ' '値が定比である下限に近い程、電池とした 時のレート特性や出力特性が低くなる傾向が見られ、逆に ζ' '値が上限に近い程、 電池とした時のレート特性や出力特性が高くなるが、一方で容量が低下するという傾 向が見られる。また、 y' '値が下限、つまりマンガン /ニッケル原子比が小さい程、低 Vヽ充電電圧で容量が出るが、高 ヽ充電電圧を設定した電池のサイクル特性や安全 性が低下する傾向が見られ、逆に y' '値が上限に近い程、高い充電電圧で設定した 電池のサイクル特性や安全性が向上する一方で、放電容量やレート特性、出力特性 が低下する傾向が見られる。また、 x' '値が下限に近い程、電池とした時のレート特 性や出力特性といった負荷特性が低くなるという傾向が見られ、逆に、 x' '値が上限 に近い程、電池とした時のレート特性や出力特性が高くなる力 この上限を超えると、 高 、充電電圧で設定した場合のサイクル特性や安全性が低下し、また原料コストが 高くなる。前記組成パラメータ x' '、 y' '、 z' 'を規定範囲とすることは、本発明の重要 な構成要素である。
[0158] ここで本発明のリチウム遷移金属系化合物粉体の好適組成であるリチウムニッケル マンガンコバルト系複合酸ィ匕物における Li組成 (ζ' 'および χ' ' )の化学的な意味に ついて、以下により詳細に説明する。
[0159] 前述のように層状構造は必ずしも R(— 3) m構造に限られるものではないが、 R (— 3) m構造に帰属しうるものであることが電気化学的な性能面力も好ま 、。
[0160] 上記リチウムニッケルマンガンコバルト系複合酸化物の組成式の x,,、 y,,、 z,,を 求めるには、各遷移金属と Liを誘導結合プラズマ発光分光分析装置 (ICP— AES) で分析して、 LiZNiZMnZCoの比を求める事で計算される。
[0161] 構造的視点では、 z' 'に係る Liは、同じ遷移金属サイトに置換されて入っていると 考えられる。ここで、 z',に係る Liによって、電荷中性の原理により Niの平均価数が 2 価より大きくなる(3価の Niが生成する)。 z' 'は Ni平均価数を上昇させるため、 Ni価 数 (Ni(III)の割合)の指標となる。
[0162] なお、上記組成式から、 z' 'の変化に伴う Ni価数 (m)を計算すると、 Co価数は 3価 、 Mn価数は 4価であるとの前提で、
m=2[2-{(l-x"— z")/(l-x") (l+y")}]
となる。この計算結果は、 Ni価数は z',のみで決まるのではなぐ x',及び y' 'の関数 となっていることを意味している。 z', =0かつ y', =0であれば、 x' 'の値に関係なく Ni価数は 2価のままである。 z' 'が負の値になる場合は、活物質中に含まれる Li量が 化学量論量より不足していることを意味し、あまり大きな負の値を有するものは本発明 の効果が出ない可能性がある。一方、同じ z' '値であっても、 Niリッチ (y' '値が大き V、)及び Z又は Coリッチ (χ' '値が大き 、)な組成ほど Ni価数は高くなると 、うことを 意味し、電池に用いた場合、レート特性や出力特性が高くなるが、反面、容量低下し やすくなる結果となる。このことから、 z' '値の上限と下限は x',及び y' 'の関数として 規定するのがより好ましいと言える。
[0163] また、 x,,値が 0≤χ',≤0. 1と、 Co量が少ない範囲にあると、コストが低減されるこ とにカ卩え、高い充電電位で充電するように設計されたリチウム二次電池として使用し た場合において、充放電容量やサイクル特性、安全性が向上する。 <粉末 X線回折ピーク >
本発明にお 、て、前記組成式 (Γ,)及び (Π,,)を満たす組成を有するリチウム-ッ ケルマンガンコバルト系複合酸ィ匕物粉体は、 CuK a線を使用した粉末 X線回折バタ ーンにおいて、回折角 2 0力 4. 5° 付近に存在する(110)回折ピークの半価幅を FWHM (l lO)とした時に、 0. 01≤FWHM (110)≤0. 2の範囲にあることを特徴と する。
[0164] なお、粉末 X線回折ピークに関しては、前記の組成式 ( )で表わされる化合物より なるリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体について記述した内容が、 ここでもそのまま適用される。
<本発明のリチウム遷移金属系化合物粉体が上述の効果をもたらす理由 > 本発明のリチウム遷移金属系化合物粉体が上述の効果をもたらす理由としては、 次のように考えられる。
[0165] 即ち、本発明のリチウム遷移金属系化合物粉体は、結晶粒子が微細化しており、 水銀圧入曲線における昇圧時の水銀圧入量が多ぐ結晶粒子間の細孔容量が大き V、ために、これを用いて電池を作製した場合に正極活物質表面と電解液との接触面 積を増加させることが可能となることに加え、結晶性が高度に発達し、また異相の存 在比率が極めて少なく抑えられた結果、正極活物質として必要な負荷特性が実用レ ベルまで改良されたものと推定される。
[0166] 次に、本発明のリチウム遷移金属系化合物の製造方法について、詳細に述べる。
[0167] 本発明におけるリチウム遷移金属系化合物の製造方法は、特定の製法に限定され るものではないが、例えば、リチウムニッケルマンガンコノ レト系複合酸ィ匕物を例にあ げて説明すると、リチウム化合物、ニッケル化合物、マンガンィ匕合物、コバルト化合物 を液体媒体中に分散させたスラリーを噴霧乾燥後、該混合物を焼成して製造すること ができる。
また、リチウム化合物と、 V、 Cr、 Mn、 Fe、 Co、 Ni、及び Cuから選ばれる少なくとも 1 種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、 液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、 得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成す る焼成工程とを含む本発明のリチウム二次電池正極材料用リチウム遷移金属系化合 物粉体の製造方法により、好適に製造される。
以下に、本発明のリチウム遷移金属系化合物としてリチウムニッケルマンガンコバル ト系複合酸ィ匕物粉体の製造方法を例にあげて詳細に説明する。
くスラリー調製工程 >
本発明の方法により、リチウムニッケルマンガンコバルト系複合酸ィ匕物を製造するに 当たり、スラリーの調製に用いる原料ィ匕合物のうち、リチウム化合物としては、 Li CO
2 3
、 LiNO、 LiNO、 LiOHゝ LiOH-H 0、 LiH、 LiF、 LiCl、 LiBrゝ Lil、 CH OOLiゝ
3 2 2 3
Li 0、 Li SO、ジカルボン酸 Li、クェン酸 Li、脂肪酸 Li、アルキルリチウム等が挙げ
2 2 4
られる。これらリチウム化合物の中で好ましいのは、焼成処理の際に SOx、 NOx等の 有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリ チウム化合物であり、また、焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二 次粒子内に分解ガスを発生するなどして空隙を形成しやすい化合物であり、これらの 点を勘案すると、とりわけ Li CO、 LiOH, LiOH-H O力 なかでも取り扱い易ぐ比
2 3 2
較的安価であることから Li COが好ましい、これらのリチウム化合物は 1種を単独で
2 3
使用しても良ぐ 2種以上を併用しても良い。
また、ニッケル化合物としては、 Ni (OH) 、 NiO、 NiOOH、 NiCO、 2NiCO - 3Ni
2 3 3
(OH) -4H 0、 NiC O · 2Η 0、 Ni (NO ) · 6Η 0、 NiSO、 NiSO - 6H 0、脂肪
2 2 2 4 2 3 2 2 4 4 2 酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際に SO x、 NOX等の有害物質を発生させない点で、 Ni (OH) 、 NiO、 N iOOH、 NiCO、 2
2 3
NiCO - 3Ni (OH) -4H 0、 NiC O - 2H Oのような-ッケル化合物が好ましい。ま
3 2 2 2 4 2
た、更に工業原料として安価に入手できる観点、及び反応性が高い、という観点から
Ni (OH) 、 NiO、 NiOOH、 NiCO、さらに焼成時に分解ガスを発生する等して、噴
2 3
霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいの は Ni(OH) 、 NiOOH、 NiCOである。これらのニッケル化合物は 1種を単独で使用
2 3
しても良く、 2種以上を併用しても良い。
また、マンガン化合物としては Mn O、 MnO、 Mn O等のマンガン酸化物、 MnC
2 3 2 3 4
O、 Mn(NO ) 、 MnSO、酢酸マンガン、ジカルボン酸マンガン、クェン酸マンガン 、脂肪酸マンガン等のマンガン塩、ォキシ水酸化物、塩化マンガン等のハロゲン化物 等が挙げられる。これらのマンガン化合物の中でも、 MnO、 Mn O、 Mn O、 MnC
2 2 3 3 4
Oは、焼成処理の際に SOx、 NOx等のガスを発生せず、更に工業原料として安価
3
に入手できるため好ましい。さらにこれらのマンガンィ匕合物は 1種を単独で使用しても 良ぐ 2種以上を併用しても良い。
また、コバルト化合物としては、 Co (OH)、 CoOOHゝ CoO、 Co O、 Co O、 Co (
2 2 3 3 4
OCOCH ) -4H 0、 CoCl、 Co (NO ) · 6Η 0、 Co (SO ) · 7Η 0、 CoCO等が
3 2 2 2 3 2 2 4 2 2 3 挙げられる。中でも、焼成工程の際に SOx、 NOX等の有害物質を発生させない点で 、 Co (OH) 、 CoOOH, CoO、 Co O、 Co O、 CoCOが好ましぐ更に好ましくは、
2 2 3 3 4 3
工業的に安価に入手できる点及び反応性が高い点で Co (OH) 、 CoOOHである。
2
加えて焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を 形成しやすい、という観点から、特に好ましいのは Co (OH)、 CoOOH, CoCOで
2 3 ある。これらのコバルト化合物は 1種を単独で使用しても良ぐ 2種以上を併用しても 良い。
また、上記の Li、 Ni、 Mn、 Co原料ィ匕合物以外にも他元素置換を行って前述の異 元素を導入したり、後述する噴霧乾燥にて形成される二次粒子内の空隙を効率よく 形成させたりすることを目的としたィ匕合物群を使用することが可能である。なお、ここ で使用する、二次粒子の空隙を効率よく形成させることを目的として使用する化合物 の添加段階は、その性質に応じて、原料混合前または混合後の何れかを選択するこ とが可能である。とくに、混合工程によって機械的剪断応力が加わるなどして分解し やす 、ィ匕合物は混合工程後に添加することが好ま 、。
焼成時の粒成長や焼結を抑制する添加剤としては、前述の如ぐ目的とする効果を 発現するものであればその種類に格別の制限はないが、高価数状態が安定な Mo、 W、 Nb、 Ta、 Reといった元素から選ばれる元素を含有する化合物が好ましぐ通常 は酸化物材料が用いられる。
[0169] 焼成時の粒成長や焼結を抑制する添加剤の例示化合物としては、前述のとおりで あり、これらの添加剤は 1種を単独で使用しても良ぐ 2種以上を併用しても良い。
[0170] 原料の混合方法は特に限定されるものではなぐ湿式でも乾式でも良!、。例えば、 ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。原料化合 物を水、アルコール等の液体媒体中で混合する湿式混合は、より均一な混合が可能 であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。 混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されて いれば良ぐ例えばボールミル (湿式又は乾式)では通常 1時間から 2日間程度、ビ ーズミル (湿式連続法)では滞留時間が通常 0. 1時間から 6時間程度である。
なお、原料の混合段階にぉ 、てはそれと並行して原料の粉砕が為されて 、ることが 好ましい。粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒 子径 (メジアン径)として通常 0. 4 m以下、好ましくは 0. 3 m以下、より好ましくは 0. 25 /z m以下、最も好ましくは 0. 2 /z m以下とする。粉砕後の原料粒子の平均粒子 径が大きすぎると、焼成工程における反応性が低下するのに加え、組成が均一化し 難くなる。ただし、必要以上に小粒子化することは、粉砕のコストアップに繋がるので 、平均粒子径が通常 0. 01 μ m以上、好ましくは 0. 02 μ m以上、さらに好ましくは 0. 05 μ m以上となるように粉砕すれば良い。このような粉砕程度を実現するための手段 としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノ 一ミル等を挙げることができる。
なお、本発明の実施例に記載のスラリー中の粉砕粒子のメジアン径は、前述のとお りに測定されたものである。後述の噴霧乾燥体のメジアン径については、それぞれ 0 、 1、 3、 5分間の超音波分散後に測定を行った他は同様の条件である。
<噴霧乾燥工程 >
湿式混合後は、次いで通常乾燥工程に供される。方法は特に限定されないが、生 成する粒子状物の均一性や粉体流動性、粉体ノヽンドリング性能、乾燥粒子を効率よ く製造できる等の観点力も噴霧乾燥が好まし 、。
本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の製造方法におい ては、湿式粉砕により粉砕した後、噴霧乾燥することにより、一次粒子が凝集して二 次粒子を形成してなる粉体を得る。一次粒子が凝集して二次粒子を形成してなる噴 霧乾燥粉体は、本発明品の噴霧乾燥粉体の形状的特徴である。形状の確認方法と しては、例えば、 SEM観察、断面 SEM観察が挙げられる。 [0172] 本発明のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の焼成前駆体でもあ る噴霧乾燥により得られる粉体のメジアン径 (ここでは超音波分散をかけずに測定し た値)は通常 15 m以下、より好ましくは 12 m以下、更に好ましくは 9 m以下、最 も好ましくは 7 m以下となるようにする。ただし、あまりに小さな粒径は得にくい傾向 にあるので、通常は 3 μ m以上、好ましくは 4 μ m以上、より好ましくは 5 μ m以上であ る。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流 供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御すること ができる。
[0173] 例えば、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合物と を液体媒体中に分散させたスラリーを噴霧乾燥後、得られた粉体を焼成してリチウム ニッケルマンガンコバルト系複合酸ィ匕物粉体を製造するに当たり、噴霧乾燥時のスラ リー粘度を V(cp)、スラリー供給量を S (LZmin)、ガス供給量を G (LZmin)とした 際、スラリー粘度 V力 50cp≤V≤4000cpであって、かつ、気液比 GZSが、 1500 ≤ G/S≤ 5000となる条件で噴霧乾燥を行う。
[0174] スラリー粘度 V (cp)が低すぎると一次粒子が凝集して二次粒子を形成してなる粉体 を得にくくなる虞があり、高過ぎると供給ポンプが故障したり、ノズルが閉塞する虞が ある。従って、スラリー粘度 V (cp)は、下限値として通常 50cp以上、好ましくは 100c p以上、更に好ましくは 300cp以上、最も好ましくは 500cpであり、上限値としては通 常 4000cp以下、好ましくは 3500cp以下、更に好ましくは 3000cp以下、最も好まし くは 2500cp以下である。
[0175] また、気液比 GZSが上記下限を下回ると二次粒子サイズが粗大化したり乾燥性が 低下しやすぐ上限を超えると生産性が低下する虞がある。従って、気液比 GZSは、 下限値として通常 1500以上、好ましくは 1600以上、更に好ましくは 1700以上、最も 好ましくは 1800以上であり、上限値としては通常 5000以下、好ましくは 4700以下、 更に好ましくは 4500以下、最も好ましくは 4200以下である。
[0176] スラリー供給量 Sやガス供給量 Gは、噴霧乾燥に供するスラリーの粘度や用いる噴 霧乾燥装置の仕様等によって適宜設定される。
[0177] 本発明の方法においては、前述のスラリー粘度 V (cp)を満たし、かつ用いる噴霧乾 燥装置の仕様に適したスラリー供給量とガス供給量を制御して、前述の気液比 GZS を満たす範囲で噴霧乾燥を行えばよぐその他の条件については、用いる装置の種 類等に応じて適宜設定されるが、更に次のような条件を選択することが好ましい。
[0178] 即ち、スラリーの噴霧乾燥は、通常、 50°C以上、好ましくは 70°C以上、更に好ましく は 120°C以上、最も好ましくは 140°C以上で、通常 300°C以下、好ましくは 250°C以 下、更に好ましくは 200°C以下、最も好ましくは 180°C以下の温度で行うことが好まし V、。この温度が高すぎると得られた造粒粒子が中空構造の多 、ものとなる可能性が あり、粉体の充填密度が低下する虞がある。一方、低すぎると粉体出口部分での水 分結露による粉体固着 ·閉塞等の問題が生じる可能性がある。
[0179] また、本発明に係るリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の噴霧乾 燥粉体は、一次粒子間の凝集力が弱いのが特徴であり、これは超音波分散に伴うメ ジアン径の変化を調べることによって確認できる。ここで 5分間の超音波分散" Ultra Sonic" (出力 30W、周波数 22. 5kHz)をかけた後で測定したときの噴霧乾燥粒子 のメジアン径の上限は、通常 4 μ m以下、好ましくは 3. 5 μ m以下、より好ましくは 3 μ m以下、更に好ましくは 2. 以下、最も好ましくは 2 m以下であり、下限は、通 常 0. 01 μ m以上、好ましく ίま 0. 05 μ m以上、より好ましく ίま 0. 1 μ m以上、最も好 ましくは 0. 以上である。この超音波分散後のメジアン径が上記の値より大きい 噴霧乾燥粒子を用いて焼成されたリチウムニッケルマンガンコバルト系複合酸ィ匕物 粒子は、粒子間の空隙が少なぐ負荷特性が改善されない。一方、超音波分散後の メジアン径が上記の値より小さ!/ヽ噴霧乾燥粒子を用いて焼成されたリチウムニッケル マンガンコバルト系複合酸ィ匕物粒子は、粒子間の空隙が多くなりすぎ、嵩密度が低 下したり、塗布特性が悪くなるなどの問題が生じやすくなる可能性がある。
[0180] また、本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト複合 酸ィ匕物粉体の噴霧乾燥粉体の嵩密度は通常 0. lgZcc以上、好ましくは 0. 3g/cc 以上、より好ましくは 0. 5gZcc以上、最も好ましくは 0. 7gZcc以上である。この下 限を下回ると粉体充填性や粉体の取り扱いに悪影響を及ぼす可能性があり、また、 通常 1. 7gZcc以下、好ましくは 1. 6gZcc以下、より好ましくは 1. 5gZcc以下、最 も好ましくは 1. 4gZcc以下である。嵩密度がこの上限を上回ることは、粉体充填性 や粉体の取り扱いにとって好ましい一方、比表面積が低くなり過ぎる可能性があり、 焼成工程での反応性が低下する可能性がある。
[0181] また、噴霧乾燥により得られる粉体は、比表面積が小さいと、次の焼成工程に際し て、原料ィ匕合物間の反応性が低下してしまうため、前記の如ぐ噴霧乾燥前に出発 原料を粉砕するなどの手段により、できるだけ高比表面積化されていることが好まし い。一方で、過度に高比表面積ィ匕しょうとすると、工業的に不利となるだけでなぐ本 発明のリチウム遷移金属系化合物が得られなくなる可能性がある。従って、これによ つて得られた噴霧乾燥粒子は、 BET比表面積にして通常 10m2Zg以上、好ましくは 20m2Zg以上、より好ましくは 30m2Zg以上、最も好ましくは 35m2Zg以上で、通常 70m2Zg以下、好ましくは 65m2Zg以下、最も好ましくは 60m2Zg以下とすることが 好ましい。
[0182] なお、(Γ)で表される化合物よりなり、層状構造に帰属する結晶構造を含んで構成 され、 CuK a線を使用した粉末 X線回折測定において、回折角 2 Θ力 ½4. 5° 付近 に存在する(110)回折ピークの半価幅を FWHM ( 110)とした時に、 0. 01≤FWH M (110)≤0. 2で表されることを特徴とするリチウム二次電池正極材料用リチウム- ッケルマンガンコバルト系複合酸化物粉体を製造する場合にお 、ては、噴霧乾燥に より得られる粉体は、 BET比表面積にして通常 10m2Zg以上、好ましくは 20m2Zg 以上、更に好ましくは 30m2Zg以上、最も好ましくは 50m2Zg以上で、通常 100m2 Zg以下、好ましくは 80m2Zg以下、更に好ましくは 70m2Zg以下、最も好ましくは 6 5m2Zg以下とすることが好まし 、。
<焼成工程 >
このようにして得られた焼成前駆体は、次 、で焼成処理される。
[0183] ここで、本発明にお 、て「焼成前駆体」とは、噴霧乾燥体を処理して得られる焼成 前のリチウム遷移金属系化合物前駆体を意味する。例えば、前述の焼成時に分解ガ スを発生または昇華して、二次粒子内に空隙を形成させる化合物を噴霧乾燥体に含 有させて焼成前駆体としてもょ ヽ。
この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、傾向として、 焼成温度が高すぎると一次粒子が成長しすぎ、逆に低すぎると結晶構造が未発達と なり、また比表面積が大きくなりすぎる。焼成温度としては、通常 800°C以上、好まし くは 850°C以上、更に好ましくは 900°C以上、最も好ましくは 950°C以上であり、通常 1100°C以下、好ましくは 1075°C以下、更に好ましくは 1050°C以下、最も好ましくは 1025°C以下である。
組成式 (Γ )で表される化合物よりなり、層状構造に帰属する結晶構造を含んで構成 され、 CuK a線を使用した粉末 X線回折測定において、回折角 2 Θ力 ½4. 5° 付近 に存在する(110)回折ピークの半価幅を FWHM ( 110)とした時に、 0. 01≤FWH M (110)≤0. 2で表されることを特徴とするリチウム二次電池正極材料用リチウム- ッケルマンガンコバルト系複合酸化物粉体を製造する場合、焼成温度 T(°C)としては 、通常、 940°C≤T≤1200°Cのである力 好ましくは 950°C以上、更に好ましくは 96 0°C以上、最も好ましくは 970°C以上であり、通常 1200°C以下、好ましくは 1175°C 以下、更に好ましくは 1150°C以下、最も好ましくは 1125°C以下である。
[0184] また、リチウムイオンの挿入'脱離が可能な機能を有するリチウム遷移金属系化合 物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少 なくとも 1種以上を、主成分原料中の遷移金属元素の合計モル量に対して 0. 01モ ル%以上、 2モル%未満の割合で添加した後、焼成されたものであることを特徴とす るリチウム二次電池正極材料用リチウム遷移金属系化合物粉体を製造する際の焼成 温度としては、通常 700°C以上であるが、前記組成式 (Γ ' )及び (Π' ' )で示される組 成のリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の製造にぉ 、ては、通常 9 70°C以上が好ましぐより好ましくは 975°C以上、さらに好ましくは 980°C以上、最も 好ましくは 990°C以上であり、通常 1200°C以下、好ましくは 1175°C以下、更に好ま しくは 1150°C以下、最も好ましくは 1125°C以下である。
[0185] 焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用するこ とができる。焼成工程は、通常、昇温 ·最高温度保持 ·降温の三部分に分けられる。 二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又は それ以上の段階をふませてもよぐ二次粒子を破壊しない程度に凝集を解消すること を意味する解砕工程または、一次粒子或いはさらに微小粉末まで砕くことを意味する 粉砕工程を挟んで、昇温 '最高温度保持'降温の工程を二回又はそれ以上繰り返し ても良い。
[0186] 昇温工程は通常 1°CZ分以上 10°CZ分以下の昇温速度で炉内を昇温させる。こ の昇温速度があまり遅すぎても時間が力かって工業的に不利であるが、あまり速すぎ ても炉によっては炉内温度が設定温度に追従しなくなる。昇温速度は、好ましくは 2 °CZ分以上、より好ましくは 3°CZ分以上で、好ましくは 7°CZ分以下、より好ましくは 5°CZ分以下である。
[0187] 最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範 囲であれば 30分以上、好ましくは 3時間以上、更に好ましくは 5時間以上、最も好ま しくは 6時間以上で、 50時間以下、好ましくは 25時間以下、更に好ましくは 20時間 以下、最も好ましくは 15時間以下である。焼成時間が短すぎると結晶性の良いリチウ ムニッケルマンガンコバルト系複合酸ィ匕物粉体が得られ難くなり、長すぎるのは実用 的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難に なったりするので、不利である。
[0188] 降温工程では、通常 0. 1°CZ分以上 10°CZ分以下の降温速度で炉内を降温させ る。あまり遅すぎても時間が力かって工業的に不利であるが、あまり速すぎても目的 物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。降温速度は、好まし くは 1°CZ分以上、より好ましくは 3°CZ分以上で、好ましくは 7°CZ分以下、より好ま しくは 5°CZ分以下である。
[0189] 焼成時の雰囲気は、空気等の酸素含有ガス雰囲気を用いることができる。通常は 酸素濃度が 1体積%以上、好ましくは 10体積%以上、より好ましくは 15体積%以上 で、 100体積%以下、好ましくは 50体積%以下、より好ましくは 25体積%以下の雰 囲気とする。
[0190] このような製造方法において、本発明の前記特定の組成を有するリチウム遷移金属 系化合物粉体を製造するには、製造条件を一定とした場合には、リチウム化合物、二 ッケル化合物、マンガン化合物、及び、コバルト化合物を液体媒体中に分散させたス ラリーを調製する際の各化合物の混合比を調整することで、目的とする LiZNiZMn ZMのモル比を制御することができる。
[0191] なお、焼成時の粉成長や焼結を抑制する添加剤を添加する場合にぉ 、て、例えば 前記特定の組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体を製 造するには、製造条件を一定とした場合には、リチウム化合物、ニッケル化合物、マ ンガンィ匕合物、及び、コバルト化合物と、焼成時の粒成長や焼結を抑制する添加剤 とを液体媒体中に分散させたスラリーを調製する際、各化合物の混合比を調整する ことで、目的とする LiZNiZMnZCoのモル比を制御することができる。
[0192] このようにして得られたリチウム遷移金属系化合物によれば、ガス発生による膨れが 少なぐ容量が高ぐレート'出力等の負荷特性に優れ、低温出力特性、保存特性に も優れた、性能バランスの良いリチウム二次電池用正極材料を提供される。
[リチウム二次電池用正極]
次に、本発明のリチウム二次電池用正極について、詳細に説明する。
[0193] 本発明のリチウム二次電池用正極は、本発明のリチウム二次電池正極材料用リチ ゥムニッケルマンガン複合酸化物粉体及び結着剤を含有する正極活物質層を集電 体上に形成してなるものである。
正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材 及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、 或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集 電体に塗布、乾燥することにより作成される。
[0194] 正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメツキ、チ タン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が 用いられる。中でも金属材料が好ましぐアルミニウムが特に好ましい。また、形状とし ては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキス パンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、 炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業ィ匕製品に使用されている ため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
[0195] 正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常 1 μ m以上 、好ましくは 3 μ m以上、より好ましくは 5 μ m以上、また通常 100mm以下、好ましく は lmm以下、より好ましくは 50 m以下の範囲が好適である。上記範囲よりも薄いと 、集電体として必要な強度が不足する可能性がある一方で、上記範囲よりも厚いと、 取り扱 、性が損なわれる可能性がある。
[0196] 正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は 、電極製造時に用いる液体媒体に対して安定な材料であれば良いが、具体例として は、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタタリレート 、芳香族ポリアミド、セルロース、ニトロセルロース等の榭脂系高分子、 SBR (スチレン 'ブタジエンゴム)、 NBR (アクリロニトリル 'ブタジエンゴム)、フッ素ゴム、イソプレンゴ ム、ブタジエンゴム、エチレン.プロピレンゴム等のゴム状高分子、スチレン'ブタジェ ン 'スチレンブロック共重合体及びその水素添カ卩物、 EPDM (エチレン ·プロピレン' ジェン三元共重合体)、スチレン'エチレン'ブタジエン 'エチレン共重合体、スチレン 'イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマ 一状高分子、シンジオタクチック 1, 2—ポリブタジエン、ポリ酢酸ビュル、エチレン' 酢酸ビュル共重合体、プロピレン' a一才レフイン共重合体等の軟質榭脂状高分子、 ポリフッ化ビ-リデン、ポリテトラフルォロエチレン、フッ素化ポリフッ化ビ-リデン、ポリ テトラフルォロエチレン 'エチレン共重合体等のフッ素系高分子、アルカリ金属イオン (特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、 これらの物質は、 1種を単独で用いても良ぐ 2種以上を任意の組み合わせ及び比率 で併用しても良い。
[0197] 正極活物質層中の結着剤の割合は、通常 0. 1重量%以上、好ましくは 1重量%以 上、更に好ましくは 5重量%以上であり、通常 80重量%以下、好ましくは 60重量%以 下、更に好ましくは 40重量%以下、最も好ましくは 10重量%以下である。結着剤の 割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サ イタル特性等の電池性能を悪ィヒさせてしまう可能性がある一方で、高すぎると、電池 容量や導電性の低下につながる可能性がある。
[0198] 正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類 に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人 造黒鈴等の黒鈴 (グラフアイト)、アセチレンブラック等のカーボンブラック、ニードルコ 一タス等の無定形炭素等の炭素材料などを挙げることができる。なお、これらの物質 は、 1種を単独で用いても良ぐ 2種以上を任意の組み合わせ及び比率で併用しても 良い。正極活物質層中の導電材の割合は、通常 0. 01重量%以上、好ましくは 0. 1 重量%以上、更に好ましくは 1重量%以上であり、また、通常 50重量%以下、好まし くは 30重量%以下、更に好ましくは 20重量%以下である。導電材の割合が低すぎる と導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
[0199] スラリーを形成するための液体媒体としては、正極材料であるリチウムニッケルマン ガン系複合酸化物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘 剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなぐ水 系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコール などが挙げられ、有機系溶媒の例としては N—メチルピロリドン (NMP)、ジメチルホ ルムアミド、ジメチルァセトアミド、メチルェチルケトン、シクロへキサノン、酢酸メチル、 アクリル酸メチル、ジェチルトリアミン、 N, N—ジメチルァミノプロピルァミン、エチレン ォキシド、テトラヒドロフラン (THF)、トルエン、アセトン、ジメチルエーテル、ジメチル ァセタミド、へキサメチルホスフアルアミド、ジメチルスルホキシド、ベンゼン、キシレン 、キノリン、ピリジン、メチルナフタレン、へキサン等を挙げることができる。特に水系溶 媒を用いる場合、増粘剤に併せて分散剤を加え、 SBR等のラテックスを用いてスラリ 一化する。なお、これらの溶媒は、 1種を単独で用いても良ぐ 2種以上を任意の組み 合わせ及び比率で併用しても良 ヽ。
[0200] 正極活物質層中の正極材料としての本発明のリチウム遷移金属系化合物粉体の 含有割合は、通常 10重量%以上、好ましくは 30重量%以上、更に好ましくは 50重 量%以上であり、通常 99. 9重量%以下、好ましくは 99重量%以下である。正極活 物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足 する傾向にあり、少なすぎると容量の面で不十分となることがある。
[0201] また、正極活物質層の厚さは、通常 10〜200 m程度である。
[0202] なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上 げるために、ローラープレス等により圧密化することが好ま 、。
[0203] 力べして、本発明のリチウム二次電池用正極が調整できる。
[リチウム二次電池]
次に、本発明のリチウム二次電池について、詳細に説明する。 [0204] 本発明のリチウム二次電池は、リチウムを吸蔵 ·放出可能な上記の本発明のリチウ ムニ次電池用正極と、リチウムを吸蔵,放出可能な負極と、リチウム塩を電解塩とする 非水電解質とを備える。更に、正極と負極との間に、非水電解質を保持するセパレー タを備えていても良い。正極と負極との接触による短絡を効果的に防止するには、こ のようにセパレータを介在させるのが望まし 、。
<負極 >
負極は通常、正極と同様に、負極集電体上に負極活物質層を形成して構成される 負極集電体の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメツキ鋼等の金 属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金 属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が、炭素材料 の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在 工業ィ匕製品に使用されていることから好ましい。なお、薄膜は適宜メッシュ状に形成 しても良い。負極集電体として金属薄膜を使用する場合、その好適な厚さの範囲は、 正極集電体について上述した範囲と同様である。
[0205] 負極活物質層は、負極活物質を含んで構成される。負極活物質としては、電気化 学的にリチウムイオンを吸蔵 ·放出可能なものであれば、その種類に他に制限はない 力 通常は安全性の高さの面から、リチウムを吸蔵、放出できる炭素材料が用いられ る。
炭素材料としては、その種類に特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛 (グラフアイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物 の熱分解物としては、石炭系コータス、石油系コータス、石炭系ピッチの炭化物、石 油系ピッチの炭化物、或いはこれらピッチを酸ィ匕処理したものの炭化物、ニードルコ 一タス、ピッチコータス、フエノール榭脂、結晶セルロース等の炭化物等及びこれらを 一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維 等が挙げられる。中でも黒鉛が好ましぐ特に好適には、種々の原料カゝら得た易黒鉛 性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又 はこれらの黒鉛にピッチを含む黒鉛材料等であって、種々の表面処理を施したもの が主として使用される。これらの炭素材料は、それぞれ 1種を単独で用いても良いし、 2種以上を組み合わせて用いても良 、。
[0206] 負極活物質として黒鉛材料を用いる場合、学振法による X線回折で求めた格子面 (
002面)の d値 (層間距離)が、通常 0. 335nm以上、また、通常 0. 34nm以下、好ま しくは 0. 337nm以下であるものが好ましい。
[0207] また、黒鉛材料の灰分が、黒鉛材料の重量に対して通常 1重量%以下、中でも 0.
5重量%以下、特に 0. 1重量%以下であることが好ましい。
[0208] 更に、学振法による X線回折で求めた黒鉛材料の結晶子サイズ (Lc)が、通常 30η m以上、中でも 50nm以上、特に lOOnm以上であることが好ましい。
また、レーザー回折 ·散乱法により求めた黒鉛材料のメジアン径が、通常 1 μ m以 上、中でも 3 μ m以上、更には 5 μ m以上、特に 7 μ m以上、また、通常 100 μ m以下
、中でも 50 μ m以下、更には 40 μ m以下、特に 30 μ m以下であることが好ましい。
[0209] また、黒鉛材料の BET法比表面積は、通常 0. 5m2Zg以上、好ましくは 0. 7m g以上、より好ましくは 1. 0m2Zg以上、更に好ましくは 1. 5m2Zg以上、また、通常 2
5. 0m2Zg以下、好ましくは 20. 0m2Zg以下、より好ましくは 15. 0m2Zg以下、更 に好ましくは 10. 0m2Zg以下である。
[0210] 更に、黒鉛材料についてアルゴンレーザー光を用いたラマンスペクトル分析を行つ た場合に、 1580〜1620cm_1の範囲で検出されるピーク Pの強度 Iと、 1350〜13
A A
70cm_1の範囲で検出されるピーク Pの強度 Iとの強度比 I ZI力 0以上 0. 5以下
B B A B
であるものが好ましい。また、ピーク Pの半価幅は 26cm_1以下が好ましぐ 25cm"1
A
以下がより好ましい。
[0211] なお、上述の各種の炭素材料の他に、リチウムの吸蔵及び放出が可能なその他の 材料の負極活物質として用いることもできる。炭素材料以外の負極活物質の具体例 としては、酸化錫や酸化ケィ素などの金属酸化物、 Li Co Nなどの窒化物、リチ
2. 6 0. 4
ゥム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらの炭 素材料以外の材料は、それぞれ 1種を単独で用いてもよいし、 2種以上を組み合わ せて用いても良い。また、上述の炭素材料と組み合わせて用いても良い。
[0212] 負極活物質層は、通常は正極活物質層の場合と同様に、上述の負極活物質と、結 着剤と、必要に応じて導電材及び増粘剤とを液体媒体でスラリー化したものを負極集 電体に塗布し、乾燥することにより製造することができる。スラリーを形成する液体媒 体や結着剤、増粘剤、導電材等としては、正極活物質層について上述したものと同 様のものを使用することができる。
<非水電解質 >
非水電解質としては、例えば公知の有機電解液、高分子固体電解質、ゲル状電解 質、無機固体電解質等を用いることができるが、中でも有機電解液が好ましい。有機 電解液は、有機溶媒に溶質 (電解質)を溶解させて構成される。
[0213] ここで、有機溶媒の種類は特に限定されないが、例えばカーボネート類、エーテル 類、ケトン類、スルホラン系化合物、ラタトン類、二トリル類、塩素化炭化水素類、エー テル類、アミン類、エステル類、アミド類、リン酸エステルイ匕合物等を使用することがで きる。代表的なものを列挙すると、ジメチルカーボネート、ジェチルカーボネート、ェ チノレメチノレカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレン力 ーボネート、ビュルエチレンカーボネート、テトラヒドロフラン、 2—メチルテトラヒドロフ ラン、 1, 4 ジォキサン、 4ーメチルー 2 ペンタノン、 1, 2 ジメトキシェタン、 1, 2 ージエトキシェタン、 Ί ブチロラタトン、 1, 3 ジォキソラン、 4ーメチノレー 1, 3 ジ ォキソラン、ジェチルエーテル、スルホラン、メチルスルホラン、ァセトニトリル、プロピ ォニトリル、ベンゾニトリル、ブチロニトリル、バレロ二トリル、 1, 2—ジクロ口エタン、ジメ チルホルムアミド、ジメチルスルホキシド、リン酸トリメチル、リン酸トリェチル等が挙げ られ、これら化合物は、水素原子が一部ハロゲン原子で置換されていてもよい。また 、これらの単独若しくは 2種類以上の混合溶媒が使用できる。
[0214] 上述の有機溶媒には、電解塩を解離させるために、高誘電率溶媒を含めることが 好ましい。ここで、高誘電率溶媒とは、 25°Cにおける比誘電率が 20以上の化合物を 意味する。高誘電率溶媒の中でも、エチレンカーボネート、プロピレンカーボネート、 及び、それらの水素原子をハロゲン等の他の元素又はアルキル基等で置換したィ匕合 物が、電解液中に含まれることが好ましい。高誘電率溶媒の電解液に占める割合は 、好ましくは 20重量%以上、更に好ましくは 25重量%以上、最も好ましくは 30重量 %以上である。 [0215] 高誘電率溶媒の含有量が上記範囲よりも少ないと、所望の電池特性が得られない 場合がある。
[0216] また、有機電解液中には、 CO、 N 0、 CO、 SO等のガスゃビ-レンカーボネート
2 2 2
、ポリサルファイド Sx2_など、負極表面にリチウムイオンの効率良い充放電を可能に する良好な被膜を形成する添加剤を、任意の割合で添加しても良い。なかでもとりわ けビ-レンカーボネートが好まし 、。
[0217] 電解塩の種類も特に限定されず、従来公知の任意の溶質を使用することができる。
具体例としては、 LiCIO、 LiAsF、 LiPF、 LiBF , LiB (C H ) 、 LiBOB、 LiCl、 L
4 6 6 4 6 5 4
iBrゝ CH SO Liゝ CF SO Liゝ LiN (SO CF ) 、 LiN (SO C F ) 、 LiC (SO CF )
3 3 3 3 2 3 2 2 2 5 2 2 3
、 LiN (SO CF ) 等が挙げられる。これらの電解塩は任意の 1種を単独で用いても
3 3 3 2
良ぐ 2種以上を任意の組み合わせ及び比率で併用しても良い。また、 CO、 N 0、
2 2
CO、 SO等のガスやポリサルファイド Sx2_など負極表面にリチウムイオンの効率良
2
ヽ充放電を可能にする良好な被膜を形成する添加剤を、任意の割合で添加しても良 い。
[0218] 電解塩のリチウム塩は電解液中に、通常 0. 5molZL以上 1. 5molZL以下となる ように含有させる。 0. 5molZL未満でも 1. 5molZLを超えても電気伝導度が低下 し、電池特性に悪影響を与えることがある。下限としては 0. 75molZL以上、上限と して 1. 25molZL以下が好ましい。
[0219] 高分子固体電解質を使用する場合にも、その種類は特に限定されず、固体電解質 として公知の任意の結晶質'非晶質の無機物を用いることができる。結晶質の無機固 体電解質としては、例えば、 Lil、 Li N、 Li J Ti (PO ) (J=A1、 Sc、 Y、 La)、 L
3 1 +x x 2-x 4 3
i RE TiO (RE = La、Pr、Nd、 Sm)等が挙げられる。また、非晶質の無機
0. 5— 3x 0. 5 + x 3
固体電解質としては、例えば、 4. 9ΠΙ- 34. ILi O— 61B O、 33. 3Li O— 66· 7
2 2 5 2
SiO等の酸ィ匕物ガラス等が挙げられる。これらは任意の 1種を単独で用いても良ぐ
2
2種以上を任意の組み合わせ及び比率で用いても良 、。
<セパレータ>
電解質として前述の有機電解液を用いる場合には、電極同士の短絡を防止するた めに、正極と負極との間にセパレータが介装される。セパレータの材質や形状は特に 制限されないが、使用する有機電解液に対して安定で、保液性に優れ、且つ、電極 同士の短絡を確実に防止できるものが好ましい。好ましい例としては、各種の高分子 材料力もなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料の具 体例としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリ アクリロニトリル、ポリフッ化ビ-リデン、ポリプロピレン、ポリエチレン、ポリブテン等の ポリオレフイン高分子が用いられる。特に、セパレータの重要な因子である化学的及 び電気化学的な安定性の観点からは、ポリオレフイン系高分子が好ましぐ電池にお けるセパレータの使用目的の一つである自己閉塞温度の点からは、ポリエチレンが 特に望ましい。
[0220] ポリエチレン力もなるセパレータを用いる場合、高温形状維持性の点から、超高分 子ポリエチレンを用いることが好ましぐその分子量の下限は好ましくは 50万、更に好 ましくは 100万、最も好ましくは 150万である。他方、分子量の上限は、好ましくは 50 0万、更に好ましくは 400万、最も好ましくは 300万である。分子量が大きすぎると流 動性が低くなりすぎてしまい、加熱された時にセパレータの孔が閉塞しない場合があ るカゝらである。
<電池形状 >
本発明のリチウム二次電池は、上述した本発明のリチウム二次電池用正極と、負極 と、電解質と、必要に応じて用いられるセパレータとを、適切な形状に組み立てること により製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも 可能である。
[0221] 本発明のリチウム二次電池の形状は特に制限されず、一般的に採用されている各 種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されて V、る形状の例としては、シート電極及びセパレータをスノ ィラル状にしたシリンダータ ィプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダー タイプ、ペレット電極及びセパレータを積層したコインタイプなどが挙げられる。また、 電池を組み立てる方法も特に制限されず、 目的とする電池の形状に合わせて、通常 用いられて 、る各種方法の中から適宜選択することができる。
<満充電状態における正極の充電電位 > また、本発明のリチウム二次電池は、満充電状態における正極の初回充電電位が 4. 5V(vs. LiZLi+)以上となるように設計されていることが好ましい。即ち、本発明 のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、前述の特定の組 成により、初回に 4. 5V(vs. LiZLi+)以上という高い充電電位で充電するように設 計されたリチウム二次電池として使用した場合において、サイクル特性や安全性を高 める効果を有効に発揮する。ただし、前記充電電位が 4. 5V未満として使用すること も可能である。
[0222] 以上、本発明のリチウム二次電池の一般的な実施形態について説明した力 本発 明のリチウム二次電池は上記実施形態に制限されるものではなぐその要旨を超え な 、限りにお 、て、各種の変形をカ卩えて実施することが可能である。
実施例
[0223] 以下に実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えな い限り、これらの実施例によってなんら制限されるものではない。
[物性の測定方法]
後述の各実施例及び比較例において製造されたリチウム遷移金属系化合物粉体 の物'性等は、各々次のようにして測定した。
[0224] 組成(LiZNiZMnZCo):
ICP—AES分析により求めた。
[0225] 水銀圧入法による各種物性の測定:
水銀圧入法による測定装置としては、 Micromeritics社製オートポア ΠΙ9420型を 用いた。また、水銀圧入法の測定条件としては、室温で 3. 86kPaから 413MPaまで 昇圧しながら測定を行った。なお、水銀の表面張力の値としては 480dynZcm、接 触角の値としては 141. 3° を用いた。
[0226] 平均一次粒子径:
30, 000倍の SEM画像により求めた。
[0227] 二次粒子のメジアン径:
超音波分散 5分後に測定した。
[0228] 嵩密度: 試料粉体 4〜 1 Ogを 1 Omlのガラス製メスシリンダーに入れ、ストローク約 20mmで 2 00回タップした時の粉体充填密度として求めた。
[0229] 比表面積:
BET法により求めた。
[0230] 含有炭素濃度 C :
(株)堀場製作所製 EMIA— 520炭素硫黄分析計を使用した。数十から lOOmgの 試料を、空焼きした磁性るつぼに秤り取り、助燃剤を加えて、酸素気流中、高周波加 熱炉で炭素を燃焼抽出した。燃焼ガス中の C02を、非分散赤外吸光光度法により定 量した。感度較正には社団法人日本鉄鋼連盟製 150— 15低合金鋼 1号 (C保障値: 0. 469重量%)を使用した。
[0231] 体積抵抗率:
粉体抵抗率測定装置 (ダイァインスツルメンッ社製:ロレスター GP粉体低効率測定 システム PD— 41)を用い、試料重量 3gとし、粉体用プローブユニット(四探針'リング 電極、電極間隔 5. Omm、電極半径 1. Omm、試料半径 12. 5mm)により、印加電 圧リミッタを 90Vとして、種々加圧下の粉体の体積抵抗率 [ Ω ' cm]を測定し、 40MP aの圧力下における体積抵抗率の値について比較した。
[0232] 結晶相:
CuK a線を使用した粉末 X線回折パターンにより求めた。
[0233] 〔粉末 X線回折測定装置〕 PANalytical PW1700
〔測定条件〕 X線出力: 40kV、 30mA,走査軸: Θ /2 Θ
走査範囲(2 0 ) : 10. 0 - 90. 0。
測定モード: Continuous
読込幅: 0. 05° 、走査速度: 3. 0° /min.
スリット: DS 1° 、 SS 1° 、 RS 0. 2mm
スラリー中の粉砕粒子のメジアン径:
公知のレーザー回折 Z散乱式粒度分布測定装置を用い、屈折率を 1. 24に設定 し、粒子径基準を体積基準として測定した。また、分散媒としては 0. 1重量%へキサ メタリン酸ナトリウム水溶液を用い、 5分間の超音波分散(出力 30W、周波数 22. 5k Hz)後に測定を行った。
[0234] 原料 Li CO粉末の平均粒子径としてのメジアン径:
2 3
公知のレーザー回折 Z散乱式粒度分布測定装置 (堀場製作所製、 LA- 920)を 用い、屈折率を 1. 24に設定し、粒子径基準を体積基準として測定した。また、分散 媒としてエチルアルコールを用い、 5分間の超音波分散(出力 30W、周波数 22. 5k Hz)後に測定を行った。
[0235] 噴霧乾燥により得られた粒子状粉末の物性:
形態は SEM観察及び断面 SEM観察により確認した。平均粒子径としてのメジアン 径及び 90%積算径 (D90)は、公知のレーザー回折 Z散乱式粒度分布測定装置( 堀場製作所製、 LA- 920)によって、屈折率を 1. 24に設定し、粒子径基準を体積 基準として測定した。また、分散媒としては 0. 1重量%へキサメタリン酸ナトリウム水 溶液を用い、 0分、 1分、 3分、 5分間の超音波分散(出力 30W、周波数 22. 5kHz) 後に測定を行った。比表面積は、 BET法により求めた。嵩密度は、試料粉体 4〜6g を 10mlのガラス製メスシリンダーに入れ、ストローク約 20mmで 200回タップした時の 粉体充填密度として求めた。
結晶相(層状構造)の確認、半価幅 FWHM ( 110)の測定:
(018) ( 110) ( 113)回折ピーク中の異相ピークの有無確認並びに異相ピーク Z本 来の結晶相ピークの積分強度および積分強度比の算出:
以下に記載の CuK a線を使用した粉末 X線回折測定により求めた。各試料で観測 された 六方晶系 R— 3m (No. 166)由来の(018)、 (110)、 (113)回折ピークにつ いて、プロファイルフィッティングを実施し積分強度、積分強度比等を算出した。
[0236] 半価幅、面積の算出は、集中法の固定スリットモードで測定した場合の回折パター ンを使用
実際の XRD測定 (実施例、比較例)は、可変スリットモードで測定し、可変→固定の データ変換を実施
可変→固定の変換は、強度(固定) =強度 (可変) /sin Θの計算式による <粉末 X線回折測定装置仕様 >
装置名:オランダ PANalytical社製 X' Pert Pro MPD 光学系:集中法光学系
<光学系仕様 >
入射側:封入式 X線管球 (CuK a )
Soller Slit (0. 04rad)
Divergence Slit (Variable Slit)
試料台:回転試料台(Spinner)
受光側:半導体アレイ検出器 (X' Celerator)
Ni— filter
ゴニォ半径: 243mm
<測定条件 >
前述のとおりである。
<添加元素(Mo, W, Nb, B, Sn)の定量 >
ICP—AES分析により求めた。
< X線光電子分光法 (XPS)による一次粒子表面の組成分析 >
Physical Electronics社製 X線光電子分光装置「ESCA—5700」を用い、下 記条件で行った。
[0237] X線源:単色化 ΑΙΚ α
分析面積: 0. 8mm径
取り出し角: 65°
定量方法: Bls、 Mn2p 、 Co2p 、 Ni2p 、 Nb3d、 Mo3d、 Sn3d 、 W4f
1/2 3/2 3/2 5/2 各ピークの面積を感度係数で補正。
[リチウム遷移金属系化合物粉体の製造 (実施例及び比較例) ]
実施例 1
Li CO、 Ni (OH) 、 Mn Oを、 Li : Ni : Mn= l . 267 : 0. 250 : 0. 583のモル比と
2 3 2 3 4
なるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリー を攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジ アン径 0. 16 mに粉枠した。
[0238] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 950°Cで 12時間焼成 (昇降温速度 5°CZ min. )した後、解砕して、体積抵抗率が 3. 7X 106Ω 'cm、含有炭素濃度は 0. 092 重量0 /。、組成が Li (Li Ni Mn )0のリチウムニッケルマンガン複合
1.088 0.167 0.254 0.579 2
酸ィ匕物(x=0. 167、y=0、z = 0. 088)を得た。この平均一次粒径は 0. 2 mで、 メジアン径は 1. Ίμχη, 90%積算径 (以下、 D と称することもある)は 3. 、嵩
90
密度は 0.8gZcc、 BET比表面積は 3. lm2Zgであった。
実施例 2
Li CO、 Ni(OH) 、 Mn Oを、 Li:Ni:Mn=l. 267:0. 250:0. 583のモル比と
2 3 2 3 4
なるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリー を攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジ アン径 0. 16 mに粉枠した。
[0239] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 1000°Cで 12時間焼成 (昇降温速度 5°C /min. )した後、解砕して、体積抵抗率が 9. 2Χ105Ω -cm,含有炭素濃度は 0. 0 59重量0 /0、組成が Li (Li Ni Mn )0のリチウムニッケルマンガン複
1.067 0.167 0.254 0.579 2
合酸ィ匕物(x=0. 167、y=0、z = 0. 067)を得た。この平均一次粒径は 0. 5 mで 、メジアン径は 2. 6 m、 D は 4. 6 m、嵩密度は 1. 0g/cc、 BET比表面積は 2.
90
lm z gであつ 7こ o
実施例 3
Li CO、 Ni(OH) 、 Mn Oを、 Li:Ni:Mn=l. 211:0. 333:0. 556のモル比と
2 3 2 3 4
なるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリー を攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジ アン径 0. 17 mに粉枠した。
[0240] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 900°Cで 12時間焼成 (昇降温速度 5°CZ min. )した後、解砕して、体積抵抗率が 2. 0Χ105Ω 'cm、含有炭素濃度は 0. 084 重量0 /。、組成が Li (Li Ni Mn )0のリチウムニッケルマンガン複合
1.066 0.111 0.334 0.555 2
酸ィ匕物 (x=0. lll、y=0、 z = 0. 066)を得た。また、その結晶構造が層状 R(— 3) m構造を含んで構成されていることを確認した。この平均一次粒径は 0.2 mで、メ ジアン径は 2.7 m、 D は 5. l^m,嵩密度は 0.8gZcc、 BET比表面積は 3.0
90
m / gでめつ 7こ o
実施例 4
Li CO、 NiO、 Mn Oを、 Li:Ni:Mn=l.20:0.50:0.50のモル比となるように
2 3 3 4
秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しな がら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径 0. 21 /zm〖こ粉枠した。
[0241] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 950°Cで 12時間焼成 (昇降温速度 5°CZ min. )した後、解砕して、体積抵抗率が 4.6Χ104Ω 'cm、含有炭素濃度は 0.050 重量%、組成が Li (Ni Mn )0のリチウムニッケルマンガン複合酸化物(
1.133 0.501 0.499 2
x=0、 y=0、 z = 0.133)を得た。この平均一次粒径 ίま 0.6 μ mで、メジアン径 ίま 3. 8 m、 D は 6.1 m、嵩密度は 1. Og/cc, BET比表面積は 1.9m2Zgであった
90 実施例 5
Li CO、 Ni(OH) 、 Mn O、 CoOOHを、 Li:Ni:Mn:Co= 1.143:0.278:0.
2 3 2 3 4
463:0.167のモル比となるように秤量し、混合した後、これに純水をカ卩えてスラリー を調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、 スラリー中の固形分をメジアン径 0.18 μ mに粉砕した。
[0242] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 950°Cで 12時間焼成 (昇降温速度 5°CZ min. )した後、解砕して、体積抵抗率が 5.0Χ105Ω 'cm、含有炭素濃度は 0.052 重量0 /0、糸且成が Li (Li Ni Mn Co )0のリチウムニッケルマンガ
0.986 0.093 0.281 0.458 0.168 2
ンコノ ノレ卜複合酸ィ匕物(x=0. 112、 y=0.168、z=—0.014)を得た。この平均一 次粒径 ίま 0.3 μ mで、メジアン径 ίま 3.0 m、 90%, D ίま 5.1 m、嵩密度 ίま 1.0
90
gZcc、 BET比表面積は 2.6m2Zgであった。
実施例 6 Li CO、 Ni(OH) 、 Mn O、 CoOOHを、 Li:Ni:Mn:Co= 1.10:0.45:0.45
2 3 2 3 4
:0. 10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製 した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー 中の固形分をメジアン径 0. 16 μ mに粉枠した。
[0243] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 925°Cで 6時間焼成 (昇降温速度 3.33 °C/min. )した後、解砕して、体積抵抗率が 1.9Χ104Ω -cm,含有炭素濃度は 0. 043重量0 /0、組成が Li (Ni Mn Co )0のリチウムニッケルマンガン
1.125 0.455 0.445 0.100 2
コバルト複合酸化物(x=0、y=0.100、 z = 0.125)を得た。この平均一次粒径は 0 . 2 μ mで、メジアン径は 1.1 m、 D は 1.6 m、嵩密度は 0.9gZcc、 BET比表
90
面權ま 3.3m , gでめつ 7こ。
実施例 7
Li CO、 Ni(OH) 、 Mn 04を、 Li:Ni:Mn=l.15:0.50:0.50のモル比となる
2 3 2 3
ように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪 拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン 径 0. 14 /zmに粉枠した。
[0244] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをァ ルミナ製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3.33 °C/min. )した後、解砕して、体積抵抗率が 2.1 X 104Ω -cm,含有炭素濃度は 0. 045重量%、組成が Li (Ni Mn )0のリチウムニッケルマンガン複合酸
1.166 0.504 0.496 2
化物(x=0、 y=0、 z = 0.166)を得た。この平均一次粒径は 0.5 μ mで、メジアン 径は 3.3/ζπι、 D は 5.6/ζπι、嵩密度は 1.2g/cc, BET比表面積は 1.9m g
90
であった。
比較例 1
Ni(OH) 、 Mn Oを、 Ni:Mn=0.250:0.583のモル比となるように秤量し、混
2 3 4
合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環 式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径 0.16 mに 粉砕した。 [0245] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末に、メジアン 径 9 mの Li CO粉末を添加混合した。この混合粉末約 100gをアルミナ製るつぼ 6
2 3
個に均等に分けて仕込み、空気流通下、 950°Cで 12時間焼成 (昇降温速度 5°CZ min. )した後、解砕して、体積抵抗率が 1.4X 106Ω 'cm、含有炭素濃度は 0. 034 重量0 /。、組成が Li (Li Ni Mn )0のリチウムニッケルマンガン複合
1.035 0.167 0.252 0.581 2
酸ィ匕物(x=0. 167、y=0、z = 0. 035)を得た。この平均一次粒径は 0. 3 mで、 メジアン径は 5. Ίμ ι, 90%積算径(D )は 8. 6 m、嵩密度は 1. 7g/cc, BET
90
比表面積は 2. 0m2Zgであった。
比較例 2
Ni(OH) 、 Mn Oを、 Ni:Mn=0. 333:0. 556のモル比となるように秤量し、混
2 3 4
合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環 式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径 0. 15 mに 粉砕した。
[0246] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末)に、メジアン 径 9 mの Li CO粉末を添加混合した。この混合粉末約 15. 9gをアルミナ製るつぼ
2 3
に仕込み、空気流通下、 1000°Cで 12時間焼成 (昇降温速度 5°CZmin. )した後、 解砕して、体積抵抗率が 9.4X 104Ω 'cm、含有炭素濃度は 0. 045重量%、組成 力Li (Li Ni Mn )0のリチウムニッケルマンガン複合酸化物(x=0.
1.082 0. Ill 0.335 0.554 2
111、 y=0、 z = 0. 082)を得た。また、その結晶構造が層状 R(— 3) m構造を含ん で構成されていることを確認した。この平均一次粒径は 0.4 mで、メジアン径は 5. 9 m、 D は 8. 8 m、嵩密度は 1. 5g/cc, BET比表面積は 1. lm
90 2Zgであった 比較例 3
Ni(OH) 、 Mn Oを、 Ni:Mn=0. 50:0. 50のモル比となるように秤量し、混合し
2 3 4
た後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式 媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径 0. に粉 砕した。
[0247] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末に、メジアン 径 9 mの Li CO粉末を添加混合した。この混合粉末約 87. 8gをアルミナ製るつぼ
2 3
6個に均等に分けて仕込み、空気流通下、 1000°Cで 12時間焼成 (昇降温速度 5°C /min. )した後、解砕して、体積抵抗率が 3. 9 X 104 Ω 'cm、含有炭素濃度は 0. 0 31重量%、組成が Li (Ni Mn ) 0のリチウムニッケルマンガン複合酸化
1. 084 0. 505 0. 495 2
物 (x=0、 y=0、 z = 0. 084)を得た。また、その結晶構造が層状 R (— 3) m構造を 含んで構成されていることを確認した。この平均一次粒径は 0. 5 /z mで、メジアン径 は 4. Ί μ ι, Ό は 6. 9 m、嵩密度は 1. 6gZcc、 BET比表面積は 1. 2m2Zgで
90
めつに。
比較例 4
Ni (OH) 、 Mn Oを、 Ni: Mn=0. 50 : 0. 50のモル比となるように秤量し、混合し
2 3 4
た後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式 媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径 0. に粉 砕した。
[0248] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末に、メジアン 径 9 mの Li CO粉末を添加混合した。この混合粉末約 15gをアルミナ製るつぼに
2 3
仕込み、空気流通下、 1000°Cで 12時間焼成 (昇降温速度 3. 33°C/min. )した後 、解砕して、体積抵抗率が 1. 2 Χ 104 Ω -cm,含有炭素濃度は 0. 035重量%、組成 力 SLi (Ni Mn ) 0のリチウムニッケルマンガン複合酸化物(x=0、 y=0、
1. 152 0. 505 0. 495 2
z = 0. 152)を得た。この平均一次粒径は 0. 6 μ mで、メジアン径は 6. 1 m、 D は
90
9. l ^ m,嵩密度は 1. 5g/cc、: BET比表面積は 0. 7m2/gであった。
比較例 5
Ni (OH) 、 Mn O、 CoOOHを、 Ni: Mn: Co = 0. 278 : 0. 463 : 0. 167のモル
2 3 4
比となるように秤量し、混合した後、これに純水をカロえてスラリーを調製した。このスラ リーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分を メジアン径 0. 16 μ mに粉砕した。
[0249] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末に、メジアン 径 の Li2C03粉末を添加混合した。この混合粉末約 15. 4gをアルミナ製るつ ぼに仕込み、空気流通下、 900°Cで 12時間焼成 (昇降温速度 5°CZmin. )した後、 解砕して、体積抵抗率が 1. 1 X 106Ω 'cm、含有炭素濃度は 0. 046重量%、組成 力 Li (Ni Mn Co )0のリチウムニッケルマンガンコバルト複合酸化
0.960 0.280 0.459 0.168 2
物(x=0. 112、 y=0. 168、z=— 0. 040)を得た。この平均一次粒径は 0. 2μηι で、メジアン径は 5. 2 m、 D は 7. 7 m、嵩密度は 1. 8gZcc、 BET比表面積は
90
2. 2m2Zgであった。
比較例 6
Ni(OH)2、 Mn O、 Co (OH) を、 Ni:Mn:Co = 0.45:0.45:0. 10のモル比と
3 4 2
なるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリー を攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジ アン径 0. 15 mに粉枠した。
[0250] スラリーをスプレードライヤーにより噴霧乾燥して得られた粒子状粉末に、メジアン 径 20 m以下まで粉砕した LiOH粉末を添加混合した。この混合粉末約 13. lgをァ ルミナ製るつぼに仕込み、空気流通下、 950°Cで 10時間焼成 (昇降温速度 5°CZmi n. )した後、解砕して、体積抵抗率が 1. 7Χ104Ω -cm,含有炭素濃度は 0. 031重 量0 /0、組成が Li (Ni Mn Co )0のリチウムニッケルマンガンコバルト
1.130 0.443 0.453 0.105 2
複合酸ィ匕物(x=0、y=0. 105、 z = 0. 130)を得た。この平均一次粒径は 0. 5 m で、メジアン径は 11. 1 m、 D は 18.4/z m、嵩密度は 1. 8g/cc、 BET比表面積
90
は 1. 3m / gでめった。
[0251] 上記、実施例 1〜7及び比較例 1〜6で製造したリチウム遷移金属系化合物粉体( 正極材料)の組成及び物性値を、表 1及び表 2に示す。
[0252] [表 1]
Figure imgf000094_0001
Figure imgf000095_0002
Figure imgf000095_0001
実施例 8
Li CO、 Ni (OH)、 Mn O、 CoOOHを、 Li:Ni: Mn: Co= 1. 10 : 0. 45 : 0. 45
2 3 2 3 4
: 0. 10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製 した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー 中の固形分をメジアン径 0. 16 μ mに粉枠した。
[0254] 次に、このスラリー(固形分含有量 13重量%、粘度 1350cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 2. 7 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 02 3重量%、組成が Li (Ni Mn Co ) 0の、層状構造を有するリチウム
1. 096 0. 458 0. 444 0. 098 2
ニッケノレマンガンコノノレ卜複合酸ィ匕物(x, =0. 098、 y, =0. 016、 z, =0. 096)を 得た。このリチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の平均一次粒径は 0 . 6 μ mで、メジアン径は 3. 0 m、 D は 5.: L m、嵩密度は 1. 2g/cc
90 、 BET比表 面積は 1. 7m2Zgであった。
実施例 9
Li CO、 Ni (OH)、 Mn O、 CoOOHを、 Li:Ni: Mn: Co= 1. 10 : 0. 45 : 0. 45
2 3 2 3 4
: 0. 10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製 した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー 中の固形分をメジアン径 0. 16 μ mに粉枠した。
[0255] 次に、このスラリー(固形分含有量 13重量%、粘度 1350cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3LZminとした (気液比 GZS=4091)。また、乾燥入り口温度は 150°Cとし た。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ製 るつぼに仕込み、空気雰囲気下、 975°Cで 6時間焼成 (昇降温速度 3. 33°C/min. )した後、解砕して、体積抵抗率が 2. 2 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 030重 量0 /0、組成が Li (Ni Mn Co ) 0の、層状構造を有するリチウムニッ
1. 118 0. 456 0. 445 0. 099 2
ケノレマンガンコノ ノレ卜複合酸ィ匕物(x,=0. 099、y,=0. 012、 z = 0. 118)を得た。 このリチウムニッケルマンガンコバルト系複合酸化物粉体の平均一次粒径は 0. 5 μ mで、メジアン径は 3. 1 m、 D は 5. 5 m、嵩密度は 1. lg/cc、 BET比表面積
90
は 2. 2m2Zgであった。
実施例 10
Li CO、 Ni (OH) 、 Mn O、 CoOOHを、 Li:Ni: Mn: Co= 1. 05 : 0. 45 : 0. 45
2 3 2 3 4
: 0. 10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製 した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー 中の固形分をメジアン径 0. 16 μ mに粉枠した。
次に、このスラリー(固形分含有量 13重量%、粘度 1310cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3LZminとした (気液比 GZS=4091)。また、乾燥入り口温度は 150°Cとし た。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ製 るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成(昇降温速度 3. 33°C/min . )した後、解砕して、体積抵抗率が 9. 3 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 030重 量0 /0、組成が Li (Ni Mn Co ) 0の、層状構造を有するリチウムニッ
1. 064 0. 457 0. 445 0. 098 2
ケノレマンガンコノ ノレ卜複合酸ィ匕物(x, =0. 098、 y, =0. 013、 z, =0. 064)を得た 。このリチウムニッケルマンガンコバルト系複合酸化物粉体の平均一次粒径は 0. 5 μ mで、メジアン径は 2. 1 m、 D は 3. 8 m、嵩密度は 1. 2g/cc、 BET比表面積
90
は 1. 9m2Zgであった。
実施例 11
Li CO、 Ni (OH) 、 Mn O、 CoOOHを、 Li:Ni: Mn: Co= 1. 10 : 0. 475 : 0. 4
2 3 2 3 4
75 : 0. 05のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを 調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、ス ラリー中の固形分をメジアン径 0. 13 mに粉砕した。
[0257] 次に、このスラリー(固形分含有量 14重量%、粘度 1960cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3LZminとした (気液比 GZS=4091)。また、乾燥入り口温度は 150°Cとし た。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ製 るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成(昇降温速度 3. 33°C/min . )した後、解砕して、体積抵抗率が 2. 6 Χ 104 Ω -cm,含有炭素濃度 Cは 0. 031重 量0 /0、組成が Li (Ni Mn Co ) 0の、層状構造を有するリチウムニッ
1. 115 0. 481 0. 470 0. 049 2
ケノレマンガンコノノレ卜複合酸ィ匕物(x, =0. 049、 y, =0. 012、 z, =0. 115)を得た 。このリチウムニッケルマンガンコバルト系複合酸化物粉体の平均一次粒径は 0. 4 μ mで、メジアン径は 3. 7 m、 D は 6.: L m、嵩密度は 1. lg/cc
90 、 BET比表面積 は 1. 9m2Zgであった。
比較例 7
Ni (OH)
2、 Mn O
3 4、 Co (OH) を、 Ni: Mn: Co = 0. 45 : 0. 45 : 0. 10のモル比と
2
なるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリー を攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジ アン径 0. 15 mに粉枠した。
[0258] 次に、このスラリー(固形分含有量 12重量%、粘度 700cp)を、二流体ノズル型スプ レードライヤー (大〗 11原化工機 (株)製: LT— 8型)を用 Vヽて噴霧乾燥した。この時の 乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 30L/min、スラリー導入量 Sは 38 X 10_3L/minとした (気液比 G/S = 789)。また、乾燥入り口温度は 150°Cとした。
[0259] 上記の如く噴霧乾燥して得られた粒子状粉末に、メジアン径 20 μ m以下まで粉砕 した LiOH粉末を添加混合した。この混合粉末約 13. lgをアルミナ製るつぼに仕込 み、空気流通下、 950°Cで 10時間焼成 (昇降温速度 5°CZmin. )した後、解砕して 、体積抵抗率が 1. 7 X 104 Ω 'cm、含有炭素濃度 Cは 0. 031重量%、組成が Li
1. 13
(Ni Mn Co ) Oの、層状構造を有するリチウムニッケルマンガンコバル
0 0. 443 0. 453 0. 105 2
卜複合酸ィ匕物(x,=0. 105、y,=0. 012、z,=0. 130)を得た。このリチウムニッケ ルマンガンコバルト系複合酸化物粉体の平均一次粒径は 0. 5 μ mで、メジアン径は 11. l ^ m, D は 18. 4 /ζ πι、嵩密度は 1. 8gZcc、 BET比表面積は 1. 3m2Zgで
90
めつに。
比較例 8
Li CO、 Ni (OH)、 Mn Oを、 Li:Ni: Mn= l. 10 : 0. 50 : 0. 50のモル比となる
2 3 2 3 4
ように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪 拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン 径 0. 14 /z mに粉枠した。
[0260] 次に、このスラリー(固形分含有量 13重量%、粘度 1270cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3LZminとした (気液比 GZS=4091)。また、乾燥入り口温度は 150°Cとし た。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ製 るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成(昇降温速度 3. 33°C/min . )した後、解砕して、体積抵抗率が 2. 4 Χ 104 Ω -cm,含有炭素濃度 Cは 0. 044重 量0 /0、組成が Li (Ni Mn ) 0の、層状構造を有するリチウムニッケルマン
1. 081 0. 505 0. 495 2
ガン複合酸化物(x, =0、 y, =0. 010、 z, =0. 081)を得た。このリチウムニッケル マンガン複合酸化物粉体の平均一次粒径は 0. 4 μ mで、メジアン径は 1. 4 /z m、 D
9 は 2.: m、嵩密度は 1. 0gZcc、 BET比表面積は 2. 7m2Zgであった。
0
比較例 9
Li CO、 Ni (OH)、 Mn Oを、 Li:Ni: Mn= l. 15 : 0. 50 : 0. 50のモル比となる
2 3 2 3 4
ように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪 拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン 径 0. 14 /z mに粉枠した。
[0261] 次に、このスラリー(固形分含有量 13重量%、粘度 1020cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3LZminとした (気液比 GZS=4091)。また、乾燥入り口温度は 150°Cとし た。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ製 るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成(昇降温速度 3. 33°C/min . )した後、解砕して、体積抵抗率が 2. 1 X 104Ω -cm,含有炭素濃度 Cは 0. 045重 量0 /0、組成が Li (Ni Mn )0の、層状構造を有するリチウムニッケルマン
1.166 0.505 0.495 2
ガン複合酸化物(x, =0、 y, =0. 008、 z, =0. 166)を得た。このリチウムニッケル マンガン複合酸化物粉体の平均一次粒径は 0· 5 mで、メジアン径は 3· 3μχη^ Ό
9 は 5. 6 m、嵩密度は 1. 2gZcc、 BET比表面積は 1. 9m2Zgであった。
0
[0262] 上記、実施例 8〜: L1及び比較例 7〜9で製造したリチウムニッケルマンガンコバルト 系複合酸化物粉体又はリチウムニッケルマンガン複合酸化物粉体の組成及び物性 値を、表 3—及び表 6に示す。また、焼成前駆体である噴霧乾燥粉体の粉体性状を 表 4'に示す。
[0263] [表 3]
表 3
Figure imgf000101_0001
1):(1-x)(0.05-0.98y)
2):(1-x)(0.15-0.88y)
〔^〕〔a0265
表 4
Figure imgf000102_0001
表 5
Figure imgf000103_0001
3) 圧入法における測 において、圧力 3.86kPaから 413MPaまでの昇圧時における水銀圧入量
4)細孔分布曲線において、8 Onm以上 300nm未満(細孔半径)に現れたサブピークに関する
5)細孔分布曲線において、 300nm以上 (細 半径)に現れたメインピークに関する
[0266] [表 6] 表 6
乾燥体の粉体性状
Figure imgf000104_0001
6) USは超音波分散' 'Ultra Sonic dispersion"による処理を表し、その 後の数値は処理時間(分)を表す。 また、実施例 8〜: L 1及び比較例 7〜9で製造されたリチウムニッケルマンガンコバル ト複合酸化物粉体又はリチウムニッケルマンガン複合酸化物粉体の細孔分布曲線を 、図 40〜46【こそれぞれ示し、 SEM画像(写真)(倍率 X10, 000)を図 47〜53【こそ れぞれ示し、粉末 X線回折パターンを図 54〜60にそれぞれ示す。
実施例 12
Li CO、 Ni(OH) 10:
2 3 2、 Mn O
3 4、 CoOOHゝ Li WOを、 Li:Ni:Mn:Co:W= 1.
2 4
0. 45:0.45:0. 10:0. 005のモノ kttとなるように样量し、混合した後、これに純水 を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉 砕機を用いて、スラリー中の固形分をメジアン径 0. 16 μ mに粉砕した。
[0267] 次に、このスラリー(固形分含有量 15重量%、粘度 1720cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 5. 4 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 04 2重量0 /0、組成が Li (Ni Mn Co ) 0の層状構造を有するリチウム-
1. 114 0. 453 0. 450 0. 097 2
ッケルマンガンコバルト複合酸化物(χ', =0. 097、 y,, =0. 003、 z,, =0. 114)を 得た。また、(Ni, Mn, Co)トータルのモル比を 1とした時、 Wの含有モル比率は 0. 6 2モル%であった。この平均一次粒子径は 0. 4 μ mで、メジアン径は 1. 4 m、 D
90 は 2.: m、嵩密度は 1. lgZcc、 BET比表面積は 2. lm2Zgであった。さらに、粒 子全体の W (タングステン)の原子比(WZ (Ni+Mn+Co)に対して、一次粒子表面 の Wの原子比は 9. 8倍となっていた。
実施例 13
Li CO、 Ni (OH) 、 Mn O、 CoOOHゝ Li WOを、 Li:Ni: Mn: Co :W= 1. 10 :
2 3 2 3 4 2 4
0. 45 : 0. 45 : 0. 10 : 0. 01のモル比となるように秤量し、混合した後、これに純水を 加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉 砕機を用いて、スラリー中の固形分をメジアン径 0. 17 mに粉砕した。
次に、このスラリー(固形分含有量 15重量%、粘度 1890cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 4. 7 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 03 0重量0 /0、組成が Li (Ni Mn Co ) 0の層状構造を有するリチウム-
1. 139 0. 450 0. 452 0. 098 2
ッケノレマンガンコノ ノレ卜複合酸ィ匕物(x,, =0. 098、 y" = -0. 002、 z" =0. 139) を得た。また、(Ni, Mn, Co)トータルのモル比を 1とした時、 Wの含有モル比率は 1 . 03モル0 /。であった。この平均一次粒子径は 0. 3 μ mで、メジアン径は 2. 2 m、 D は 3. 9 /ζ πι、嵩密度は 1. 0gZcc、 BET比表面積は 2. 9m2Zgであった。さらに、
90
粒子全体の W (タングステン)の原子比(WZ (Ni+Mn+Co)に対して、一次粒子表 面の Wの原子比は 9.4倍となっていた。
実施例 14
Li CO、 Ni(OH) 、 Mn O、 CoOOHゝ Li MoOを、 Li:Ni:Mn:Co:Mo = 1.1
2 3 2 3 4 2 4
0:0.45:0.45:0.10:0.005のモノ kttとなるように样量し、混合した後、これに純 水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式 粉砕機を用いて、スラリー中の固形分をメジアン径 0.16 μ mに粉砕した。
[0269] 次に、このスラリー(固形分含有量 15重量%、粘度 1710cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3.33°C/ min. )した後、解砕して、体積抵抗率が 3.6Χ104Ω 'cm、含有炭素濃度 Cは 0.02 7重量0 /0、組成が Li (Ni Mn Co )0の層状構造を有するリチウム-
1.124 0.452 0.450 0.098 2
ッケルマンガンコバルト複合酸化物(χ', =0.098、 y,, =0.002、 z,, =0.124)を 得た。また、(Ni, Mn, Co)トータルのモル比を 1とした時、 Moの含有モル比率は 0. 48モル%であった。この平均一次粒子径は 0.7 μ mで、メジアン径は 2.0 m、 D
90 は 3.2/ζπι、嵩密度は 1.3gZcc、 BET比表面積は 1.6m2Zgであった。さらに、粒 子全体の Mo (モリブデン)の原子比(MoZ(Ni+Mn+Co)に対して、一次粒子表 面の Moの原子比は 21倍となっていた。
実施例 15
Li CO , Ni(OH) 、 Mn O、 CoOOHゝ WOを、 Li:Ni:Mn:Co:W=l.10:0.
2 3 2 3 4 3
45:0.45:0.10:0.005のモノ kttとなるように样量し、混合した後、これに純水をカロ えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕 機を用いて、スラリー中の固形分をメジアン径 0.17 mに粉砕した。
[0270] 次に、このスラリー(固形分含有量 14重量%、粘度 1670cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_dmL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 5. 8 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 03 3重量0 /0、組成が Li (Ni Mn Co ) 0の層状構造を有するリチウム-
1. 094 0. 453 0. 450 0. 097 2
ッケルマンガンコバルト複合酸化物(χ', =0. 097、 y,, =0. 003、 z,, =0. 094)を 得た。また、(Ni, Mn, Co)トータルのモル比を 1とした時、 Wの含有モル比率は 0. 5 1モル%であった。この平均一次粒子径は 0. 5 μ mで、メジアン径は 1. 6 m、 D
90 は 2. 4 /ζ πι、嵩密度は 1. 0gZcc、 BET比表面積は 2. 2m2Zgであった。さらに、粒 子全体の W (タングステン)の原子比(WZ (Ni+Mn+Co)に対して、一次粒子表面 の Wの原子比は 12倍となって!/ヽた。
実施例 16
Li CO、 Ni (OH) 、 Mn O、 CoOOHゝ Nb Oを、 Li:Ni: Mn: Co :Nb = l. 10 :
2 3 2 3 4 2 5
0. 45 : 0. 45 : 0. 10 : 0. 005のモノ kttとなるように样量し、混合した後、これに純水 を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉 砕機を用いて、スラリー中の固形分をメジアン径 0. 17 mに粉砕した。
次に、このスラリー(固形分含有量 14重量%、粘度 1660cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 4. 4 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 02 7重量0 /0、組成が Li (Ni Mn Co ) 0の層状構造を有するリチウム-
1. 118 0. 448 0. 450 0. 102 2
ッケルマンガンコバルト複合酸化物(χ', =0. 102、 y,, =一 0. 002、 z,, =0. 118) を得た。また、(Ni, Mn, Co)トータルのモル比を 1とした時、 Nbの含有モル比率は 0 . 48モル0 /。であった。この平均一次粒子径は 0. 6 μ mで、メジアン径は 2. 0 m、 D は 3. 3 /ζ πι、嵩密度は 1. 2gZcc、 BET比表面積は 1. 9m2Zgであった。さらに、 粒子全体のNb(-ォブ)の原子比(NbZ(Ni+Mn+Co)に対して、一次粒子表面 の Nbの原子比は 8. 8倍となっていた。
比較例 10
Li CO、 Ni(OH)、 Mn O、 CoOOHを、 Li:Ni:Mn:Co= 1. 10:0.45:0.45
2 3 2 3 4
:0. 10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製 した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー 中の固形分をメジアン径 0. 16 μ mに粉枠した。
[0272] 次に、このスラリー(固形分含有量 13重量%、粘度 1350cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 2. 7Χ104Ω 'cm、含有炭素濃度 Cは 0. 02 3重量0 /0、糸且成が Li (Ni Mn Co )0のリチウムニッケルマンガンコバ
1.096 0.458 0.444 0.098 2
ルト複合酸化物(x,, =0. 098、 y,, =0. 016、 z,, =0. 096)を得た。この平均一 次粒子径は 0. 6 μ mで、メジアン径は 3. 0 m、 D は 5.: L m、嵩密度は 1. 2g/
90
cc、 BET比表面積は 1. 7m2Zgであった。
比較例 11
Li CO、 Ni(OH)、 Mn O、 CoOOHゝ Li WOを、 Li:Ni:Mn:Co:W= 1. 10:
2 3 2 3 4 2 4
0. 45:0.45:0. 10:0. 02のモル比となるように秤量し、混合した後、これに純水を 加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉 砕機を用いて、スラリー中の固形分をメジアン径 0. 13μ mに粉砕した。
[0273] 次に、このスラリー(固形分含有量 15重量%、粘度 1910cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 1. 1 X 104 Ω 'cm、含有炭素濃度 Cは 0. 05 0重量0 /0、組成力Lil. 124 (NiO. 457MnO. 446CoO. 097) 02のリチウム-ッケ ルマンガンコバルト複合酸化物(χ', =0. 097、 y,, =0. 012、 z,, =0. 124)を得 た。また、(Ni, Mn, Co)トータルのモル比を 1とした時、 Wの含有モル比率は 2. 06 モル%であった。この平均一次粒子径は 0. 2 μ mで、メジアン径は 0. 8 m、 D は
90
1. 3 /ζ πι、嵩密度は 0. 9gZcc、 BET比表面積は 3. 8m2Zgであった。さらに、粒子 全体の W (タングステン)の原子比(WZ (Ni+Mn+Co)に対して、一次粒子表面の Wの原子比は 6. 0倍となっていた。
比較例 12
Li CO、 Ni (OH) 、 Mn O、 CoOOHゝ Li B Oを、 Li:Ni: Mn: Co : B= 1. 10 :
2 3 2 3 4 2 4 7
0. 45 : 0. 45 : 0. 10 : 0. 005のモノ kttとなるように样量し、混合した後、これに純水 を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉 砕機を用いて、スラリー中の固形分をメジアン径 0. 16 μ mに粉砕した。
次に、このスラリー(固形分含有量 15重量%、粘度 1460cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 5. 3 Χ 104 Ω 'cm、含有炭素濃度 Cは 0. 04 7重量0 /0、糸且成が Li (Ni Mn Co ) 02のリチウムニッケルマンガンコ
1. 096 0. 450 0. 451 0. 099
ノ ノレ卜複合酸ィ匕物 (χ', =0. 099、 y,, =—0. 001、 ζ,, =0. 096)を得た。また、 ( Ni, Mn, Co)トータルのモル比を 1とした時、 Bの含有モル比率は 0. 24モル0 /0であ つた。この平均一次粒子径は 1. 0 μ mで、メジアン径は 5. 9 m、 D は 8. 9 m、
90
嵩密度は 1. 8gZcc、 BET比表面積は 0. 8m2Zgであった。さらに、粒子全体の B ( ホウ素)の原子比(BZ (Ni+Mn+Co)に対して、一次粒子表面の Bの原子比は 21 3倍となっていた。 比較例 13
Li CO、 Ni (OH)、 Mn O、 CoOOH、 SnOを、 Li:Ni: Mn: Co : Sn= l. 10 : 0
2 3 2 3 4 2
. 45 : 0. 45 : 0. 10 : 0. 005のモノ kttとなるように样量し、混合した後、これに純水を 加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉 砕機を用いて、スラリー中の固形分をメジアン径 0. 17 mに粉砕した。
[0275] 次に、このスラリー(固形分含有量 14重量%、粘度 1580cp)を、二流体ノズル型ス プレードライヤ一 (大〗 11原化工機 (株)製: LT— 8型)を用 ヽて噴霧乾燥した。この時 の乾燥ガスとして空気を用い、乾燥ガス導入量 Gは 45LZmin、スラリー導入量 Sは 1 1 X 10_3mL/minとした(気液比 G/S=4091)。また、乾燥入り口温度は 150°Cと した。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約 15gをアルミナ 製るつぼに仕込み、空気雰囲気下、 1000°Cで 6時間焼成 (昇降温速度 3. 33°C/ min. )した後、解砕して、体積抵抗率が 3. 1 X 104 Ω 'cm、含有炭素濃度 Cは 0. 02 8重量0 /0、糸且成が Li (Ni Mn Co ) 0のリチウムニッケルマンガンコバ
1. 083 0. 448 0. 456 0. 096 2
ル卜複合酸ィ匕物 (χ', =0. 096、 y" = -0. 009、 z" =0. 083)を得た。また、(Ni , Mn, Co)トータルのモル比を 1とした時、 Snの含有モル比率は 0. 49モル0 /0であつ た。この平均一次粒子径は 0. 5 μ mで、メジアン径は 3. 8 m、 D は 6. 2 m、嵩
90
密度は 1. lgZcc、 BET比表面積は 1. 7m2Zgであった。さらに、粒子全体の Sn (ス ズ)の原子比 SnZ(Ni+Mn+Co)に対して、一次粒子表面の Snの原子比は 3. 5 倍となっていた。
[0276] 上記、実施例 12〜16及び比較例 10〜13で製造したリチウム遷移金属系化合物 粉体の組成及び物性値を、表 7— 10及び表 11に示す。また、焼成前駆体である噴 霧乾燥体の粉体性状を表 5' 'に示す。
[0277] また、実施例 12〜 16及び比較例 10〜 13で製造されたリチウムニッケルマンガンコ バルト複合酸化物粉体の細孔分布曲線を、図 61〜69にそれぞれ示し、 SEM画像( 写真)(倍率 X 10, 000)を図 70〜78にそれぞれ示し、粉末 X線回折パターンを図 7 9〜87にそれぞれ示す。
[0278] [表 7] 表 7
Figure imgf000111_0001
※ 一次粒子全体のリチウム、添加金属元素以外の金属元素の合計に対 する添加金属元素の合計の原子比 (添加元素 Z(Ni+Mn+Co))に対す る、粒子の表面部分の該原子比の比率 8]
表 8
Figure imgf000112_0001
※?)水銀圧入法における測定において、圧力 3.86kPaから 413MPaまでの昇圧時における水銀圧入量 ※^細孔分布曲線において、 80nm以上 300nm未満(細孔半径)に現れたサブピークに関する ※ 細孔分布曲線において、 300nm以上(細孔半径)に現れたメインピークに関する
)y ()(※0.281x0o.8-l
y (x) ※1598:o.0o.xl-
Figure imgf000113_0001
Figure imgf000113_0002
8002 表 10
Figure imgf000114_0001
表 1 1
Figure imgf000115_0001
※ァ) USは超音波分散" Ultra Sonic dispersion"による処理を表
し、その後の数値は処理時間(分)を表す。
[電池の作製及び評価 1 1]
上述の実施例 1〜 5及び比較例 1〜5で製造したリチウムニッケノレマンガンコバルト 系複合酸化物粉体をそれぞれ正極材料 (正極活物質)として用いて、以下の方法に よりリチウム二次電池を作製し、評価を行った。
レート試験:
実施例 1〜5及び比較例 1〜5で製造したリチウムニッケルマンガンコバルト系複合 酸化物粉体の各々 75重量0 /0と、アセチレンブラック 20重量0 /0、ポリテトラフルォロェ チレンパウダー 5重量0 /0の割合で秤量したものを乳鉢で十分混合し、薄くシート状に したものを 9mm φのポンチを用いて打ち抜いた。この際、全体重量は約 8mgになる ように調整した。これをアルミニウムエキスパンドメタルに圧着して、 9mm φの正極と した。
この 9mm φの正極を試験極とし、リチウム金属板を対極とし、 EC (エチレンカーボ ネート): EMC (ェチルメチルカーボネート) = 3 : 7 (容量比)の溶媒に1^^6を11!101 ZLで溶解した電解液を用い、厚さ 25 μ mの多孔性ポリエチレンフィルムをセパレー タとしてコイン型セルを組み立てた。
[0284] 得られたコイン型セルについて、初期 2サイクルは、充電上限電圧を 4. 8Vに設定 して定電流 '定電圧充電(電流密度: 0. 137mA/cm2 (0. 1C)で 4. 8Vまで定電流 充電後、 0. 01Cとなるまで定電圧充電)を行った後、放電下限電圧を 3. 0Vに設定 して定電流放電 (電流密度: 0. 137mA/cm2 (0. 1C) )を行った。引き続いて 3サイ クル目を、 0. 1Cの定電流で、充電上限電圧を 4. 4Vに設定した定電流 *定電圧充 電(電流密度 0. 137mA/cm2 (0. 1C)で 4. 4Vまで定電流充電後、 0. 01Cとなる まで定電圧充電)、放電下限電圧を 3. 0Vに設定した定電流放電により、充放電 1サ イタルの試験を行い、さらに 4〜: L 1サイクル目を、 0. 2Cの定電流'定電圧充電(0. 2 Cで 4. 4Vまで定電流充電後、 0. 01Cとなるまで定電圧充電)、 0. 1C、 0. 2C、 0. 5C、 1C、 3C、 5C、 7C、及び 9Cの各定電流放電での試験を行った。ただし、 1C相 当の電流は、活物質 lg当たり 150mAと仮定した。この時の 1サイクル目の 0. 1C放 電容量 (mAhZg) (初回放電容量)、 4サイクル目の 0. 1C放電容量 (mAhZg) (4 サイクル目放電容量) [a] )、 7サイクル目の 1C放電容量 (mAhZg) (7サイクル目放 電容量 [b])、及び 4サイクル目放電容量 [a]に対する 7サイクル目放電容量 [b]の百 分率(%)、 11サイクル目の 9C放電容量 (mAhZg)を調べ、結果を表 12に示した。
[0285] なお、実施例の合格判定基準として、前記 1サイクル目の初期放電容量が 200mA hZg以上、前記 7サイクル目の 1C放電容量が 150mAhZg以上、前記 0. 1C放電 容量に対する 1C放電容量の百分率(%)が 82%以上、前記 11サイクル目の 9C放電 容量が 60mAhZg以上を設定した。
[0286] [表 12] 表 12
Figure imgf000117_0001
表 12より次のことが明らかである。
[0287] 比較例 1〜4では水銀圧入量が少なすぎるため、電池の放電容量がローレート、ハ ィレートともに低い。
[0288] 比較例 5では水銀圧入量が少なすぎることに加え、 Li量 zが下限未満であるため、 電池の放電容量がローレート、ハイレートともに低い。
[電池の作製及び評価 1 2]
さらに、上述の実施例 6, 7及び比較例 6で製造したリチウムニッケルマンガンコバ ルト系複合酸化物粉体をそれぞれ正極材料 (正極活物質)として用いて、以下の方 法によりリチウム二次電池を作製し、評価を行った。
レート試験:
実施例 6, 7及び比較例 4, 6で製造したリチウムニッケルマンガンコノ レト系複合酸 化物粉体の各々 75重量%と、アセチレンブラック 20重量%、ポリテトラフルォロェチ レンパウダー 5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にし たものを 9mm φのポンチを用いて打ち抜いた。この際、全体重量は約 8mgになるよ うに調整した。これをアルミニウムエキスパンドメタルに圧着して、 9mm φの正極とし た。
[0289] この 9mm φの正極を試験極とし、リチウム金属板を対極とし、 EC (エチレンカーボ ネート): DMC (ジメチノレカーボネート): EMC (ェチノレメチノレカーボネート) = 3 : 3 :4 (容量比)の溶媒に LiPF6を ImolZLで溶解した電解液を用い、厚さ 25 μ mの多孔 性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。
[0290] 得られたコイン型セルについて、初期 2サイクルは、充電上限電圧を 4. 4Vに設定 して定電流 '定電圧充電(電流密度: 0. 137mA/cm2 (0. 1C)で 4. 4Vまで定電流 充電後、 0. 01Cとなるまで定電圧充電)を行った後、放電下限電圧を 3. OVに設定 して定電流放電 (電流密度 0. 137mA/cm2 (0. 1C) )を行った。さらに 3〜10サイ クル目を、 0. 2Cの定電流'定電圧充電(0. 2Cで 4. 4Vまで定電流充電後、 0. 01C となるまで定電圧充電)、 0. 1C、 0. 2C、 0. 5C、 1C、 3C、 5C、 7C、及び 9Cの各定 電流放電での試験を行った。ただし、 1C相当の電流は、活物質 lg当たり 150mAと 仮定した。この時の 1サイクル目の 0. 1C放電容量 (mAh/g) (初回放電容量)、 3サ イタル目の 0. 1C放電容量 (mAhZg) (3サイクル目放電容量) [a] )、 6サイクル目の 1C放電容量 (mAhZg) (6サイクル目放電容量 [b])、及び 10サイクル目の 9C放電 容量 (mAh/g) ) (10サイクル目放電容量 [c])を調べ、結果を表 13に示した。
[0291] なお、実施例の合格判定基準として、前記 1サイクル目の初期放電容量が 170mA hZg以上、 3サイクル目の 0. 1C放電容量が 175mAhZg以上、 6サイクル目の 1C 放電容量が 155mAhZg以上、 10サイクル目の 9C放電容量が llOmAhZg以上を 疋レ /こ。
[0292] [表 13]
Figure imgf000119_0002
Figure imgf000119_0001
表 13より次のことが明らかである。
[0293] 比較例 4、 6では水銀圧入量が少なすぎるため、ほぼ同等の Coモル比 (y)の実施 例サンプル (実施例 7、 6)と比較すると、電池の放電容量がローレート、ノ、ィレートとも に低い。
[0294] これに対し、特定の水銀圧入量を有する本発明のリチウム遷移金属系化合物粉体 を正極材料として用いることにより、高電圧使用時のサイクル劣化が抑えられ、容量 が高ぐ負荷特性にも優れた、性能バランスの良いリチウム二次電池用正極材料が 提供されることが分かる。
[0295] また、実施例 1〜5、比較例 1〜5に関する噴霧乾燥体 (焼成前駆体)の粉体性状( メジアン径、嵩密度、比表面積)を表 14に示す。
[0296] [表 14] 1
Figure imgf000120_0001
5)USは超音波分歉" LUtra Sonic dispersion"を衣す。
表 14より、実施例 1〜5は超音波分散 (5分)後のメジアン径が、 0.: m以上 1 m以下、 BET比表面積が 10〜60mWeあるのに対し、比較例 1〜5は: 1 mより 大きく(すべて 5 μ m以上)、 60m2/gより大き 、ことが明らかである。
[電池の作製及び評価 2]
上述の実施例 8〜: 11及び比較例 7〜9で製造したリチウムニッケルマンガンコバル ト系複合酸化物粉体又はリチウムニッケルマンガン複合酸化物粉体をそれぞれ正極 材料 (正極活物質)として用いて、リチウム二次電池を作製し、評価を行った。 [0297] リチウム二次電池の作製及びレート試験は、前述の [電池の作成及び評価 1 2]と 同様にして行った。
[0298] なお、実施例の合格判定基準として、前記 1サイクル目の初期放電容量が 175mA hZg以上、 3サイクル目の 0. 1C放電容量が 175mAhZg以上、 6サイクル目の 1C 放電容量が 160mAhZg以上、 10サイクル目の 9C放電容量が 116mAhZg以上を 設疋した。
[0299] 結果を表 15に示す。
[0300] [表 15]
表 15
Figure imgf000122_0001
表 15より、本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト 系複合酸化物粉体によれば、負荷特性に優れたリチウム二次電池を実現することが できることが分力ゝる。
[電池の作製及び評価 3]
(1)レート試験
上述の実施例 12〜 16及び比較例 10〜 13で製造したリチウムニッケルマンガンコ バルト系複合酸化物粉体又はリチウムニッケルマンガン複合酸化物粉体をそれぞれ 正極材料 (正極活物質)として用いて、リチウム二次電池を作製し、評価を行った。
[0301] リチウム二次電池の作製及びレート試験は、前述の [電池の作成及び評価 1 2]と 同様にして行った。
[0302] なお、実施例の合格判定基準として、前記 1サイクル目の初期放電容量が 176mA hZg以上、 3サイクル目の 0. 1C放電容量が 176mAhZg以上、 6サイクル目の 1C 放電容量が 160mAhZg以上、 10サイクル目の 9C放電容量が 116mAhZg以上を 設疋した。
[0303] 結果を表 16に示す。
(2)低温負荷特性試験:
実施例 12〜 16及び比較例 10〜 13で製造した層状リチウムニッケルマンガンコバ ルト複合酸化物粉体を各々 75重量%、アセチレンブラック 20重量%、ポリテトラフル ォロエチレンパウダー 5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシー ト状にしたものを 9mm φ及び 12mm φのポンチを用いて打ち抜いた。この際、全体 重量は各々約 8mg、約 18mgになるように調整した。これをアルミニウムエキスパンド メタノレに圧着して、 9mm φ及び 12mm φの正極とした。 9mm φのものを「正極 Α」、 12mm φのものを「正極 Β」という。
[0304] 9mm φの正極 Αを試験極とし、リチウム金属板を対極とし、 EC (エチレンカーボネ ート): DMC (ジメチルカーボネート): EMC (ェチルメチルカーボネート) =3 : 3 :4 ( 容量比)の溶媒に LiPF6を ImolZLで溶解した電解液を用い、厚さ 25 μ mの多孔 性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。
[0305] 得られたコイン型セルについて、 0. 2mAZcm2の定電流定電圧充電、即ち正極か らリチウムイオンを放出させる反応を上限 4. 2Vで行った。次いで 0. 2mAZcm2、正 極活物質単位重量当たりの初期充電容量を Qs (C) [mAh/g] ,初期放電容量を Q s (D) [mAhZg]とした。
[0306] 負極活物質として平均粒子径 8〜: LO /z mの黒鉛粉末 (d = 3. 35A)、バインダ
002
一としてポリフッ化ビ-リデンをそれぞれ用い、これらを重量比で 92. 5 : 7. 5の割合 で秤量し、これを N—メチルピロリドン溶液中で混合し、負極合剤スラリーとした。この スラリーを 20 mの厚さの銅箔の片面に塗布し、乾燥して溶媒を蒸発させた後、 12 mm φに打ち抜き、 0. 5tonZcm2 (49MPa)でプレス処理をしたものを負極 Bとした 。この時、電極上の負極活物質の量は約 5〜12mgになるように調節した。
[0307] なお、この負極 Bを試験極とし、リチウム金属を対極として電池セルを組み、 0. 2m AZcm2— 3mVの定電流一定電圧法(カット電流 0. 05mA)で負極にリチウムイオン を吸蔵させる試験を下限 0Vで行った際の、負極活物質単位重量当たりの初期吸蔵 容量を Qf [mAhZg]とした。
[0308] 上記正極 Bと負極 Bを組み合わせ、コインセルを使用して試験用電池を組み立て、 その電池性能を評価した。即ち、コインセルの正極缶の上に、作製した上述の正極 B を置き、その上にセパレータとして厚さ 25 μ mの多孔性ポリエチレンフィルムを置き、 ポリプロピレン製ガスケットで押さえた後、非水電解液として、 EC (エチレンカーボネ ート): DMC (ジメチルカーボネート): EMC (ェチルメチルカーボネート) = 3 : 3 :4 ( 容量比)の溶媒に LiPF6を ImollZLで溶解した電解液を用い、これを缶内に加え てセパレータに十分染み込ませた後、上述の負極 Bを置き、負極缶を載せて封口し、 コイン型のリチウム二次電池を作製した。なお、この時、正極活物質の重量と負極活 物質重量のバランスは、ほぼ以下の式を満たすように設定した。
[0309] 正極活物質重量 [g] Z負極活物質重量 [g]
= (Qf[mAh/g]/l. 2) Qs (C) [mAh/g]
こうして得られた電池の低温負荷特性を測定するため、電池の 1時間率電流値、即 ち 1Cを下式の様に設定し、以下の試験を行った。
[0310] lC[mA] = Qs (D) X正極活物質重量 [g]Zh
まず、室温で定電流 0. 2C充放電 2サイクル及び定電流 1C充放電 1サイクルを行 つた。なお、充電上限は 4. IV、下限電圧は 3. OVとした。次に、 1Z3C定電流充放 電により、充電深度 40%に調整したコインセルを—30°Cの低温雰囲気に 1時間以上 保持した後、定電流 0. 5C[mA]で 10秒間放電させた時の 10秒後の電圧を V[mV] 、放電前の電圧を V0[mV]とした時、 AV=V— V0として下式より抵抗値
R[ Q ]を算出した。
[0311] R[ Q ] = AV[mV]/0. 5C[mA]
表 16に、実施例 12〜 16及び比較例 10〜 13のリチウムニッケルマンガンコバルト 複合酸化物をそれぞれ正極活物質とした使用した電池で測定した抵抗値を示す。抵 抗値が小さい程、低温負荷特性が良好であることを表す。なお、実施例の合格判定 基準として、該抵抗値が 480 Ω以下であることを設定した。
[0312] [表 16]
表 16
Figure imgf000126_0001
表 16より、本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト 系複合酸化物粉体等によれば、負荷特性に優れたリチウム二次電池を実現すること ができることが分かる。
本発明を詳細に、また、特定の実施態様を参照して説明したが、本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明 らかである。
[0313] 本出願は、 2006年 4月 7日出願の日本特許出願(特願 2006— 106288)、 2006年 9月 2 9日出願の日本特許出願 (特願 2006— 266580)、 2006年 9月 22日出願の日本特許出 願(特願 2006— 257260)、及び、 2006年 11月 10日出願の日本特許出願(特願 2006— 305015)に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0314] 本発明のリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いる ことが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソ コン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター 、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータ ブル CD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テー プレコーダー、ラジオ、ノ ックアップ電源、モーター、照明器具、玩具、ゲーム機器、 時計、ストロボ、カメラ、電動工具、自動車用動力源等を挙げることができる。

Claims

請求の範囲
[1] 水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa力ら 413MPaまでの昇 圧時における水銀圧入量力 0. 8cm3Zg以上、 3cm3Zg以下であることを特徴とす るリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
[2] 水銀圧入法による細孔分布曲線力 細孔半径 300nm以上、 lOOOnm以下にピー クトップが存在するメインピークを有し、かつ細孔半径 80nm以上、 300nm未満にピ ークトップが存在するサブピークを有さな 、ことを特徴とする請求項 1に記載のリチウ ム遷移金属系化合物粉体。
[3] 水銀圧入法による細孔分布曲線において、細孔半径 300nm以上、 lOOOnm以下 にピークトップが存在するメインピークに係る細孔容量が 0. 5cm3Zg以上、 1. 5cm3 Zg以下であることを特徴とする請求項 1に記載のリチウム遷移金属系化合物粉体。
[4] レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し、粒 子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kHz)後 に測定されたメジアン径が 0. 6 μ m以上、 5 μ m以下であることを特徴とする請求項 1 に記載のリチウム遷移金属系化合物粉体。
[5] 下記組成式 (I)で表されるリチウムニッケルマンガンコバルト系複合酸ィ匕物であるこ とを特徴とする請求項 1に記載のリチウム遷移金属系化合物粉体。 Li[Li { (Li Ni z/(2+z) x (
Mn ) Co } )]0…組成式(I)
l -3x)/2 (l +x)/2 1 -y y 2/(2+z 2
ただし、組成式(I)中、 0≤x≤0. 33、 0≤y≤0. 2、—0. 02≤z≤0. 2 (1— y) (1 3x)である。
[6] 嵩密度が 0. 5〜1. 5gZcm3であることを特徴とする請求項 1に記載のリチウム遷移 金属系化合物粉体。
[7] BET比表面積が 1. 5〜5m2Zgであることを特徴とする請求項 1に記載のリチウム 遷移金属系化合物粉体。
[8] 含有炭素濃度を C (重量%)とした時、 C値が 0. 005重量%以上、 0. 2重量%以下 であることを特徴とする請求項 1に記載のリチウム遷移金属系化合物粉体。
[9] リチウム化合物、及び少なくとも一種以上の遷移金属化合物を、液体媒体中で粉 砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体を酸素 含有ガス雰囲気中で焼成することを特徴とする請求項 1に記載のリチウム遷移金属 系化合物粉体の製造方法。
[10] 噴霧乾燥体が、噴霧乾燥体の二次粒子内に空隙を形成させる化合物を少なくとも 1種以上含ませて、焼成前駆体として用いるものであることを特徴とする請求項 9に記 載の製造方法。
[11] 空隙を形成させる化合物が、焼成時に分解ガスを発生又は昇華して、二次粒子内 に空隙を形成させる化合物であることを特徴とする請求項 10に記載の製造方法。
[12] 分解ガスの一つが、炭酸ガス (CO )であることを特徴とする請求項 11に記載の製
2
造方法。
[13] リチウム化合物が炭酸リチウムであることを特徴とする請求項 9に記載の製造方法。
[14] リチウム化合物、及び少なくとも一種以上の遷移金属化合物を、液体媒体中で粉 砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体であつ て、レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し、 粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kHz) 後に測定された該噴霧乾燥体のメジアン径が 0. 01 μ m以上、 4 m以下であること を特徴とするリチウム遷移金属系化合物の噴霧乾燥体。
[15] BET比表面積が 10〜70m2Zgであることを特徴とする請求項 14に記載の噴霧乾 燥体。
[16] 請求項 14に記載の噴霧乾燥体に、さらに二次粒子内に空隙を形成させる化合物 を少なくとも 1種以上含んで!/、ることを特徴とするリチウム遷移金属系化合物の焼成 前駆体。
[17] 請求項 1に記載のリチウム遷移金属系化合物粉体と結着剤とを含有する正極活物 質層を集電体上に有することを特徴とするリチウム二次電池用正極。
[18] リチウムを吸蔵,放出可能な負極、リチウム塩を含有する非水電解質、及びリチウム を吸蔵 ·放出可能な正極を備えたリチウム二次電池であって、正極として請求項 17 に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。
[19] 下記組成式 (Γ )で表される化合物よりなり、層状構造に帰属する結晶構造を含ん で構成され、 CuKひ線を使用した粉末 X線回折測定において、回折角 2 Θ力 ½4. 5 ° 付近に存在する(110)回折ピークの半価幅を FWHM (110)とした時に、 0. 01≤ FWHM (l lO)≤0. 2で表されることを特徴とするリチウム二次電池正極材料用リチ ゥムニッケルマンガンコバルト系複合酸ィ匕物粉体。
Figure imgf000130_0001
ただし、組成式(Γ)中、 0≤χ'≤0. 1、 -0. l≤y'≤0. 1、 (Ι-χ') (0. 05— 0. 9 8y,)≤ζ,≤ (Ι -χ' ) (0. 15-0. 88y,)である。
糸且成式(Γ)【こお ヽて、 0. 04≤χ'≤0. 099、 -0. 03≤y'≤0. 03、(1— x,) (0. 08 -0. 98y' )≤z'≤(l -x' ) (0. 13— 0. 88y,)であることを特徴とする請求項 19 に記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕 物粉体。
CuK a線を使用した粉末 X線回折測定において、回折角 2 0力 ½4° 付近に存在 する(018)回折ピーク、 64. 5° 付近に存在する(110)回折ピーク、及び 68° 付近 に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異 相由来の回折ピークを持たな 、か、ある!/、は異相由来の回折ピークを有する場合、 本来の結晶相の回折ピークに対する異相ピークの積分強度比が、各々、以下の範 囲内にあることを特徴とする請求項 19に記載のリチウム二次電池正極材料用リチウ ムニッケルマンガンコバルト系複合酸ィ匕物粉体。
0≤1 /\ ≤0. 20
018 * 018
0≤1 /\ ≤0. 25
110 * 110
0≤1 /\ ≤0. 30
113 * 113
ここで、 I 、1 、1 は、それぞれ (018)、(110)、(113)回折ピークの積分強度
018 110 113
を表し、 I 、1 、1 は、それぞれ (018)、(110)、(113)回折ピークのピークト
018 * 110 * 113 *
ップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。
水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa力ら 413MPaまでの昇 圧時における水銀圧入量力 0. 7cm3Zg以上、 1. 5cm3Zg以下であることを特徴 とする請求項 19に記載のリチウム二次電池正極材料用リチウムニッケルマンガンコ バルト系複合酸化物粉体。
水銀圧入法による細孔分布曲線力 細孔半径 300nm以上、 lOOOnm以下にピー クトップが存在するメインピークを有し、かつ細孔半径 80nm以上、 300nm未満にピ ークトップが存在するサブピークを有さないことを特徴とする請求項 19に記載のリチ ゥム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
[24] 水銀圧入法による細孔分布曲線において、細孔半径 300nm以上、 lOOOnm以下 にピークトップが存在するメインピークに係る細孔容量が 0. 3cm3/g以上、 1. 0cm3 Zg以下であることを特徴とする請求項 19に記載のリチウム二次電池正極材料用リチ ゥムニッケルマンガンコバルト系複合酸ィ匕物粉体。
[25] レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し、粒 子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kHz)後 に測定されたメジアン径が 1 μ m以上、 5 μ m以下であることを特徴とする請求項 19 に記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕 物粉体。
[26] 嵩密度が 0. 5〜1. 7gZcm3であることを特徴とする請求項 19に記載のリチウム二 次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
[27] BET比表面積が 1. 4〜3m2Zgであることを特徴とする請求項 19に記載のリチウム 二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体。
[28] 含有炭素濃度を C (重量%)とした時、 C値が 0. 005重量%以上、 0. 05重量%以 下であることを特徴とする請求項 19に記載のリチウム二次電池正極材料用リチウム- ッケルマンガンコバルト系複合酸ィ匕物粉体。
[29] 40MPaの圧力で圧密した時の体積抵抗率が 1 X 103 Ω 'cm以上、 1 X 106 Ω 'cm 以下であることを特徴とする請求項 19に記載のリチウム二次電池正極材料用リチウ ムニッケルマンガンコバルト系複合酸ィ匕物粉体。
[30] リチウム化合物、ニッケル化合物、マンガンィ匕合物、及びコバルト化合物を、液体媒 体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られ たスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を酸素含有ガス 雰囲気中で、 940°C≤T≤ 1200°Cの温度 T(°C)で焼成する焼成工程とを含むことを 特徴とする請求項 19に記載のリチウム二次電池正極材料用リチウムニッケルマンガ ンコバルト系複合酸化物粉体の製造方法。 [31] リチウム化合物が炭酸リチウムであることを特徴とする請求項 30に記載のリチウム二 次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体の製造方法
[32] スラリー調製工程にぉ 、て、リチウム化合物、ニッケル化合物、マンガン化合物、及 びコバルト化合物を、液体媒体中で、レーザー回折 Z散乱式粒度分布測定装置に よって、屈折率を 1. 24に設定し、粒子径基準を体積基準として、 5分間の超音波分 散(出力 30W、周波数 22. 5kHz)後に測定するメジアン径が 0. 以下になるま で粉砕し、噴霧乾燥工程において、噴霧乾燥時のスラリー粘度を V (cp)、スラリー供 給量を(LZmin)、ガス供給量を G (LZmin)とした際、 50cp≤V≤4000cp、 1500 ≤GZS≤ 5000となる条件で噴霧乾燥を行うことを特徴とする請求項 30に記載のリ チウムニ次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の 製造方法。
[33] リチウム化合物、ニッケル化合物、マンガンィ匕合物、及びコバルト化合物を、液体媒 体中で粉砕して、これらを均一に分散させてなるスラリーを噴霧乾燥して得られる、リ チウムニ次電池正極材料用リチウムニッケルマンガンコバルト系複合酸ィ匕物粉体の 前駆体となる噴霧乾燥粉体であって、レーザー回折 Z散乱式粒度分布測定装置に よって、屈折率を 1. 24に設定し、粒子径基準を体積基準として、 5分間の超音波分 散(出力 30W、周波数 22. 5kHz)後に測定された該噴霧乾燥粉体のメジアン径が 0 . 01 μ m以上、 4 μ m以下であることを特徴とするリチウムニッケルマンガンコバルト 系複合酸化物の噴霧乾燥粉体。
[34] BET比表面積が 10〜: L00m2Zgであることを特徴とする請求項 33に記載の噴霧 乾燥粉体。
[35] 請求項 19に記載のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト 系複合酸化物粉体と結着剤とを含有する正極活物質層を集電体上に有することを特 徴とするリチウム二次電池用正極。
[36] リチウムを吸蔵,放出可能な負極、リチウム塩を含有する非水電解質、及びリチウム を吸蔵 ·放出可能な正極を備えたリチウム二次電池であって、正極として請求項 35 に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。 [37] 満充電状態における正極の充電電位が 4. 35V(vs. LiZLi + )以上となるように設 計されていることを特徴とする請求項 36に記載のリチウム二次電池。
[38] リチウムイオンの挿入'脱離が可能な機能を有するリチウム遷移金属系化合物を主 成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なくとも 1 種以上を、主成分原料中の遷移金属元素の合計モル量に対して 0. 01モル%以上 、 2モル%未満の割合で添加した後、焼成されたものであることを特徴とするリチウム 二次電池正極材料用リチウム遷移金属系化合物粉体。
[39] 前記添加剤が、 Mo、 W、 Nb、 Ta、及び Re力 選ばれる少なくとも一種以上の元素
(以下「添加元素」と称す。 )を含有する酸化物であることを特徴とする請求項 38に記 載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
[40] 一次粒子の表面部分の Li及び前記添加元素以外の金属元素の合計に対する該 添加元素の合計の原子比力 粒子全体の該原子比の 5倍以上であることを特徴とす る請求項 38に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体
[41] レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に設定し、粒 子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22. 5kHz)後 に測定されたメジアン径が 0. 1 μ m以上、 3 μ m未満であることを特徴とする請求項 3 8に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
[42] 一次粒子の平均径が 0. 1 μ m以上、 0. 9 m以下であることを特徴とする請求項 3 8に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
[43] BET比表面積が 1. 5m2Zg以上、 5m2Zg以下であることを特徴とする請求項 38 に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
[44] 水銀圧入法による水銀圧入曲線において、圧力 3. 86kPa力ら 413MPaまでの昇 圧時における水銀圧入量力 0. 7cm3Zg以上、 1. 5cm3Zg以下であることを特徴 とする請求項 38に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物 粉体。
[45] 水銀圧入法による細孔分布曲線力 細孔半径 300nm以上、 lOOOnm以下にピー クトップが存在するメインピークを少なくとも 1つ以上有し、かつ細孔半径 80nm以上、 300nm未満にピークトップが存在するサブピークを有さないことを特徴とする請求項 38に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
[46] 水銀圧入法による細孔分布曲線において、細孔半径 300nm以上、 lOOOnm以下 にピークトップが存在するピークに係る細孔容量が 0. 4cm3Zg以上、 lcm3Zg以下 であることを特徴とする請求項 38に記載のリチウム二次電池正極材料用リチウム遷 移金属系化合物粉体。
[47] 嵩密度が 0. 5gZcm3以上、 1. 7gZcm3以下であることを特徴とする請求項 38な いし 46のいずれか 1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化 合物粉体。
[48] 40MPaの圧力で圧密した時の体積抵抗率が 1 X 103 Q 'cm以上、 1 X 106 Ω 'cm 以下であることを特徴とする請求項 38に記載のリチウム二次電池正極材料用リチウ ム遷移金属系化合物粉体。
[49] 層状構造に帰属する結晶構造を含んで構成されるリチウムニッケルマンガンコバル ト系複合酸ィ匕物を主成分としたことを特徴とする請求項 38に記載のリチウム二次電 池正極材料用リチウム遷移金属系化合物粉体。
[50] 組成が、下記組成式 (Γ ' )で示されることを特徴とする請求項 49に記載のリチウム 二次電池正極材料用リチウム遷移金属系化合物粉体。
LiMO
2
ただし、上記式(Γ ' )中、 Mは、 Li、 Ni及び Mn、或いは、 Li、 Ni、 Mn及び Coから 構成される元素であり、 MnZNiモル比は 0. 8以上、 5以下、 CoZ (Mn+Ni+Co) モル比は 0以上、 0. 30以下、 M中の Liモル比は 0. 001以上、 0. 2以下である。
[51] 酸素含有ガス雰囲気下において、焼成温度 970°C以上で焼成されたものであるこ とを特徴とする請求項 49に記載のリチウム二次電池正極材料用リチウム遷移金属系 化合物粉体。
[52] 含有炭素濃度を C (重量%)とした時、 C値が 0. 005重量%以上、 0. 05重量%以 下であることを特徴とする請求項 49に記載のリチウム二次電池正極材料用リチウム 遷移金属系化合物粉体。
[53] 前記組成式 (Γ ' )中の M力 下記式 (ΙΓ ' )で表されることを特徴とする請求項 50に 記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
M=Li {(Ni Mn ) Co }
z"/(2 + z") (l + y")/2 (l-y")/2 1-x" x" 2/(2 + z") ただし、上記式(11,,)中、 0≤χ,,≤0. 1、 一0. l≤y,,≤0. 1、 (1 x,,) (0. 05 —0. 98y")≤z' '≤ (1-χ") (0. 20-0. 88y,,)である。
[54] CuK a線を使用した粉末 X線回折測定にぉ 、て、回折角 2 Θ力 ½4. 5° 付近に存 在する(110)回折ピークの半価幅を FWHM( 110)とした時に、 0. 01≤FWHM(1 10)≤0. 2で表されることを特徴とする請求項 53に記載のリチウム二次電池正極材 料用リチウム遷移金属系化合物粉体。
[55] CuK a線を使用した粉末 X線回折測定にぉ 、て、回折角 2 Θ力 ½4° 付近に存在 する(018)回折ピーク、 64. 5° 付近に存在する(110)回折ピーク、及び 68° 付近 に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異 相由来の回折ピークを持たないか、或いは異相由来の回折ピークを有する場合、本 来の結晶相の回折ピークに対する異相ピークの積分強度比が、各々、以下の範囲 内にあることを特徴とする請求項 53又は 54に記載のリチウム二次電池正極材料用リ チウム遷移金属系化合物粉体。
0≤1 /\ ≤0. 20
018* 018
0≤1 /\ ≤0. 25
110* 110
0≤1 /\ ≤0. 30
113* 113
ここで、 I 、 1 、 1 は、それぞれ (018)、(110)、(113)回折ピークの積分強度
018 110 113
を表し、 I 、 1 、 1 は、それぞれ (018)、(110)、(113)回折ピークのピークト
018* 110* 113*
ップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。
[56] リチウム化合物と、 V、 Cr、 Mn、 Fe、 Co、 Ni、及び Cuから選ばれる少なくとも 1種 類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液 体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得 られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する 焼成工程とを含むことを特徴とする請求項 38に記載のリチウム二次電池正極材料用 リチウム遷移金属系化合物粉体の製造方法。
[57] スラリー調製工程にぉ 、て、リチウム化合物と、遷移金属化合物と、添加剤とを、液 体媒体中で、レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に 設定し、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22 . 5kHz)後に測定するメジアン径が 0. 4 m以下になるまで粉砕し、噴霧乾燥工程 において、噴霧乾燥時のスラリー粘度を V (cp)、スラリー供給量を S (L/min)、ガス 供給量を G (L/min)とした際、 50cp≤V≤4000cp, 1500≤G/S≤ 5000となる 条件で噴霧乾燥を行うことを特徴とする請求項 56に記載のリチウム二次電池正極材 料用リチウム遷移金属系化合物粉体の製造方法。
[58] 遷移金属化合物として少なくともニッケルィ匕合物、マンガンィ匕合物及びコバルトィ匕 合物を含み、焼成工程において、噴霧乾燥粉体を、酸素含有ガス雰囲気下、 970°C 以上で焼成することを特徴とする請求項 56に記載のリチウム二次電池正極材料用リ チウム遷移金属系化合物粉体の製造方法。
[59] リチウム化合物が炭酸リチウムであることを特徴とする請求項 56に記載のリチウム二 次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
[60] リチウム化合物と、 V、 Cr、 Mn、 Fe、 Co、 Ni、及び Cuから選ばれる少なくとも 1種 類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液 体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られる、リチ ゥム二次電池正極材料用リチウム遷移金属系化合物粉体の前駆体となる噴霧乾燥 体であって、レーザー回折 Z散乱式粒度分布測定装置によって、屈折率を 1. 24に 設定し、粒子径基準を体積基準として、 5分間の超音波分散(出力 30W、周波数 22 . 5kHz)後に測定された該噴霧乾燥体のメジアン径が 0. 01 m以上、4 m以下 であることを特徴とする噴霧乾燥体。
[61] BET比表面積が 10m2/g以上、 100m2/g以下であることを特徴とする請求項 60 に記載の噴霧乾燥体。
[62] 請求項 38に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体 と結着剤とを含有する正極活物質層を集電体上に有することを特徴とするリチウム二 次電池用正極。
[63] リチウムを吸蔵,放出可能な負極、リチウム塩を含有する非水電解質、及びリチウム を吸蔵 ·放出可能な正極を備えたリチウム二次電池であって、正極として請求項 62 に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。
PCT/JP2007/057772 2006-04-07 2007-04-06 リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池 WO2007116971A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07741208.8A EP2006937A4 (en) 2006-04-07 2007-04-06 LITHIUM TRANSITION METAL BASED COMPOSITE POWDER FOR POSITIVE ELECTRODE MATERIAL IN A RECHARGEABLE LITHIUM BATTERY, METHOD FOR PRODUCING THE POWDER, spray-dried product POWDER, Feuerungs-PRECURSOR POWDER AND POSITIVE ELECTRODE FOR RECHARGEABLE LITHIUM BATTERY AND THE POWDER USED RECHARGEABLE LITHIUM BATTERY
US12/296,212 US8535829B2 (en) 2006-04-07 2007-04-06 Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-106288 2006-04-07
JP2006106288 2006-04-07
JP2006257260 2006-09-22
JP2006-257260 2006-09-22
JP2006266580 2006-09-29
JP2006-266580 2006-09-29
JP2006-305015 2006-11-10
JP2006305015 2006-11-10

Publications (1)

Publication Number Publication Date
WO2007116971A1 true WO2007116971A1 (ja) 2007-10-18

Family

ID=38581250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057772 WO2007116971A1 (ja) 2006-04-07 2007-04-06 リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池

Country Status (5)

Country Link
US (1) US8535829B2 (ja)
EP (1) EP2006937A4 (ja)
KR (1) KR20080108222A (ja)
CN (2) CN102044672A (ja)
WO (1) WO2007116971A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081130A (ja) * 2007-09-04 2009-04-16 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びその噴霧乾燥工程で得られる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009117261A (ja) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池
JP2009277661A (ja) * 2007-11-30 2009-11-26 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011165327A (ja) * 2010-02-04 2011-08-25 Murata Mfg Co Ltd 非水電解質二次電池用電極活物質およびそれを用いた非水電解質二次電池
US20110206990A1 (en) * 2008-10-27 2011-08-25 Ryuichi Akagi Sintered lithium complex oxide
US20110223482A1 (en) * 2008-11-06 2011-09-15 Gs Yuasa International Ltd. Positive electrode for lithium secondary battery and lithium secondary battery
EP2399869A1 (de) * 2010-06-25 2011-12-28 Evonik Degussa GmbH Mischoxidpulver enthaltend die Elemente Lithium, Mangan, Nickel und Cobalt und Verfahren zu deren Herstellung
US20120028134A1 (en) * 2009-02-13 2012-02-02 Lg Chem, Ltd. Lithium secondary battery with improved energy density
US20130011726A1 (en) * 2010-01-08 2013-01-10 Mitsubishi Chemical Corporation Powders for positive-electrode material for lithium secondary battery, process for producing the same, positive electrode for lithium secondary battery employing the same, and lithium secondary battery
US8460822B2 (en) 2008-10-30 2013-06-11 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2015059778A1 (ja) * 2013-10-23 2015-04-30 株式会社日立製作所 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
US9225005B2 (en) 2010-04-01 2015-12-29 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary-battery, process for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2016054026A (ja) * 2014-09-02 2016-04-14 トヨタ自動車株式会社 非水電解液二次電池
WO2016175310A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
JP2019043843A (ja) * 2017-08-31 2019-03-22 住友金属鉱山株式会社 リチウム化合物、リチウムニッケル複合酸化物前駆体混合物、及びリチウムニッケル複合酸化物の製造方法
WO2020059471A1 (ja) * 2018-09-21 2020-03-26 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP2020053386A (ja) * 2018-09-21 2020-04-02 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP7597921B2 (ja) 2020-12-04 2024-12-10 エコプロ ビーエム カンパニー リミテッド 正極活物質およびこれを含むリチウム二次電池

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873496B1 (fr) * 2004-07-26 2016-04-01 Commissariat Energie Atomique Electrode pour accumulateur au lithium, procede de fabrication d'une telle electrode et accumulateur au lithium comportant une telle electrode
US7723262B2 (en) 2005-11-21 2010-05-25 Energ2, Llc Activated carbon cryogels and related methods
KR101496934B1 (ko) 2006-11-15 2015-03-03 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 전기 이중층 캐패시턴스 장치
KR101534042B1 (ko) * 2006-12-26 2015-07-08 미쓰비시 가가꾸 가부시키가이샤 리튬 천이 금속계 화합물 분체, 그 제조 방법, 및 그 소성 전구체가 되는 분무 건조체, 그리고 그것을 사용한 리튬 이차 전지용 정극 및 리튬 이차 전지
JP5470700B2 (ja) 2007-12-10 2014-04-16 住友大阪セメント株式会社 電極材料およびその製造方法、並びに、電極および電池
WO2011002536A2 (en) 2009-04-08 2011-01-06 Energ2, Inc. Manufacturing methods for the production of carbon materials
JP5795309B2 (ja) 2009-07-01 2015-10-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超高純度の合成炭素材料
WO2011056290A2 (en) * 2009-10-07 2011-05-12 Molecular Nanosystems, Inc. Methods and systems for making battery electrodes and devices arising therefrom
US8993177B2 (en) * 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
US9822015B2 (en) 2009-12-07 2017-11-21 Sumitomo Chemical Company, Limited Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
US20110159375A1 (en) * 2009-12-11 2011-06-30 Energ2, Inc. Carbon materials comprising an electrochemical modifier
WO2011112992A1 (en) 2010-03-12 2011-09-15 Energ2, Inc. Mesoporous carbon materials comprising bifunctional catalysts
DE102010032206A1 (de) * 2010-07-26 2012-04-05 Süd-Chemie AG Gasphasenbeschichtetes Lithium-Übergangsmetallphosphat und Verfahren zu dessen Herstellung
JP5620499B2 (ja) * 2010-08-26 2014-11-05 日立オートモティブシステムズ株式会社 非水電解質電池
WO2012036500A2 (ko) * 2010-09-16 2012-03-22 주식회사 엘지화학 신규한 전극 활물질 및 이를 포함하는 리튬 이차전지
US8654507B2 (en) 2010-09-30 2014-02-18 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
KR101138584B1 (ko) * 2010-10-21 2012-05-10 삼성전기주식회사 리튬이온 커패시터
CN103270628B (zh) 2010-12-17 2016-06-29 住友大阪水泥股份有限公司 电极材料及其制造方法
KR102048196B1 (ko) 2010-12-28 2019-11-25 바스프 에스이 향상된 전기화학적 특성을 포함하는 탄소 물질
CN103415947B (zh) * 2011-03-11 2016-05-11 三洋电机株式会社 非水电解质二次电池
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
WO2012164752A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US9209455B2 (en) 2011-08-16 2015-12-08 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
KR101452029B1 (ko) * 2011-09-20 2014-10-23 주식회사 엘지화학 고용량 양극활물질 및 이를 포함하는 리튬이차전지
JP5621740B2 (ja) * 2011-09-22 2014-11-12 住友大阪セメント株式会社 電極材料及び電極並びに電極材料の製造方法
JP5308600B1 (ja) * 2011-11-25 2013-10-09 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物
WO2013102533A1 (de) * 2012-01-06 2013-07-11 Basf Se Materialien, ihre herstellung und verwendung
KR101332020B1 (ko) * 2012-01-31 2013-11-25 전자부품연구원 리튬 이차전지용 양극 활물질 및 그의 제조방법
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
JP6003157B2 (ja) * 2012-03-30 2016-10-05 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2014002165A1 (ja) * 2012-06-25 2014-01-03 株式会社日立製作所 計算機システムおよびアプリケーションプログラム実行環境移行方法
EP2725642A4 (en) * 2012-08-24 2015-04-01 Mitsui Mining & Smelting Co LITHIUM, MANGANE AND NICKEL CONTAINING SPINELL MIXED OXIDE
KR101713454B1 (ko) * 2012-08-28 2017-03-07 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질 및 이것을 사용한 비수계 전해질 이차 전지
CN103700833B (zh) * 2012-09-27 2016-04-27 清华大学 锂离子电池正极复合材料
CN103700843B (zh) * 2012-09-27 2016-03-09 清华大学 锂离子电池正极复合材料
CN103700850B (zh) * 2012-09-27 2016-01-20 清华大学 锂离子电池正极复合材料
CN103700827B (zh) * 2012-09-27 2016-04-27 清华大学 锂离子电池正极复合材料及锂离子电池
CN110112377A (zh) 2013-03-14 2019-08-09 14族科技公司 包含锂合金化的电化学改性剂的复合碳材料
US20140272558A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Electrode for a lithium-based secondary electrochemical device and method of forming same
EP2908370B1 (en) * 2013-03-19 2018-11-28 LG Chem, Ltd. Low resistance electrode for electrochemical element, method for manufacturing same, and electrochemical element including same
US20140295261A1 (en) * 2013-03-28 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Electrochemical device and method for suppressing deterioration of the electrochemical device
CN104241622A (zh) * 2013-06-13 2014-12-24 苏州宝时得电动工具有限公司 正极材料及其制备方法
JP5701343B2 (ja) * 2013-07-10 2015-04-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
CN105493334B (zh) * 2013-09-30 2018-07-31 三洋电机株式会社 扁平型非水电解质二次电池以及使用其的电池组
IN2013CH04500A (ja) 2013-10-04 2015-04-10 Kennametal India Ltd
DE102013111356B4 (de) 2013-10-15 2019-04-18 Lemken Gmbh & Co. Kg Säherz für Einzelkornsämaschine
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
KR102192085B1 (ko) * 2013-12-06 2020-12-16 삼성전자주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP6486653B2 (ja) 2014-01-31 2019-03-20 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
KR101644684B1 (ko) * 2014-02-28 2016-08-01 주식회사 엘지화학 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
EP3143051B1 (en) 2014-03-14 2024-12-04 Group14 Technologies, Inc. Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
EP3142173B1 (en) * 2014-05-07 2019-01-02 Eliiy Power Co., Ltd. Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10840510B2 (en) 2014-07-31 2020-11-17 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same
WO2016031147A1 (ja) 2014-08-26 2016-03-03 三洋電機株式会社 非水電解質二次電池用正極活物質
US11011751B2 (en) 2014-10-20 2021-05-18 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP6428192B2 (ja) 2014-11-20 2018-11-28 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
JP6417888B2 (ja) 2014-11-20 2018-11-07 戸田工業株式会社 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
JP6624885B2 (ja) 2015-02-19 2019-12-25 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
KR102447364B1 (ko) 2015-04-28 2022-09-26 니치아 카가쿠 고교 가부시키가이샤 니켈 코발트 복합 수산화물 입자 및 그 제조 방법, 비수용성 전해질 이차 전지용 양 전극 활물질 및 그 제조 방법, 및 비수용성 전해질 이차 전지
JP6164332B2 (ja) 2015-04-28 2017-07-19 日亜化学工業株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
EP3306713B1 (en) 2015-06-02 2020-04-08 Sumitomo Chemical Company, Ltd. Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
WO2017031006A1 (en) 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
KR102637617B1 (ko) 2015-08-28 2024-02-19 그룹14 테크놀로지스, 인코포레이티드 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법
US10109854B2 (en) 2015-09-30 2018-10-23 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
TWI575802B (zh) * 2015-12-22 2017-03-21 財團法人工業技術研究院 鋰正極材料與鋰電池
JP6908368B2 (ja) 2016-02-29 2021-07-28 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US11158853B2 (en) 2016-04-27 2021-10-26 Camx Power Llc Nanocrystals of polycrystalline layered lithium nickel metal oxides
WO2018012384A1 (ja) 2016-07-14 2018-01-18 株式会社Gsユアサ リチウム遷移金属複合酸化物、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、リチウム遷移金属複合酸化物の製造方法、非水電解質二次電池用正極活物質、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置
US11165051B2 (en) * 2016-11-08 2021-11-02 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
JP6929514B2 (ja) * 2017-02-21 2021-09-01 パナソニック株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2018165610A1 (en) 2017-03-09 2018-09-13 Group 14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
JP6368022B1 (ja) 2017-05-31 2018-08-01 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN107359334B (zh) 2017-07-11 2020-06-19 贵州振华新材料有限公司 球形或类球形锂离子电池正极材料及锂离子电池
CN109802132A (zh) * 2017-11-16 2019-05-24 中国科学院宁波材料技术与工程研究所 具有纳米铆钉结构的正极材料及其制备方法
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6744880B2 (ja) * 2018-02-06 2020-08-19 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
WO2019193873A1 (ja) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP6640434B1 (ja) * 2018-08-03 2020-02-05 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池
JP7190650B2 (ja) * 2018-09-05 2022-12-16 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
KR102732449B1 (ko) 2018-11-23 2024-11-21 삼성전자주식회사 복합양극활물질, 그 제조방법, 이를 포함하는 양극 및 리튬전지
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US11424449B2 (en) 2019-01-25 2022-08-23 Camx Power Llc Stable cathode materials
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
JP6630864B1 (ja) * 2019-04-12 2020-01-15 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
WO2020235638A1 (ja) * 2019-05-23 2020-11-26 国立研究開発法人物質・材料研究機構 多孔炭素構造体、その製造方法、それを用いた正極材及びそれを用いた電池
EP4033566A4 (en) * 2019-09-17 2022-11-30 Sumitomo Metal Mining Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERIES, AND SECONDARY LITHIUM-ION BATTERY
GB201916198D0 (en) * 2019-11-07 2019-12-25 Johnson Matthey Plc Cathode material and process
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
WO2022072715A1 (en) 2020-09-30 2022-04-07 Group14 Technologies, Inc. Methods of passivation to control oxygen content and reactivity of silicon-carbon composite materials
EP4095102A1 (en) * 2021-05-28 2022-11-30 Basf Se Process for making a particulate electrode active material, and electrode active material
CN114836717B (zh) * 2022-04-13 2023-12-05 中新国际联合研究院 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法
CN114906884A (zh) * 2022-05-20 2022-08-16 天能新能源(湖州)有限公司 一种氟铌双掺杂铌酸锂包覆三元材料的制备方法
CN115939337B (zh) * 2022-11-18 2024-12-06 欣旺达动力科技股份有限公司 一种正极活性材料、锂离子二次电池和用电设备
KR20240074563A (ko) * 2022-11-21 2024-05-28 에스케이온 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
US12278363B1 (en) 2024-04-29 2025-04-15 Camx Power, Llc Multiple morphology composite cathode materials providing high energy and long cycle life and cells employing the same

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307094A (ja) 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP2000133262A (ja) 1998-10-21 2000-05-12 Sanyo Electric Co Ltd 非水系電解液二次電池
JP3088716B1 (ja) 1999-04-30 2000-09-18 同和鉱業株式会社 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000294242A (ja) 1999-04-09 2000-10-20 Seimi Chem Co Ltd 非水電解液二次電池用正極活物質、その製造方法及び非水電解液二次電池
JP3110728B1 (ja) 1999-05-06 2000-11-20 同和鉱業株式会社 非水系二次電池用正極活物質および正極
JP2001035492A (ja) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd リチウム二次電池用正極活物質及びその製造方法
JP2002145623A (ja) 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
WO2002041419A1 (fr) 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Cellule secondaire electrolytique non aqueuse et materiau actif d'electrode positive
WO2002040404A1 (fr) 2000-11-16 2002-05-23 Hitachi Maxell, Ltd. Oxyde composite a teneur en lithium et cellule secondaire non aqueuse utilisant cet oxyde, et procede de fabrication associe
JP2002151071A (ja) 2000-11-08 2002-05-24 Dowa Mining Co Ltd 非水系二次電池用正極活物質とその製造方法およびそれを用いた非水系二次電池
WO2002073718A1 (fr) 2001-03-14 2002-09-19 Yuasa Corporation Matiere active pour electrode positive et accumulateur a electrolyte non aqueux comportant ladite matiere
WO2002086993A1 (fr) 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP3362025B2 (ja) 1999-04-30 2003-01-07 同和鉱業株式会社 正極活物質と該正極活物質を用いたリチウム二次電池
JP2003031219A (ja) 2001-07-13 2003-01-31 Yuasa Corp 正極活物質およびこれを用いた非水電解質二次電池
JP2003051308A (ja) 2001-08-03 2003-02-21 Yuasa Corp リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
JP2003068298A (ja) 2001-08-24 2003-03-07 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2003081639A (ja) 2001-06-29 2003-03-19 Mitsui Mining & Smelting Co Ltd マンガン含有層状リチウム−遷移金属複合酸化物及びその製造方法
WO2003044882A1 (fr) 2001-11-20 2003-05-30 Tdk Corporation Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion
WO2003044881A1 (fr) 2001-11-22 2003-05-30 Yuasa Corporation Materiau actif d'electrode positive pour cellule secondaire au lithium et cellule secondaire associee
JP2003178756A (ja) 2001-12-11 2003-06-27 Toshiba Corp 正極活物質及び非水電解質電池
JP2003203633A (ja) 2001-10-25 2003-07-18 Matsushita Electric Ind Co Ltd 正極活物質およびこれを含む非水電解質二次電池
JP2003221236A (ja) 2001-11-22 2003-08-05 Hitachi Maxell Ltd リチウム含有複合酸化物およびそれを用いた非水二次電池
JP2003238165A (ja) 2000-11-16 2003-08-27 Hitachi Maxell Ltd リチウム含有複合酸化物およびその製造方法
JP2003297354A (ja) 2002-03-29 2003-10-17 Tdk Corp リチウム二次電池
JP2004006267A (ja) 2002-03-25 2004-01-08 Sumitomo Chem Co Ltd 非水二次電池用正極活物質の製造方法
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP2004031091A (ja) 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2004139853A (ja) 2002-10-18 2004-05-13 Sony Corp 正極活物質及び非水電解質二次電池
JP2004235166A (ja) * 2004-05-17 2004-08-19 Ngk Insulators Ltd リチウム二次電池
JP2004253305A (ja) * 2003-02-21 2004-09-09 Mitsubishi Chemicals Corp 表面修飾リチウムニッケル複合酸化物を用いた正極活物質、正極材料、リチウム二次電池、及び前記表面修飾リチウムニッケル複合酸化物の製造方法
JP2004528691A (ja) 2001-04-27 2004-09-16 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオン電池用の改善されたカソード組成物
JP2004265849A (ja) 2002-12-17 2004-09-24 Yuasa Corp 非水電解質電池
JP3571671B2 (ja) 2000-09-14 2004-09-29 イリオン テクノロジー コーポレイション リチオ化酸化物材料およびその製造方法
JP2004281253A (ja) 2003-03-17 2004-10-07 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JP2004303673A (ja) 2003-04-01 2004-10-28 Hitachi Ltd リチウム二次電池用正極材料
JP2004311427A (ja) 2003-03-25 2004-11-04 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2005053764A (ja) * 2003-08-07 2005-03-03 Nikko Materials Co Ltd リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
JP2005056602A (ja) * 2003-08-05 2005-03-03 Seimi Chem Co Ltd リチウム二次電池用正極活物質粉末およびその評価方法
JP2005123179A (ja) 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005150057A (ja) 2003-11-20 2005-06-09 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JP2005150093A (ja) 2003-10-10 2005-06-09 Saft (Soc Accumulateurs Fixes Traction) Sa 電気化学的リチウム蓄電池の正極用電気化学的活物質
JP2005150102A (ja) 2003-10-24 2005-06-09 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2005187282A (ja) 2003-12-26 2005-07-14 Tosoh Corp リチウム−ニッケル−マンガン複合酸化物及びその製造方法並びにその用途
JP2005235628A (ja) 2004-02-20 2005-09-02 Nec Corp リチウム二次電池用正極及びリチウム二次電池
JP2005251716A (ja) 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2005310421A (ja) * 2004-04-19 2005-11-04 Nikko Materials Co Ltd リチウムイオン二次電池用正極材料
JP2005347134A (ja) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2006106288A (ja) 2004-10-04 2006-04-20 Sharp Corp 静電荷像現像用トナーおよびその製造方法
JP2006164934A (ja) 2004-11-12 2006-06-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006257260A (ja) 2005-03-17 2006-09-28 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
JP2006266580A (ja) 2005-03-23 2006-10-05 Honda Motor Co Ltd ガス冷却装置及びガス冷却方法
JP2006305015A (ja) 2005-04-27 2006-11-09 Daiichi Shokai Co Ltd 遊技機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110728A (ja) 1989-09-25 1991-05-10 Mic Electron Co 密封型カバー付リーフスイッチ
JPH10324521A (ja) 1997-05-23 1998-12-08 Ube Ind Ltd リチウムマンガン複合酸化物およびその製造法ならびにその用途
JP3355126B2 (ja) 1998-01-30 2002-12-09 同和鉱業株式会社 リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
US7241532B2 (en) 2002-03-28 2007-07-10 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
JP4475882B2 (ja) 2003-03-31 2010-06-09 国立大学法人九州大学 2次電池用正極材料の製造方法、および2次電池
EP2485306A1 (en) 2003-05-13 2012-08-08 Mitsubishi Chemical Corporation Layered lithium nickel composite oxide powder and process for producing the same
KR100727332B1 (ko) 2003-09-26 2007-06-12 미쓰비시 가가꾸 가부시키가이샤 리튬 2차 전지의 포지티브 전극 재료용 리튬 복합 산화물입자, 및 이를 이용한 리튬 2차 전지용 포지티브 전극 및리튬 2차 전지
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
US8354191B2 (en) 2004-04-27 2013-01-15 Mitsubishi Chemical Corporation Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP2006066330A (ja) * 2004-08-30 2006-03-09 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池用正極活物質、非水電解液二次電池及び正極活物質の製造方法

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307094A (ja) 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP2000133262A (ja) 1998-10-21 2000-05-12 Sanyo Electric Co Ltd 非水系電解液二次電池
JP2000294242A (ja) 1999-04-09 2000-10-20 Seimi Chem Co Ltd 非水電解液二次電池用正極活物質、その製造方法及び非水電解液二次電池
JP3362025B2 (ja) 1999-04-30 2003-01-07 同和鉱業株式会社 正極活物質と該正極活物質を用いたリチウム二次電池
JP3088716B1 (ja) 1999-04-30 2000-09-18 同和鉱業株式会社 正極活物質と該正極活物質を用いたリチウム二次電池
JP3110728B1 (ja) 1999-05-06 2000-11-20 同和鉱業株式会社 非水系二次電池用正極活物質および正極
JP2001035492A (ja) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd リチウム二次電池用正極活物質及びその製造方法
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP3571671B2 (ja) 2000-09-14 2004-09-29 イリオン テクノロジー コーポレイション リチオ化酸化物材料およびその製造方法
JP2002145623A (ja) 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2002151071A (ja) 2000-11-08 2002-05-24 Dowa Mining Co Ltd 非水系二次電池用正極活物質とその製造方法およびそれを用いた非水系二次電池
WO2002040404A1 (fr) 2000-11-16 2002-05-23 Hitachi Maxell, Ltd. Oxyde composite a teneur en lithium et cellule secondaire non aqueuse utilisant cet oxyde, et procede de fabrication associe
JP2003238165A (ja) 2000-11-16 2003-08-27 Hitachi Maxell Ltd リチウム含有複合酸化物およびその製造方法
WO2002041419A1 (fr) 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Cellule secondaire electrolytique non aqueuse et materiau actif d'electrode positive
WO2002073718A1 (fr) 2001-03-14 2002-09-19 Yuasa Corporation Matiere active pour electrode positive et accumulateur a electrolyte non aqueux comportant ladite matiere
WO2002086993A1 (fr) 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2004528691A (ja) 2001-04-27 2004-09-16 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオン電池用の改善されたカソード組成物
JP2003081639A (ja) 2001-06-29 2003-03-19 Mitsui Mining & Smelting Co Ltd マンガン含有層状リチウム−遷移金属複合酸化物及びその製造方法
JP2003031219A (ja) 2001-07-13 2003-01-31 Yuasa Corp 正極活物質およびこれを用いた非水電解質二次電池
JP2003051308A (ja) 2001-08-03 2003-02-21 Yuasa Corp リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
JP2003068298A (ja) 2001-08-24 2003-03-07 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2003203633A (ja) 2001-10-25 2003-07-18 Matsushita Electric Ind Co Ltd 正極活物質およびこれを含む非水電解質二次電池
WO2003044882A1 (fr) 2001-11-20 2003-05-30 Tdk Corporation Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion
JP2003221236A (ja) 2001-11-22 2003-08-05 Hitachi Maxell Ltd リチウム含有複合酸化物およびそれを用いた非水二次電池
WO2003044881A1 (fr) 2001-11-22 2003-05-30 Yuasa Corporation Materiau actif d'electrode positive pour cellule secondaire au lithium et cellule secondaire associee
JP2003178756A (ja) 2001-12-11 2003-06-27 Toshiba Corp 正極活物質及び非水電解質電池
JP2004006267A (ja) 2002-03-25 2004-01-08 Sumitomo Chem Co Ltd 非水二次電池用正極活物質の製造方法
JP2003297354A (ja) 2002-03-29 2003-10-17 Tdk Corp リチウム二次電池
JP2004031091A (ja) 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2004139853A (ja) 2002-10-18 2004-05-13 Sony Corp 正極活物質及び非水電解質二次電池
JP2004265849A (ja) 2002-12-17 2004-09-24 Yuasa Corp 非水電解質電池
JP2004253305A (ja) * 2003-02-21 2004-09-09 Mitsubishi Chemicals Corp 表面修飾リチウムニッケル複合酸化物を用いた正極活物質、正極材料、リチウム二次電池、及び前記表面修飾リチウムニッケル複合酸化物の製造方法
JP2004281253A (ja) 2003-03-17 2004-10-07 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JP2004311427A (ja) 2003-03-25 2004-11-04 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2004303673A (ja) 2003-04-01 2004-10-28 Hitachi Ltd リチウム二次電池用正極材料
JP2005056602A (ja) * 2003-08-05 2005-03-03 Seimi Chem Co Ltd リチウム二次電池用正極活物質粉末およびその評価方法
JP2005053764A (ja) * 2003-08-07 2005-03-03 Nikko Materials Co Ltd リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
JP2005123179A (ja) 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005150093A (ja) 2003-10-10 2005-06-09 Saft (Soc Accumulateurs Fixes Traction) Sa 電気化学的リチウム蓄電池の正極用電気化学的活物質
JP2005150102A (ja) 2003-10-24 2005-06-09 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2005150057A (ja) 2003-11-20 2005-06-09 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
JP2005187282A (ja) 2003-12-26 2005-07-14 Tosoh Corp リチウム−ニッケル−マンガン複合酸化物及びその製造方法並びにその用途
JP2005251716A (ja) 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2005235628A (ja) 2004-02-20 2005-09-02 Nec Corp リチウム二次電池用正極及びリチウム二次電池
JP2005310421A (ja) * 2004-04-19 2005-11-04 Nikko Materials Co Ltd リチウムイオン二次電池用正極材料
JP2004235166A (ja) * 2004-05-17 2004-08-19 Ngk Insulators Ltd リチウム二次電池
JP2005347134A (ja) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2006106288A (ja) 2004-10-04 2006-04-20 Sharp Corp 静電荷像現像用トナーおよびその製造方法
JP2006164934A (ja) 2004-11-12 2006-06-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006257260A (ja) 2005-03-17 2006-09-28 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
JP2006266580A (ja) 2005-03-23 2006-10-05 Honda Motor Co Ltd ガス冷却装置及びガス冷却方法
JP2006305015A (ja) 2005-04-27 2006-11-09 Daiichi Shokai Co Ltd 遊技機

Non-Patent Citations (78)

* Cited by examiner, † Cited by third party
Title
"146", J. POWER SOURCES, 2005, pages 598
ADV. MATER., vol. 17, 2005, pages 2834
CHEM. LETT., 2001, pages 744
CHEM. MATER., vol. 16, 2004, pages 1996
CHEM. MATER., vol. 17, 2005, pages 3695
CHEM. MATER., vol. 18, 2006, pages 1658
ELECTROCHEM. COM., vol. 6, 2004, pages 1085
ELECTROCHEM. SOLID-STATE LETT., vol. 4, 2001, pages 191
ELECTROCHEM. SOLID-STATE LETT., vol. 4, 2001, pages 200
ELECTROCHEM. SOLID-STATE LETT., vol. 4, 2001, pages A191 - A194
ELECTROCHEM. SOLID-STATE LETT., vol. 5, 2002, pages 145
ELECTROCHEM. SOLID-STATE LETT., vol. 5, 2002, pages 263
ELECTROCHEM. SOLID-STATE LETT., vol. 7, 2004, pages 155
ELECTROCHEM. SOLID-STATE LETT., vol. 7, 2004, pages 167
ELECTROCHEM. SOLID-STATE LETT., vol. 7, 2004, pages 290
ELECTROCHEM. SOLID-STATE LETT., vol. 7, 2004, pages 294
ELECTROCHEM. SOLID-STATE LETT., vol. 8, 2005, pages 637
ELECTROCHEM. SOLID-STATE LETT., vol. 9, 2006, pages 27
ELECTROCHEMISTRY, vol. 71, 2003, pages 1214
ELECTROCHIM. ACTA, vol. 48, 2003, pages 1505
ELECTROCHIM. ACTA, vol. 48, 2003, pages 2589
ELECTROCHIM. ACTA, vol. 49, 2004, pages 1565
ELECTROCHIM. ACTA, vol. 49, 2004, pages 4425
ELECTROCHIM. ACTA, vol. 49, 2004, pages 803
ELECTROCHIM. ACTA, vol. 50, 2004, pages 427
ELECTROCHIM. ACTA, vol. 50, 2004, pages 449
ELECTROCHIM. ACTA, vol. 50, 2005, pages 4778
ELECTROCHIM. ACTA, vol. 50, 2005, pages 5349
ELECTROCHIM. ACTA, vol. 51, 2006, pages 3413
J. AM. CHEM. SOC., vol. 128, 2006, pages 8694
J. APPL. PHYS., vol. 99, 2006, pages 06371
J. ELECIROCHEM. SOC., vol. 150, 2003, pages 1299
J. ELECTROCHEM. SOC., vol. 149, 2002, pages 1332
J. ELECTROCHEM. SOC., vol. 149, 2002, pages 778
J. ELECTROCHEM. SOC., vol. 149, 2002, pages 815
J. ELECTROCHEM. SOC., vol. 150, 2003, pages 1299
J. ELECTROCHEM. SOC., vol. 151, 2004, pages 1789
J. ELECTROCHEM. SOC., vol. 151, 2004, pages 246
J. ELECTROCHEM. SOC., vol. 151, 2004, pages 504
J. ELECTROCHEM. SOC., vol. 152, 2005, pages 1879
J. ELECTROCHEM. SOC., vol. 152, 2005, pages 566
J. ELECTROCHEM. SOC., vol. 152, 2005, pages 746
J. ELECTROCHEM. SOC., vol. 153, 2006, pages 261
J. ELECTROCHEM. SOC., vol. 153, 2006, pages 390
J. MATER. CHEM., vol. 14, 2004, pages 1424
J. MATER. CHEM., vol. 15, 2005, pages 2257
J. MATER. CHEM., vol. 16, 2006, pages 359
J. MATER. CHEM., vol. 6, 1996, pages 1149
J. POWER SOURCES, vol. 112, 2002, pages 634
J. POWER SOURCES, vol. 119-121, 2003, pages 150
J. POWER SOURCES, vol. 124, 2003, pages 170
J. POWER SOURCES, vol. 124, 2003, pages 533
J. POWER SOURCES, vol. 129, 2004, pages 288
J. POWER SOURCES, vol. 135, 2004, pages 262
J. POWER SOURCES, vol. 146, 2005, pages 598
J. POWER SOURCES, vol. 146, 2005, pages 617
J. POWER SOURCES, vol. 146, 2005, pages 626
J. POWER SOURCES, vol. 146, 2005, pages 630
J. POWER SOURCES, vol. 146, 2005, pages 645
J. POWER SOURCES, vol. 146, 2005, pages 650
J. POWER SOURCES, vol. 146, 2005, pages 654
J. POWER SOURCES, vol. 148, 2005, pages 85
J. POWER SOURCES, vol. 156, 2003, pages 119 - 121
J. POWER SOURCES, vol. 158, 2006, pages 524
J. POWER SOURCES, vol. 166, 2003, pages 119 - 121
MATER. LETT., vol. 59, 2005, pages 2693
MATER. RES. SOC. SYMP. PROC., vol. 835, 2005
MICROELECTRONICS JOURNAL, vol. 36, 2005, pages 491
POWER SOURCES, vol. 112, 2002, pages 41
POWER SOURCES, vol. 112, 2002, pages 634
POWER SOURCES, vol. 119-121, 2003, pages 139
POWER SOURCES, vol. 146, 2005, pages 645
POWER SOURCES, vol. 146, 2005, pages 658
POWER SOURCES, vol. 150, 2003, pages 119 - 121
SOLID STATE IONICS, vol. 164, 2003, pages 43
SOLID STATE IONICS, vol. 176, 2005, pages 1035
SOLID STATE IONICS, vol. 176, 2005, pages 2577
TRANS. NONFERROUS MET. SOC. CHINA, vol. 15, 2005, pages 1185

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP2009081130A (ja) * 2007-09-04 2009-04-16 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びその噴霧乾燥工程で得られる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009117261A (ja) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池
JP2009277661A (ja) * 2007-11-30 2009-11-26 Sony Corp 正極活物質、正極および非水電解質二次電池
US9017875B2 (en) 2007-11-30 2015-04-28 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
EP2355212A4 (en) * 2008-10-27 2016-01-20 Kao Corp SINTERED LITHIUM COMPLEX OXIDE
US20110206990A1 (en) * 2008-10-27 2011-08-25 Ryuichi Akagi Sintered lithium complex oxide
US8460822B2 (en) 2008-10-30 2013-06-11 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
US20110223482A1 (en) * 2008-11-06 2011-09-15 Gs Yuasa International Ltd. Positive electrode for lithium secondary battery and lithium secondary battery
US20120028134A1 (en) * 2009-02-13 2012-02-02 Lg Chem, Ltd. Lithium secondary battery with improved energy density
CN102439765A (zh) * 2009-02-13 2012-05-02 株式会社Lg化学 改进能量密度的锂二次电池
US8703340B2 (en) * 2009-02-13 2014-04-22 Lg Chem, Ltd. Lithium secondary battery with improved energy density
US20130011726A1 (en) * 2010-01-08 2013-01-10 Mitsubishi Chemical Corporation Powders for positive-electrode material for lithium secondary battery, process for producing the same, positive electrode for lithium secondary battery employing the same, and lithium secondary battery
JP2011165327A (ja) * 2010-02-04 2011-08-25 Murata Mfg Co Ltd 非水電解質二次電池用電極活物質およびそれを用いた非水電解質二次電池
US9225005B2 (en) 2010-04-01 2015-12-29 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary-battery, process for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
EP2399869A1 (de) * 2010-06-25 2011-12-28 Evonik Degussa GmbH Mischoxidpulver enthaltend die Elemente Lithium, Mangan, Nickel und Cobalt und Verfahren zu deren Herstellung
WO2011160907A1 (de) * 2010-06-25 2011-12-29 Evonik Degussa Gmbh Mischoxidpulver enthaltend die elemente lithium, mangan, nickel und cobalt und verfahren zu deren herstellung
WO2015059778A1 (ja) * 2013-10-23 2015-04-30 株式会社日立製作所 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JPWO2015059778A1 (ja) * 2013-10-23 2017-03-09 株式会社日立製作所 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP2016054026A (ja) * 2014-09-02 2016-04-14 トヨタ自動車株式会社 非水電解液二次電池
WO2016175310A1 (ja) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
JPWO2016175310A1 (ja) * 2015-04-30 2018-02-22 三井金属鉱業株式会社 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
JP2019043843A (ja) * 2017-08-31 2019-03-22 住友金属鉱山株式会社 リチウム化合物、リチウムニッケル複合酸化物前駆体混合物、及びリチウムニッケル複合酸化物の製造方法
JP7187896B2 (ja) 2017-08-31 2022-12-13 住友金属鉱山株式会社 リチウムニッケル複合酸化物前駆体混合物、及びリチウムニッケル複合酸化物の製造方法
WO2020059471A1 (ja) * 2018-09-21 2020-03-26 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP2020053386A (ja) * 2018-09-21 2020-04-02 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
JP7597921B2 (ja) 2020-12-04 2024-12-10 エコプロ ビーエム カンパニー リミテッド 正極活物質およびこれを含むリチウム二次電池

Also Published As

Publication number Publication date
KR20080108222A (ko) 2008-12-12
EP2006937A4 (en) 2014-06-18
EP2006937A2 (en) 2008-12-24
US8535829B2 (en) 2013-09-17
CN102044673B (zh) 2012-11-21
CN102044673A (zh) 2011-05-04
CN102044672A (zh) 2011-05-04
US20090104530A1 (en) 2009-04-23
EP2006937A9 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP5428251B2 (ja) リチウム遷移金属系化合物粉体、それを用いたリチウム二次電池用正極及びリチウム二次電池
WO2007116971A1 (ja) リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池
JP4613943B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5359140B2 (ja) リチウム遷移金属系化合物粉体、その製造方法並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP4475326B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR101562237B1 (ko) 리튬 천이 금속계 화합물 분체
JP4432910B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR101858763B1 (ko) 리튬 이차 전지용 정극 재료 및 그 제조 방법, 그리고 리튬 이차 전지용 정극 및 리튬 이차 전지
JP4591717B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5135912B2 (ja) リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池
WO2011083861A1 (ja) リチウム二次電池正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5157071B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011108554A (ja) リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2008270161A5 (ja)
JP2009164140A5 (ja)
JP2009117241A (ja) リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP6010902B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池
CN101379637A (zh) 锂二次电池正极材料用锂过渡金属系化合物粉体及其制造方法、其喷雾干燥体及其煅烧前驱体、使用该锂过渡金属系化合物粉体的锂二次电池用正极及锂二次电池
JP2012234772A (ja) リチウム二次電池正極材料用リチウム遷移金属系化合物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2010278015A (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2012038680A (ja) リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP4591716B2 (ja) リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、噴霧乾燥体、および焼成前駆体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087018132

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780004424.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007741208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12296212

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE