JP4613943B2 - リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 - Google Patents
リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 Download PDFInfo
- Publication number
- JP4613943B2 JP4613943B2 JP2007278871A JP2007278871A JP4613943B2 JP 4613943 B2 JP4613943 B2 JP 4613943B2 JP 2007278871 A JP2007278871 A JP 2007278871A JP 2007278871 A JP2007278871 A JP 2007278871A JP 4613943 B2 JP4613943 B2 JP 4613943B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- transition metal
- positive electrode
- secondary battery
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
さらに、低コスト、安全性、寿命(特に高温下)にも優れた、性能バランスの良い材料が求められている。
添加した後、焼成されたものであり、前記添加剤が、Mo、W、Nb、Ta、及びReから選ばれる少なくとも一種以上の元素(以下「添加元素」と称す。)を含有する酸化物であり、一次粒子の表面部分のLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比が、粒子全体の該原子比の5倍以上であることを特徴とする(請求項1)。
LiMO 2 …(I)
(ただし、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素である。)
LiMO2 …(I)
(ただし、上記式(I)中、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は0.3以上、5以下、Co/(Mn+Ni+Co)モル比は0以上、0.30以下、M中のLiモル比は0.001以上、0.2以下である。)
M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/2)1−xCox}2/(2+z) …(II)
(ただし、上記式(II)中、
0≦x≦0.1
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。)
0≦I018 */I018≦0.30
0≦I110 */I110≦0.25
0≦I113 */I113≦0.30
(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018 *、I110 *、I113 *は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。)(請求項18)。
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体(以下「正極活物質」と称す場合がある。)は、リチウムイオンの挿入・脱離が可能な機能を有する遷移金属化合物を主成分とし、該主成分原料に焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されたものであることを特徴とする。
本発明において、「リチウム遷移金属系化合物」とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiS2やMoS2などの二次元層状構造をもつ化合物や、一般式MexMo6S8(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO4(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO4、LiCoPO4、LiNiPO4、LiMnPO4などが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe2O4(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn2O4、LiCoMnO4、LiNi0.5Mn1.5O4、CoLiVO4などが挙げられる。層状構造を有するものは、一般的にLiMeO2(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiCoO2、LiNiO2、LiNi1−xCoxO2、LiNi1−x−yCoxMnyO2、LiNi0.5Mn0.5O2、Li1.2Cr0.4Mn0.4O2、Li1.2Cr0.4Ti0.4O2、LiMnO2などが挙げられる。
本発明において、「焼成時の粒成長や焼結を抑制する添加剤」とは、高温焼成時における正極活物質の一次粒子間又は二次粒子間の焼結を抑制するなどして、活物質粒子の成長を抑制し、高結晶化を図りつつ、微細で多数空隙を有する粉体性状を得る効果があるものをいう。
本発明のリチウム遷移金属系化合物粉体は、前記添加元素が粒子表面から深さ方向に濃度勾配を持って存在する連続的組成傾斜構造を有していることが好ましい。
本発明のリチウム遷移金属系化合物粉体のメジアン径は通常0.1μm以上、好ましくは0.3μm以上、より好ましくは0.6μm以上、更に好ましくは0.8μm以上、最も好ましくは1.2μm以上で、通常5μm以下、好ましくは4μm以下、より好ましくは3μm以下、更に好ましくは2.8μm以下、最も好ましくは2.5μm以下である。メジアン径がこの下限を下回ると、正極活物質層形成時の塗布性に問題を生ずる可能性があり、上限を超えると電池性能の低下を来たす可能性がある。
本発明のリチウム遷移金属系化合物粉体の一次粒子の平均径(平均一次粒子径)としては、特に限定されないが、下限としては、好ましくは0.1μm以上、より好ましくは0.15μm以上、更に好ましくは0.2μm以上、最も好ましくは0.25μm以上、また、上限としては、好ましくは0.9μm以下、より好ましくは0.8μm以下、さらに好ましくは0.7μm以下、最も好ましくは0.5μm以下である。平均一次粒子径が、上記上限を超えると、粉体充填性に悪影響を及ぼしたり、比表面積が低下したりするために、レート特性や出力特性等の電池性能が低下する可能性が高くなる可能性がある。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる可能性がある。
本発明のリチウムリチウム遷移金属系化合物粉体はまた、BET比表面積が、通常1.5m2/g以上、好ましくは1.6m2/g以上、更に好ましくは1.7m2/g以上、最も好ましくは1.8m2/g以上で、通常5m2/g以下、好ましくは4m2/g以下、更に好ましくは3.5m2/g以下、最も好ましくは3m2/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいと嵩密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすくなる可能性がある。
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、好ましくは水銀圧入法による測定において、特定の条件を満たす。
水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布などの情報を得る手法である。
Pr=−2δ(cosθ) …(2)
水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水銀ポロシメータの具体例としては、Micromeritics社製オートポア、Quantachrome社製ポアマスター等が挙げられる。
なお、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以上の半径を有する細孔の単位重量(通常は1g)当たりの細孔体積の合計を、細孔半径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結んだグラフとして表す。特に本発明のリチウム遷移金属系化合物粉体を水銀圧入法により測定して得られた細孔分布曲線を、以下の記載では適宜「本発明にかかる細孔分布曲線」という。
また、本明細書において「ピークトップ」とは、細孔分布曲線が有する各ピークにおいて縦軸の座標値が最も大きい値をとる点をいう。
本発明に係る細孔分布曲線が有するメインピークは、そのピークトップが、細孔半径が通常300nm以上、好ましくは350nm以上、最も好ましくは400nm以上、また、通常1000nm以下、好ましくは980nm以下、より好ましくは970nm以下、更に好ましくは960nm以下、最も好ましくは950nm以下の範囲に存在する。この範囲の上限を超えると、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作成した場合に、正極材料内でのリチウム拡散が阻害され、又は導電パスが不足して、負荷特性が低下する可能性がある。一方、この範囲の下限を下回ると、本発明のリチウム遷移金属系化合物粉体を用いて正極を作製した場合に、導電材や結着剤の必要量が増加し、正極板(正極の集電体)への正極活物質の充填率が制約され、電池容量が制約される可能性がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性質が硬く、又は脆くなり、電池組立て時の捲回工程で塗膜の剥離が生じ易くなる可能性がある。
本発明に係る細孔分布曲線は、上述のメインピークに加えて、複数のサブピークを有していてもよいが、80nm以上、300nm以下の細孔半径の範囲内には存在しないことが好ましい。
本発明のリチウム遷移金属系化合物粉体の嵩密度は通常0.5g/cc以上、好ましくは0.6g/cc以上、より好ましくは0.7g/cc以上、最も好ましくは0.8g/cc以上で、通常1.7g/cc以下、好ましくは1.6g/cc以下、より好ましくは1.5g/cc以下、最も好ましくは1.3g/cc以下である。嵩密度がこの上限を上回ることは、粉体充填性や電極密度向上にとって好ましい一方、比表面積が低くなり過ぎる可能性があり、電池性能が低下する可能性がある。嵩密度がこの下限を下回ると粉体充填性や電極調製に悪影響を及ぼす可能性がある。
なお、本発明では、嵩密度は、リチウム遷移金属系化合物粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
本発明のリチウム遷移金属系化合物粉体を40MPaの圧力で圧密した時の体積抵抗率の値は、下限としては、1×103Ω・cm以上が好ましく、5×103Ω・cm以上がより好ましく、1×104Ω・cm以上がさらに好ましい。上限としては、1×106Ω・cm以下が好ましく、5×105Ω・cm以下がより好ましく、1×106Ω・cm以下がさらに好ましい。この体積抵抗率がこの上限を超えると電池とした時の負荷特性が低下する可能性がある。一方、体積抵抗率がこの下限を下回ると、電池とした時の安全性などが低下する可能性がある。
本発明のリチウム遷移金属系化合物粉体は、層状構造に帰属する結晶構造を含んで構成されるリチウムニッケルマンガンコバルト系複合酸化物を主成分としたものが好ましい。
ここで、層状構造に関してさらに詳しく述べる。層状構造を有するものの代表的な結晶系としては、LiCoO2、LiNiO2のようなα−NaFeO2型に属するものがあり、これらは六方晶系であり、その対称性から空間群
また、本発明のリチウム遷移金属系化合物粉体は、下記組成式(I)で表されるリチウム遷移金属系化合物粉体であることが好ましい。
LiMO2 …(I)
ただし、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は、通常0.3以上、好ましくは0.5以上、より好ましくは0.6以上、更に好ましくは0.7以上、より一層好ましくは0.8以上、最も好ましくは0.9以上、通常5以下、好ましくは4以下、より好ましくは3以下、更に好ましくは2.5以下、最も好ましくは1.5以下である。Co/(Mn+Ni+Co)モル比は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.05以上、通常0.30以下、好ましくは0.20以下、より好ましくは0.15以下、更に好ましくは0.10以下、最も好ましくは0.099以下である。M中のLiモル比は0.001以上、好ましくは0.01以上、より好ましくは0.02以上、さらに好ましくは0.03以上、最も好ましくは0.05以上、通常0.2以下、好ましくは0.19以下、より好ましくは0.18以下、さらに好ましくは0.17以下、最も好ましくは0.15以下である。
本発明のリチウム遷移金属系化合物粉体の含有炭素濃度C(重量%)値は、通常0.005重量%以上、好ましくは0.01重量%以上、更に好ましくは0.015重量%以上、最も好ましくは0.02重量%以上であり、通常0.25重量%以下、好ましくは0.2重量%以下、より好ましくは0.15重量%以下、一層好ましくは0.1重量%以下、最も好ましくは0.07重量%以下である。この下限を下回ると電池性能が低下する可能性があり、上限を超えると電池とした時のガス発生による膨れが増大したり電池性能が低下したりする可能性がある。
なお、後述の炭素分析により求めたリチウム遷移金属系化合物粉体の含有炭素成分は、炭酸化合物、特に炭酸リチウムの付着量についての情報を示すものとみなすことができる。これは、炭素分析により求めた炭素量を、全て炭酸イオン由来と仮定した数値と、イオンクロマトグラフィーにより分析した炭酸イオン濃度が概ね一致することによる。
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、前記組成式(I)におけるMサイト中の原子構成が下記式(II)で示されるものが特に好ましい。
M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/2)1−xCox}2/(2+z) …(II)
(ただし、上記式(II)中、
0≦x≦0.1
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。)
前述のように層状構造は必ずしもR(−3)m構造に限られるものではないが、R(−3)m構造に帰属しうるものであることが電気化学的な性能面から好ましい。
上記リチウムニッケルマンガンコバルト系複合酸化物の組成式のx、y、zを求めるには、各遷移金属とLiを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mn/Coの比を求める事で計算される。
本発明において、前記組成式(I)及び(II)を満たす組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体は、CuKα線を使用した粉末X線回折パターンにおいて、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅をFWHM(110)とした時に、0.01≦FWHM(110)≦0.2の範囲にあることを特徴とする。
一般に、結晶性の尺度としてX線回折ピークの半価幅が用いられることから、本発明者らは、結晶性と電池性能の相関について鋭意検討を行った。その結果、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅の値が、規定した範囲内にあるものが良好な電池性能を発現することを見出した。
0≦I018 */I018≦0.30
0≦I110 */I110≦0.25
0≦I113 */I113≦0.30
(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018 *、I110 *、I113 *は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。)
本発明のリチウム遷移金属系化合物粉体が上述の効果をもたらす理由としては、次のように考えられる。
即ち、本発明のリチウム遷移金属系化合物粉体は、結晶粒子が微細化しており、水銀圧入曲線における昇圧時の水銀圧入量が多く、結晶粒子間の細孔容量が大きいために、これを用いて電池を作製した場合に正極活物質表面と電解液との接触面積を増加させることが可能となることに加え、結晶性が高度に発達し、また異相の存在比率が極めて少なく抑えられた結果、正極活物質として必要な負荷特性が実用レベルまで改良されたものと推定される。
本発明のリチウム遷移金属系化合物粉体を製造する方法は、特定の製法に限定されるものではないが、リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する焼成工程とを含む本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法により、好適に製造される。
本発明の方法により、リチウム遷移金属系化合物粉体を製造するに当たり、スラリーの調製に用いる原料化合物のうち、リチウム化合物としては、Li2CO3、LiNO3、LiNO2、LiOH、LiOH・H2O、LiH、LiF、LiCl、LiBr、LiI、CH3OOLi、Li2O、Li2SO4、ジカルボン酸Li、クエン酸Li、脂肪酸Li、アルキルリチウム等が挙げられる。これらリチウム化合物の中で好ましいのは、焼成処理の際にSOx、NOx等の有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリチウム化合物であり、また、焼成時に分解ガスを発生することなどから、噴霧乾燥粉体の二次粒子内に分解ガスを発生するなどして空隙を形成しやすい化合物であり、これらの点を勘案すると、とりわけLi2CO3、LiOH、LiOH・H2Oが、なかでも取り扱い易く、比較的安価であることからLi2CO3が好ましい。これらのリチウム化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていれば良く、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から6時間程度である。
湿式混合後は、次いで通常乾燥工程に供される。乾燥方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、乾燥粒子を効率よく製造できる等の観点から噴霧乾燥が好ましい。その際、噴霧方法は特に限定されないが、例えば、ノズル型アトマイザー(二流体ノズル、三流体ノズル、四流体ノズル)、回転円盤形アトマイザーなどを用いた方法を挙げることができる。
本発明のリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の製造方法においては、原料化合物と添加剤とを湿式粉砕して得られたスラリーを噴霧乾燥することにより、一次粒子が凝集して二次粒子を形成してなる粉体を得る。一次粒子が凝集して二次粒子を形成してなる噴霧乾燥粉体は、本発明の噴霧乾燥粉体の形状的特徴である。形状の確認方法としては、例えば、SEM観察、断面SEM観察が挙げられる。
このようにして得られた焼成前駆体は、次いで焼成処理される。
ここで、本発明において「焼成前駆体」とは、噴霧乾燥粉体を処理して得られる焼成前のリチウムニッケルマンガンコバルト系複合酸化物等のリチウム遷移金属系化合物の前駆体を意味する。例えば、前述の焼成時に分解ガスを発生又は昇華して、二次粒子内に空隙を形成させる化合物を、上述の噴霧乾燥粉体に含有させて焼成前駆体としてもよい。
このようにして得られたリチウムニッケルマンガンコバルト系複合酸化物粉体等の本発明のリチウム遷移金属系化合物粉体によれば、容量が高く、レート・出力等の負荷特性に優れ、性能バランスの良いリチウム二次電池用正極材料が提供される。
本発明のリチウム二次電池用正極は、本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。
かくして、本発明のリチウム二次電池用正極が調整できる。
本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な上記の本発明のリチウム二次電池用正極と、リチウムを吸蔵・放出可能な負極と、リチウム塩を電解塩とする非水電解質とを備える。更に、正極と負極との間に、非水電解質を保持するセパレータを備えていても良い。正極と負極との接触による短絡を効果的に防止するには、このようにセパレータを介在させるのが望ましい。
負極は通常、正極と同様に、負極集電体上に負極活物質層を形成して構成される。
負極集電体の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されていることから好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。負極集電体として金属薄膜を使用する場合、その好適な厚さの範囲は、正極集電体について上述した範囲と同様である。
非水電解質としては、例えば公知の有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等を用いることができるが、中でも有機電解液が好ましい。有機電解液は、有機溶媒に溶質(電解質)を溶解させて構成される。
電解質として前述の有機電解液を用いる場合には、電極同士の短絡を防止するために、正極と負極との間にセパレータが介装される。セパレータの材質や形状は特に制限されないが、使用する有機電解液に対して安定で、保液性に優れ、且つ、電極同士の短絡を確実に防止できるものが好ましい。好ましい例としては、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料の具体例としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が用いられる。特に、セパレータの重要な因子である化学的及び電気化学的な安定性の観点からは、ポリオレフィン系高分子が好ましく、電池におけるセパレータの使用目的の一つである自己閉塞温度の点からは、ポリエチレンが特に望ましい。
本発明のリチウム二次電池は、上述した本発明のリチウム二次電池用正極と、負極と、電解質と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
後述の各実施例及び比較例において製造されたリチウム遷移金属系化合物粉体の物性等は、各々次のようにして測定した。
ICP−AES分析により求めた。
ICP−AES分析により求めた。
Physical Electronics社製 X線光電子分光装置「ESCA−5700」を用い、下記条件で行った。
X線源:単色化AlKα
分析面積:0.8mm径
取り出し角:65°
定量方法:Bls、Mn2p1/2、Co2p3/2、Ni2p3/2、Nb3d、Mo3d、Sn3d5/2、W4f各ピークの面積を感度係数で補正。
(表面スパッタリング)
イオン種:Ar
加速電圧:3kV
イオン電流:6.6nA(実施例3、4、6、比較例2)
4.7nA(実施例1、5、7、8、比較例3、4)
スパッタリングレート:2.29nm/min(SiO2換算)
(実施例3、4、6、比較例2)
2.91nm/min(SiO2換算)
(実施例1、5、7、8、比較例3、4)
超音波分散5分後に測定した。
30,000倍のSEM画像により求めた。
水銀圧入法による測定装置としては、Micromeritics社製オートポアIII9420型を用いた。また、水銀圧入法の測定条件としては、室温で3.86kPaから413MPaまで昇圧しながら測定を行った。なお、水銀の表面張力の値としては480dyn/cm、接触角の値としては141.3°を用いた。
試料粉体4〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
BET法により求めた。
(株)堀場製作所製EMIA−520炭素硫黄分析計を使用した。数十から100mgの試料を、空焼きした磁性るつぼに秤り取り、助燃剤を加えて、酸素気流中、高周波加熱炉で炭素を燃焼抽出した。燃焼ガス中のCO2を、非分散赤外吸光光度法により定量した。感度較正には社団法人日本鉄鋼連盟製150−15低合金鋼1号(C保障値:0.469重量%)を使用した。
粉体抵抗率測定装置(ダイアインスツルメンツ社製:ロレスターGP粉体低効率測定システムPD−41)を用い、試料重量3gとし、粉体用プローブユニット(四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mm)により、印加電圧リミッタを90Vとして、種々加圧下の粉体の体積抵抗率[Ω・cm]を測定し、40MPaの圧力下における体積抵抗率の値について比較した。
(018)(110)(113)回折ピーク中の異相ピークの有無確認並びに異相ピーク/本来の結晶相ピークの積分強度および積分強度比の算出>
以下に記載のCuKα線を使用した粉末X線回折測定により求めた。各試料で観測された 六方晶系R−3m(No.166)由来の(018)、(110)、(113)回折ピークについて、プロファイルフィッティングを実施し積分強度、積分強度比等を算出した。
・半価幅、面積の算出は、集中法の固定スリットモードで測定した場合の回折パターンを使用
・実際のXRD測定(実施例、比較例)は、可変スリットモードで測定し、可変→固定のデータ変換を実施
・可変→固定の変換は、強度(固定)=強度(可変)/sinθの計算式による
(粉末X線回折測定装置仕様)
装置名:オランダ PANalytical社製 X’Pert Pro MPD
光学系:集中法光学系
(光学系仕様)
入射側:封入式X線管球(CuKα)
Soller Slit(0.04rad)
Divergence Slit (Variable Slit)
試料台:回転試料台(Spinner)
受光側:半導体アレイ検出器(X’Celerator)
Ni−filter
ゴニオ半径:243mm
(測定条件)
X線出力(CuKα):40kV、30mA
走査軸:θ/2θ
走査範囲(2θ):10.0−75.0°
測定モード:Continuous
読込幅:0.015°
計数時間:99.7sec
自動可変スリット(Automatic−DS:10mm(照射幅))
横発散マスク:10mm(照射幅)
公知のレーザー回折/散乱式粒度分布測定装置を用い、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
公知のレーザー回折/散乱式粒度分布測定装置(堀場製作所製、LA−920)を用い、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としてエチルアルコールを用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
形態はSEM観察及び断面SEM観察により確認した。平均粒子径としてのメジアン径及び90%積算径(D90)は、公知のレーザー回折/散乱式粒度分布測定装置(堀場製作所製、LA−920)によって、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、0分、1分、3分、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。比表面積は、BET法により求めた。嵩密度は、試料粉体4〜6gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
(実施例1)
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、Li2WO4を、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1720cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が5.4×104Ω・cm、含有炭素濃度Cは0.042重量%、組成がLi1.114(Ni0.453Mn0.450Co0.097)O2の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.097、y=0.003、z=0.114)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は0.62モル%であった。また、平均一次粒子径は0.4μmで、メジアン径は1.4μm、90%積算径(D90)は2.1μm、嵩密度は1.1g/cc、BET比表面積は2.1m2/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は9.8倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R0/R10は4.4であった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、Li2WO4を、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.01のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1890cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは7×10−3L/minとした(気液比G/S=6429)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が4.7×104Ω・cm、含有炭素濃度Cは0.030重量%、組成がLi1.139(Ni0.450Mn0.452Co0.098)O2の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.098、y=−0.002、z=0.139)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.03モル%であった。また、平均一次粒子径は0.3μmで、メジアン径は2.2μm、90%積算径(D90)は3.9μm、嵩密度は1.0g/cc、BET比表面積は2.9m2/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は9.4倍となっていた。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、Li2MoO4を、Li:Ni:Mn:Co:Mo=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1710cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が3.6×104Ω・cm、含有炭素濃度Cは0.027重量%、組成がLi1.124(Ni0.452Mn0.450Co0.098)O2の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.098、y=0.002、z=0.124)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Moの含有モル比率は0.48モル%であった。また、平均一次粒子径は0.7μmで、メジアン径は2.0μm、90%積算径(D90)は3.2μm、嵩密度は1.3g/cc、BET比表面積は1.6m2/gであった。さらに、粒子全体のMo(モリブデン)の原子比(Mo/(Ni+Mn+Co)に対して、一次粒子表面のMoの原子比は21倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するMoの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するMoの合計の原子比R10との割合R0/R10は3.6であった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、WO3を、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量14重量%、粘度1670cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が5.8×104Ω・cm、含有炭素濃度Cは0.033重量%、組成がLi1.094(Ni0.453Mn0.450Co0.097)O2の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.097、y=0.003、z=0.094)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は0.51モル%であった。また、平均一次粒子径は0.5μmで、メジアン径は1.6μm、90%積算径(D90)は2.4μm、嵩密度は1.0g/cc、BET比表面積は2.2m2/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は12倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R0/R10は3.3であった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、Nb2O5を、Li:Ni:Mn:Co:Nb=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量14重量%、粘度1660cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が4.4×104Ω・cm、含有炭素濃度Cは0.027重量%、組成がLi1.118(Ni0.448Mn0.450Co0.102)O2の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.102、y=−0.002、z=0.118)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Nbの含有モル比率は0.48モル%であった。また、平均一次粒子径は0.6μmで、メジアン径は2.0μm、90%積算径(D90)は3.3μm、嵩密度は1.2g/cc、BET比表面積は1.9m2/gであった。さらに、粒子全体のNb(ニオブ)の原子比(Nb/(Ni+Mn+Co)に対して、一次粒子表面のNbの原子比は8.8倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するNbの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するNbの合計の原子比R10との割合R0/R10は3.6であった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、WO3を、Li:Ni:Mn:Co:W=1.12:0.45:0.45:0.10:0.01のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.23μmに粉砕した。
次に、このスラリー(固形分含有量16.5重量%、粘度1650cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP−50型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min.、降温速度:約3.3℃/min.)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウムニッケルマンガンコバルト複合酸化物粉体を得た。
このリチウムニッケルマンガンコバルト複合酸化物粉体は、組成がLi(Li0.053Ni0.425Mn0.427Co0.095)O2の層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.100、y=−0.002、z=0.111)であり、(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.01モル%であった。また、平均一次粒子径は0.2μmで、メジアン径は2.7μm、90%積算径(D90)は4.9μm、嵩密度は1.0g/cc、BET比表面積は2.8m2/g、体積抵抗率は6.3×104Ω・cm、含有炭素濃度Cは0.031重量%であった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co))に対して、一次粒子表面のWの原子比は7.8倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R0/R10は4.5であった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、WO3を、Li:Ni:Mn:Co:W=1.15:0.475:0.475:0.05:0.015のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.27μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度840cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1050℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が1.5×105Ω・cm、含有炭素濃度は0.063重量%、組成がLi1.149(Ni0.472Mn0.480Co0.048)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.048、y=−0.008、z=0.149)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.47モル%であった。また、平均一次粒径は0.4μmで、メジアン径は3.4μm、90%積算径(D90)は5.8μm、嵩密度は1.0g/cc、BET比表面積は2.5m2/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co))に対して、一次粒子表面のWの原子比は11倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R0/R10は4.9であった。
焼成温度を1100℃とした以外は、実施例7と同様に作製し、体積抵抗率が4.7×105Ω・cm、含有炭素濃度は0.056重量%、組成がLi1.134(Ni0.472Mn0.480Co0.048)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.048、y=−0.008、z=0.134)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.47モル%であった。また、平均一次粒径は0.4μmで、メジアン径は3.9μm、90%積算径(D90)は6.3μm、嵩密度は1.2g/cc、BET比表面積は2.0m2/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co))に対して、一次粒子表面のWの原子比は14倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比R0と、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R0/R10は4.8であった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOHを、Li:Ni:Mn:Co=1.10:0.45:0.45:0.10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量13重量%、粘度1350cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が2.7×104Ω・cm、含有炭素濃度Cは0.023重量%、組成がLi1.096(Ni0.458Mn0.444Co0.098)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.098、y=0.016、z=0.096)を得た。この平均一次粒子径は0.6μmで、メジアン径は3.0μm、90%積算径(D90)は5.1μm、嵩密度は1.2g/cc、BET比表面積は1.7m2/gであった。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、Li2WO4を、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.02のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.13μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1910cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは7×10−3L/minとした(気液比G/S=6429)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が1.1×104Ω・cm、含有炭素濃度Cは0.050重量%、組成がLi1.124(Ni0.457Mn0.446Co0.097)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.097、y=0.012、z=0.124)を得た。また、(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は2.06モル%であった。この平均一次粒子径は0.2μmで、メジアン径は0.8μm、90%積算径(D90)は1.3μm、嵩密度は0.9g/cc、BET比表面積は3.8m2/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は6.0倍となっていた。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、Li2B4O7を、Li:Ni:Mn:Co:B=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1460cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が5.3×104Ω・cm、含有炭素濃度Cは0.047重量%、組成がLi1.096(Ni0.450Mn0.451Co0.099)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.099、y=−0.001、z=0.096)を得た。また、(Ni,Mn,Co)トータルのモル比を1とした時、Bの含有モル比率は0.24モル%であった。この平均一次粒子径は1.0μmで、メジアン径は5.9μm、90%積算径(D90)は8.9μm、嵩密度は1.8g/cc、BET比表面積は0.8m2/gであった。さらに、粒子全体のB(ホウ素)の原子比(B/(Ni+Mn+Co)に対して、一次粒子表面のBの原子比は213倍となっていた。
Li2CO3、Ni(OH)2、Mn3O4、CoOOH、SnO2を、Li:Ni:Mn:Co:Sn=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量14重量%、粘度1580cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が3.1×104Ω・cm、含有炭素濃度Cは0.028重量%、組成がLi1.083(Ni0.448Mn0.456Co0.096)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.096、y=−0.009、z=0.083)を得た。また、(Ni,Mn,Co)トータルのモル比を1とした時、Snの含有モル比率は0.49モル%であった。この平均一次粒子径は0.5μmで、メジアン径は3.8μm、90%積算径(D90)は6.2μm、嵩密度は1.1g/cc、BET比表面積は1.7m2/gであった。さらに、粒子全体のSn(スズ)の原子比(Sn/(Ni+Mn+Co)に対して、一次粒子表面のSnの原子比は3.5倍となっていた。
Li2CO3、Ni(OH)2、Mn3O4、CoOOHを、Li:Ni:Mn:Co=1.15:0.475:0.475:0.05のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.25μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1450cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは7×10−3L/minとした(気液比G/S=6429)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1050℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が2.1×104Ω・cm、含有炭素濃度は0.037重量%、組成がLi1.106(Ni0.481Mn0.471Co0.048)O2のリチウムニッケルマンガンコバルト複合酸化物(x=0.048、y=0.011、z=0.106)を得た。得られたリチウムニッケルマンガンコバルト複合酸化物粉体の平均一次粒径は1.5μmで、メジアン径は6.2μm、90%積算径(D90)は9.5μm、嵩密度は1.9g/cc、BET比表面積は0.8m2/gであった。
上述の実施例1〜8及び比較例1〜5で製造したリチウム遷移金属系化合物粉体をそれぞれ正極材料(正極活物質)として用いて、以下の方法によりリチウム二次電池を作製し、評価を行った。
実施例1〜8及び比較例1〜5で製造したリチウム遷移金属系化合物粉体の各々75重量%と、アセチレンブラック20重量%、ポリテトラフルオロエチレンパウダー5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφのポンチを用いて打ち抜いた。この際、全体重量は約8mgになるように調整した。これをアルミニウムエキスパンドメタルに圧着して、9mmφの正極とした。
実施例1〜8及び比較例1〜5で製造した層状リチウムニッケルマンガンコバルト複合酸化物粉体を各々75重量%、アセチレンブラック20重量%、ポリテトラフルオロエチレンパウダー5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφ及び12mmφのポンチを用いて打ち抜いた。この際、全体重量は各々約8mg、約18mgになるように調整した。これをアルミニウムエキスパンドメタルに圧着して、9mmφ及び12mmφの正極とした。9mmφのものを「正極A」、12mmφのものを「正極B」という。
正極活物質重量[g]/負極活物質重量[g]
=(Qf[mAh/g]/1.2)Qs(C)[mAh/g]
1C[mA] = Qs(D)×正極活物質重量[g]/h
R[Ω] = ΔV[mV]/0.5C[mA]
Claims (24)
- リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されたものであり、
前記添加剤が、Mo、W、Nb、Ta、及びReから選ばれる少なくとも一種以上の元素(以下「添加元素」と称す。)を含有する酸化物であり、
一次粒子の表面部分のLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比が、粒子全体の該原子比の5倍以上であることを特徴とするリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。 - 前記添加剤が金属元素(以下「添加元素」と称す。)を含有し、粒子最表面におけるLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比R0と、粒子表面から深さ10nmにおけるLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比R10との割合R0/R10が、3倍以上であることを特徴とする請求項1に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 前記添加剤が金属元素(以下「添加元素」と称す。)を含有し、該添加元素が、粒子表面から深さ方向に非直線的な濃度勾配を持って存在する連続的組成傾斜構造を有することを特徴とする請求項1又は2に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定されたメジアン径が0.1μm以上、5μm未満であることを特徴とする請求項1ないし3のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 一次粒子の平均径が0.1μm以上、0.9μm以下であることを特徴とする請求項1ないし4のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- BET比表面積が1.5m2/g以上、5m2/g以下であることを特徴とする請求項1ないし5のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が、0.7cm3/g以上、1.5cm3/g以下であることを特徴とする請求項1ないし6のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 水銀圧入法による細孔分布曲線が、細孔半径300nm以上、1000nm以下にピークトップが存在するメインピークを少なくとも1つ以上有し、かつ細孔半径80nm以上、300nm未満にピークトップが存在するサブピークを有さないことを特徴とする請求項1ないし7のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 水銀圧入法による細孔分布曲線において、細孔半径300nm以上、1000nm以下にピークトップが存在するピークに係る細孔容量が0.4cm3/g以上、1cm3/g以下であることを特徴とする請求項1ないし8のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 嵩密度が0.5g/cm3以上、1.7g/cm3以下であることを特徴とする請求項1ないし9のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 40MPaの圧力で圧密した時の体積抵抗率が1×103Ω・cm以上、1×106Ω・cm以下であることを特徴とする請求項1ないし10のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されたものであり、
前記添加剤が、Mo、W、Nb、Ta、及びReから選ばれる少なくとも一種以上の元素(以下「添加元素」と称す。)を含有する酸化物であり、
層状構造に帰属する結晶構造を含んで構成される下記組成式(I)で表されるリチウム遷移金属系化合物粉体を主成分としたことを特徴とするリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
LiMO 2 …(I)
(ただし、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素である。) - 組成が、下記組成式(I)で示されることを特徴とする請求項12に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
LiMO2 …(I)
(ただし、上記式(I)中、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は0.3以上、5以下、Co/(Mn+Ni+Co)モル比は0以上、0.30以下、M中のLiモル比は0.001以上、0.2以下である。) - 酸素含有ガス雰囲気下において、焼成温度900℃以上で焼成されたものであることを特徴とする請求項12又は13に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 含有炭素濃度をC(重量%)とした時、C値が0.005重量%以上、0.25重量%以下であることを特徴とする請求項12ないし14のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- 前記組成式(I)中のMが、下記式(II)で表されることを特徴とする請求項13ないし15のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/2)1−xCox}2/(2+z) …(II)
(ただし、上記式(II)中、
0≦x≦0.1
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。) - CuKα線を使用した粉末X線回折測定において、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅をFWHM(110)とした時に、0.01≦FWHM(110)≦0.2で表されることを特徴とする請求項16に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
- CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)回折ピーク、64.5°付近に存在する(110)回折ピーク、及び68°付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異相由来の回折ピークを持たないか、或いは異相由来の回折ピークを有する場合、本来の結晶相の回折ピークに対する異相ピークの積分強度比が、各々、以下の範囲内にあることを特徴とする請求項16又は17に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
0≦I018 */I018≦0.30
0≦I110 */I110≦0.25
0≦I113 */I113≦0.30
(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018 *、I110 *、I113 *は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。) - リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する焼成工程とを含み、前記添加剤が、Mo、W、Nb、Ta、及びReから選ばれる少なくとも一種以上の元素(以下「添加元素」と称す。)を含有する酸化物であることを特徴とする請求項1ないし18のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
- スラリー調製工程において、リチウム化合物と、前記遷移金属化合物と、前記添加剤とを、液体媒体中で、レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定するメジアン径が0.4μm以下になるまで粉砕し、噴霧乾燥工程において、噴霧乾燥時のスラリー粘度をV(cp)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、50cp≦V≦4000cp、500≦G/S≦10000となる条件で噴霧乾燥を行うことを特徴とする請求項19に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
- 前記遷移金属化合物として少なくともニッケル化合物、マンガン化合物及びコバルト化合物を含み、前記焼成工程において、前記噴霧乾燥粉体を、酸素含有ガス雰囲気下、970℃以上で焼成することを特徴とする請求項19又は20に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
- リチウム化合物が炭酸リチウムであることを特徴とする請求項19ないし21のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
- 請求項1ないし18のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体と結着剤とを含有する正極活物質層を集電体上に有することを特徴とするリチウム二次電池用正極。
- リチウムを吸蔵・放出可能な負極、リチウム塩を含有する非水電解質、及びリチウムを吸蔵・放出可能な正極を備えたリチウム二次電池であって、正極として請求項23に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007278871A JP4613943B2 (ja) | 2006-11-10 | 2007-10-26 | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006305015 | 2006-11-10 | ||
JP2007124417 | 2007-05-09 | ||
JP2007278871A JP4613943B2 (ja) | 2006-11-10 | 2007-10-26 | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010192120A Division JP2011003551A (ja) | 2006-11-10 | 2010-08-30 | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008305777A JP2008305777A (ja) | 2008-12-18 |
JP2008305777A5 JP2008305777A5 (ja) | 2010-06-03 |
JP4613943B2 true JP4613943B2 (ja) | 2011-01-19 |
Family
ID=40234294
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007278871A Expired - Fee Related JP4613943B2 (ja) | 2006-11-10 | 2007-10-26 | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2010192120A Pending JP2011003551A (ja) | 2006-11-10 | 2010-08-30 | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010192120A Pending JP2011003551A (ja) | 2006-11-10 | 2010-08-30 | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP4613943B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2518804A1 (en) | 2011-04-28 | 2012-10-31 | Nichia Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery |
EP4371943A1 (en) * | 2022-11-21 | 2024-05-22 | SK On Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8962195B2 (en) | 2007-09-04 | 2015-02-24 | Mitsubishi Chemical Corporation | Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same |
JP5428251B2 (ja) * | 2007-09-04 | 2014-02-26 | 三菱化学株式会社 | リチウム遷移金属系化合物粉体、それを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP4766040B2 (ja) * | 2007-12-07 | 2011-09-07 | 日亜化学工業株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池。 |
JP5675128B2 (ja) * | 2009-08-28 | 2015-02-25 | 三洋電機株式会社 | リチウムイオン二次電池 |
CN102639443B (zh) * | 2009-12-07 | 2015-04-15 | 住友化学株式会社 | 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池 |
JP5440225B2 (ja) * | 2010-02-04 | 2014-03-12 | 株式会社村田製作所 | 非水電解質二次電池用電極活物質およびそれを用いた非水電解質二次電池 |
WO2011125722A1 (ja) | 2010-04-01 | 2011-10-13 | 三菱化学株式会社 | リチウム二次電池用正極材料及びその製造方法、並びにリチウム二次電池用正極及びリチウム二次電池 |
WO2012020647A1 (ja) * | 2010-08-09 | 2012-02-16 | 株式会社 村田製作所 | 電極活物質およびそれを備えた非水電解質二次電池 |
JP5742193B2 (ja) * | 2010-10-19 | 2015-07-01 | 住友化学株式会社 | リチウム複合金属酸化物および非水電解質二次電池 |
JP5738604B2 (ja) | 2011-01-12 | 2015-06-24 | 矢崎総業株式会社 | 電線保持・防水構造、及びledユニット |
JP5693998B2 (ja) * | 2011-02-25 | 2015-04-01 | 日立オートモティブシステムズ株式会社 | リチウムイオン二次電池及びリチウムイオン二次電池用正極の製造方法 |
JP5741908B2 (ja) | 2011-03-09 | 2015-07-01 | 日産自動車株式会社 | リチウムイオン二次電池用正極活物質 |
WO2012164752A1 (ja) | 2011-05-30 | 2012-12-06 | 住友金属鉱山株式会社 | 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池 |
KR101332020B1 (ko) | 2012-01-31 | 2013-11-25 | 전자부품연구원 | 리튬 이차전지용 양극 활물질 및 그의 제조방법 |
WO2014046144A1 (ja) * | 2012-09-19 | 2014-03-27 | 三菱化学株式会社 | 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池 |
JP5995094B2 (ja) * | 2013-03-21 | 2016-09-21 | トヨタ自動車株式会社 | リチウムイオン二次電池およびその製造方法 |
JP6176152B2 (ja) * | 2013-04-10 | 2017-08-09 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池 |
JP6167822B2 (ja) * | 2013-10-03 | 2017-07-26 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池 |
JP6693415B2 (ja) | 2014-06-26 | 2020-05-13 | 戸田工業株式会社 | 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電地 |
JP6493406B2 (ja) | 2014-08-26 | 2019-04-03 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質 |
JP6428192B2 (ja) | 2014-11-20 | 2018-11-28 | 戸田工業株式会社 | 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池 |
JP6417888B2 (ja) | 2014-11-20 | 2018-11-07 | 戸田工業株式会社 | 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池 |
US10336626B2 (en) | 2015-04-28 | 2019-07-02 | Nichia Corporation | Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery |
JP6164332B2 (ja) | 2015-04-28 | 2017-07-19 | 日亜化学工業株式会社 | ニッケルコバルト複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 |
EP3306713B1 (en) | 2015-06-02 | 2020-04-08 | Sumitomo Chemical Company, Ltd. | Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell |
WO2017122759A1 (ja) | 2016-01-15 | 2017-07-20 | 株式会社Gsユアサ | 蓄電素子 |
JP7004959B2 (ja) | 2016-07-14 | 2022-01-21 | 株式会社Gsユアサ | リチウム遷移金属複合酸化物、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、リチウム遷移金属複合酸化物の製造方法、非水電解質二次電池用正極活物質、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置 |
JP6343753B2 (ja) | 2016-12-07 | 2018-06-20 | 住友化学株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
JP7293576B2 (ja) | 2017-07-12 | 2023-06-20 | 住友金属鉱山株式会社 | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池 |
CN115385395A (zh) | 2017-07-12 | 2022-11-25 | 住友金属矿山株式会社 | 金属复合氢氧化物、非水电解质二次电池用正极活性物质以及使用其的非水电解质二次电池 |
JP6705068B1 (ja) * | 2020-01-17 | 2020-06-03 | 住友化学株式会社 | 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池 |
JP7597921B2 (ja) | 2020-12-04 | 2024-12-10 | エコプロ ビーエム カンパニー リミテッド | 正極活物質およびこれを含むリチウム二次電池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001035492A (ja) * | 1999-07-23 | 2001-02-09 | Seimi Chem Co Ltd | リチウム二次電池用正極活物質及びその製造方法 |
JP2004235166A (ja) * | 2004-05-17 | 2004-08-19 | Ngk Insulators Ltd | リチウム二次電池 |
JP2004253305A (ja) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | 表面修飾リチウムニッケル複合酸化物を用いた正極活物質、正極材料、リチウム二次電池、及び前記表面修飾リチウムニッケル複合酸化物の製造方法 |
JP2005053764A (ja) * | 2003-08-07 | 2005-03-03 | Nikko Materials Co Ltd | リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池 |
JP2005056602A (ja) * | 2003-08-05 | 2005-03-03 | Seimi Chem Co Ltd | リチウム二次電池用正極活物質粉末およびその評価方法 |
JP2005123179A (ja) * | 2003-09-26 | 2005-05-12 | Mitsubishi Chemicals Corp | リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2005310421A (ja) * | 2004-04-19 | 2005-11-04 | Nikko Materials Co Ltd | リチウムイオン二次電池用正極材料 |
JP2005347134A (ja) * | 2004-06-04 | 2005-12-15 | Sumitomo Metal Mining Co Ltd | リチウムイオン二次電池用正極活物質の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10324521A (ja) * | 1997-05-23 | 1998-12-08 | Ube Ind Ltd | リチウムマンガン複合酸化物およびその製造法ならびにその用途 |
JP3355126B2 (ja) * | 1998-01-30 | 2002-12-09 | 同和鉱業株式会社 | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 |
JP3563268B2 (ja) * | 1998-07-13 | 2004-09-08 | 日本碍子株式会社 | リチウム二次電池 |
JP3362025B2 (ja) * | 1999-04-30 | 2003-01-07 | 同和鉱業株式会社 | 正極活物質と該正極活物質を用いたリチウム二次電池 |
JP4475882B2 (ja) * | 2003-03-31 | 2010-06-09 | 国立大学法人九州大学 | 2次電池用正極材料の製造方法、および2次電池 |
JP4344359B2 (ja) * | 2003-08-19 | 2009-10-14 | Agcセイミケミカル株式会社 | リチウム二次電池用正極材料およびその製造方法 |
JP4639634B2 (ja) * | 2004-05-07 | 2011-02-23 | 日本電気株式会社 | リチウム二次電池用正極活物質およびそれを使用したリチウム二次電池 |
JP4628704B2 (ja) * | 2004-06-25 | 2011-02-09 | 株式会社クレハ | リチウム二次電池用正極材およびその製造方法 |
-
2007
- 2007-10-26 JP JP2007278871A patent/JP4613943B2/ja not_active Expired - Fee Related
-
2010
- 2010-08-30 JP JP2010192120A patent/JP2011003551A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001035492A (ja) * | 1999-07-23 | 2001-02-09 | Seimi Chem Co Ltd | リチウム二次電池用正極活物質及びその製造方法 |
JP2004253305A (ja) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | 表面修飾リチウムニッケル複合酸化物を用いた正極活物質、正極材料、リチウム二次電池、及び前記表面修飾リチウムニッケル複合酸化物の製造方法 |
JP2005056602A (ja) * | 2003-08-05 | 2005-03-03 | Seimi Chem Co Ltd | リチウム二次電池用正極活物質粉末およびその評価方法 |
JP2005053764A (ja) * | 2003-08-07 | 2005-03-03 | Nikko Materials Co Ltd | リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池 |
JP2005123179A (ja) * | 2003-09-26 | 2005-05-12 | Mitsubishi Chemicals Corp | リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2005310421A (ja) * | 2004-04-19 | 2005-11-04 | Nikko Materials Co Ltd | リチウムイオン二次電池用正極材料 |
JP2004235166A (ja) * | 2004-05-17 | 2004-08-19 | Ngk Insulators Ltd | リチウム二次電池 |
JP2005347134A (ja) * | 2004-06-04 | 2005-12-15 | Sumitomo Metal Mining Co Ltd | リチウムイオン二次電池用正極活物質の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2518804A1 (en) | 2011-04-28 | 2012-10-31 | Nichia Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery |
EP4371943A1 (en) * | 2022-11-21 | 2024-05-22 | SK On Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
JP2008305777A (ja) | 2008-12-18 |
JP2011003551A (ja) | 2011-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4613943B2 (ja) | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP4475326B2 (ja) | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP5428251B2 (ja) | リチウム遷移金属系化合物粉体、それを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP5359140B2 (ja) | リチウム遷移金属系化合物粉体、その製造方法並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP5343347B2 (ja) | リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP5135912B2 (ja) | リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池 | |
JP4591717B2 (ja) | リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
EP2202828B1 (en) | Lithium transition metal-type compound powder, method for manufacturing the same and lithium secondary battery positive electrode and lithium secondary battery using the same | |
JP4432910B2 (ja) | リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
WO2011083861A1 (ja) | リチウム二次電池正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP2008270161A5 (ja) | ||
JP2009164140A5 (ja) | ||
WO2011125722A1 (ja) | リチウム二次電池用正極材料及びその製造方法、並びにリチウム二次電池用正極及びリチウム二次電池 | |
JP2011108554A (ja) | リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP4529784B2 (ja) | リチウム二次電池正極材料用層状リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法と、それを用いたリチウム二次電池用正極、並びにリチウム二次電池 | |
JP2009117261A (ja) | リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池 | |
JP2009032647A (ja) | リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池 | |
JP4997700B2 (ja) | リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP2010278015A (ja) | リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP6010902B2 (ja) | リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池 | |
JP4591716B2 (ja) | リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、噴霧乾燥体、および焼成前駆体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100415 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100415 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4613943 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |