WO2001003226A1 - Accumulateur electrolytique non aqueux et dispositif le contenant - Google Patents
Accumulateur electrolytique non aqueux et dispositif le contenant Download PDFInfo
- Publication number
- WO2001003226A1 WO2001003226A1 PCT/JP2000/004291 JP0004291W WO0103226A1 WO 2001003226 A1 WO2001003226 A1 WO 2001003226A1 JP 0004291 W JP0004291 W JP 0004291W WO 0103226 A1 WO0103226 A1 WO 0103226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- secondary battery
- aqueous electrolyte
- electrolyte secondary
- organic compound
- Prior art date
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 36
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000004770 highest occupied molecular orbital Methods 0.000 claims abstract description 16
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims abstract description 16
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 8
- -1 1-phenylbiperazine Chemical compound 0.000 claims description 45
- 125000000217 alkyl group Chemical group 0.000 claims description 40
- 125000003118 aryl group Chemical group 0.000 claims description 37
- 229910052744 lithium Inorganic materials 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 25
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 24
- 239000003792 electrolyte Substances 0.000 claims description 21
- 125000003545 alkoxy group Chemical group 0.000 claims description 17
- 239000008151 electrolyte solution Substances 0.000 claims description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 150000001491 aromatic compounds Chemical class 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 238000004776 molecular orbital Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- UWYZHKAOTLEWKK-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline Chemical compound C1=CC=C2CNCCC2=C1 UWYZHKAOTLEWKK-UHFFFAOYSA-N 0.000 claims description 4
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 claims description 4
- MXHTZQSKTCCMFG-UHFFFAOYSA-N n,n-dibenzyl-1-phenylmethanamine Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)CC1=CC=CC=C1 MXHTZQSKTCCMFG-UHFFFAOYSA-N 0.000 claims description 4
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 claims description 3
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 claims description 3
- OOLUVSIJOMLOCB-UHFFFAOYSA-N 1633-22-3 Chemical compound C1CC(C=C2)=CC=C2CCC2=CC=C1C=C2 OOLUVSIJOMLOCB-UHFFFAOYSA-N 0.000 claims description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 3
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 claims description 3
- NGDCLPXRKSWRPY-UHFFFAOYSA-N Triptycene Chemical compound C12=CC=CC=C2C2C3=CC=CC=C3C1C1=CC=CC=C12 NGDCLPXRKSWRPY-UHFFFAOYSA-N 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 claims description 3
- 229940031439 squalene Drugs 0.000 claims description 3
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 claims description 3
- UYUUAUOYLFIRJG-UHFFFAOYSA-N tris(4-methoxyphenyl)phosphane Chemical compound C1=CC(OC)=CC=C1P(C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 UYUUAUOYLFIRJG-UHFFFAOYSA-N 0.000 claims description 3
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 claims description 2
- PGYJSURPYAAOMM-UHFFFAOYSA-N 2-ethenoxy-2-methylpropane Chemical compound CC(C)(C)OC=C PGYJSURPYAAOMM-UHFFFAOYSA-N 0.000 claims description 2
- WPDAVTSOEQEGMS-UHFFFAOYSA-N 9,10-dihydroanthracene Chemical compound C1=CC=C2CC3=CC=CC=C3CC2=C1 WPDAVTSOEQEGMS-UHFFFAOYSA-N 0.000 claims description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- QBHWPVJPWQGYDS-UHFFFAOYSA-N hexaphenylbenzene Chemical compound C1=CC=CC=C1C(C(=C(C=1C=CC=CC=1)C(C=1C=CC=CC=1)=C1C=2C=CC=CC=2)C=2C=CC=CC=2)=C1C1=CC=CC=C1 QBHWPVJPWQGYDS-UHFFFAOYSA-N 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 229930184652 p-Terphenyl Natural products 0.000 claims description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims 1
- POYYYXPQBFPUKS-UHFFFAOYSA-N 2-butylcyclohexan-1-one Chemical compound CCCCC1CCCCC1=O POYYYXPQBFPUKS-UHFFFAOYSA-N 0.000 claims 1
- VYTPDQSCOXJDJM-UHFFFAOYSA-N 2-methylidenecyclohexan-1-one Chemical compound C=C1CCCCC1=O VYTPDQSCOXJDJM-UHFFFAOYSA-N 0.000 claims 1
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 claims 1
- GTWJETSWSUWSEJ-UHFFFAOYSA-N n-benzylaniline Chemical compound C=1C=CC=CC=1CNC1=CC=CC=C1 GTWJETSWSUWSEJ-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000004219 molecular orbital method Methods 0.000 abstract 1
- 239000000654 additive Substances 0.000 description 41
- 239000000203 mixture Substances 0.000 description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 28
- 230000000996 additive effect Effects 0.000 description 28
- 239000007774 positive electrode material Substances 0.000 description 22
- 229920001577 copolymer Polymers 0.000 description 19
- 239000007773 negative electrode material Substances 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 15
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 13
- 239000006258 conductive agent Substances 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052731 fluorine Inorganic materials 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 10
- 239000003575 carbonaceous material Substances 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- 230000002159 abnormal effect Effects 0.000 description 9
- 125000005843 halogen group Chemical group 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- 125000001309 chloro group Chemical group Cl* 0.000 description 8
- 125000000753 cycloalkyl group Chemical group 0.000 description 8
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 8
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 150000005676 cyclic carbonates Chemical class 0.000 description 7
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 7
- 125000001153 fluoro group Chemical group F* 0.000 description 7
- 230000020169 heat generation Effects 0.000 description 7
- 125000005842 heteroatom Chemical group 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229930192474 thiophene Natural products 0.000 description 7
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 6
- JVZRCNQLWOELDU-UHFFFAOYSA-N 4-Phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 235000010290 biphenyl Nutrition 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- KTHUKEZOIFYPEH-UHFFFAOYSA-N 1-benzylnaphthalene Chemical compound C=1C=CC2=CC=CC=C2C=1CC1=CC=CC=C1 KTHUKEZOIFYPEH-UHFFFAOYSA-N 0.000 description 3
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 3
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 3
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- QZHPTGXQGDFGEN-UHFFFAOYSA-N chromene Chemical compound C1=CC=C2C=C[CH]OC2=C1 QZHPTGXQGDFGEN-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 3
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 3
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- HJKGBRPNSJADMB-UHFFFAOYSA-N 3-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CN=C1 HJKGBRPNSJADMB-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 239000002000 Electrolyte additive Substances 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- GGBJHURWWWLEQH-UHFFFAOYSA-N butylcyclohexane Chemical compound CCCCC1CCCCC1 GGBJHURWWWLEQH-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- PJANXHGTPQOBST-QXMHVHEDSA-N cis-stilbene Chemical compound C=1C=CC=CC=1/C=C\C1=CC=CC=C1 PJANXHGTPQOBST-QXMHVHEDSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 239000011532 electronic conductor Substances 0.000 description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- ISGXOWLMGOPVPB-UHFFFAOYSA-N n,n-dibenzylaniline Chemical compound C=1C=CC=CC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 ISGXOWLMGOPVPB-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000006276 transfer reaction Methods 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- ODHYDPYRIQKHCI-UHFFFAOYSA-N 1,2,3,4,5,6,7,8,9,10,11,12-dodecahydrotriphenylene Chemical group C1CCCC2=C1C(CCCC1)=C1C1=C2CCCC1 ODHYDPYRIQKHCI-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical class ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- NMUWSGQKPAEPBA-UHFFFAOYSA-N 1,2-dibutylbenzene Chemical compound CCCCC1=CC=CC=C1CCCC NMUWSGQKPAEPBA-UHFFFAOYSA-N 0.000 description 1
- VFRGATWKSPNXLT-UHFFFAOYSA-N 1,2-dimethoxybutane Chemical compound CCC(OC)COC VFRGATWKSPNXLT-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- UKLSPXFLDRMKCV-UHFFFAOYSA-N 1-(1,1,2,3,3,3-hexafluoropropyl)pyrene Chemical compound FC(C(F)(F)C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C34)C(F)(F)F UKLSPXFLDRMKCV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- QUBJDMPBDURTJT-UHFFFAOYSA-N 3-chlorothiophene Chemical compound ClC=1C=CSC=1 QUBJDMPBDURTJT-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910007894 Li-Al-Mn Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- 229910008475 Li—Al—Mn Inorganic materials 0.000 description 1
- 229910006309 Li—Mg Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 101150107341 RERE gene Proteins 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- YULMNMJFAZWLLN-UHFFFAOYSA-N methylenecyclohexane Chemical compound C=C1CCCCC1 YULMNMJFAZWLLN-UHFFFAOYSA-N 0.000 description 1
- WPHGSKGZRAQSGP-UHFFFAOYSA-N methylenecyclohexane Natural products C1CCCC2CC21 WPHGSKGZRAQSGP-UHFFFAOYSA-N 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000009783 overcharge test Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 229940100050 virazole Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/583—Devices or arrangements for the interruption of current in response to current, e.g. fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
- H01M2200/106—PTC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a non-aqueous electrolyte secondary battery and a device using the same.
- non-aqueous electrolyte secondary batteries using a negative electrode containing lithium as an active material are expected to have high voltage and high energy density.
- a lithium-containing metal oxide exhibiting a voltage of 4 V class is used as the positive electrode active material, and a material such as a carbonaceous material that can inter-rate and durable lithium is used as the negative electrode.
- Japanese Patent Application Laid-Open Nos. Hei 9-50822 and Hei 10-503242 disclose adding an aromatic compound having a methoxy group and a halogen group into a battery.
- a means has been proposed to secure the safety by causing the temperature to rise due to polymerization of these additives during overcharge.
- biphenyl dithiophene is added to an electrolytic solution, and these additives are polymerized during overcharging to produce a battery.
- Methods have been proposed to prevent thermal runaway during overcharging by increasing the voltage of the battery, increasing the internal pressure of the battery, or forming a conductive polymer to create a path through which electrons can move within the battery.
- the present invention solves such a problem and secures safety during overcharge while maintaining good cycle characteristics and storage characteristics at normal times, which are essential characteristics of a battery. An excellent battery is provided.
- the present invention solves the above problem by using a lithium-containing composite oxide as a positive electrode active material, a material capable of occluding and releasing lithium as a negative electrode, and a non-aqueous electrolyte containing a non-aqueous solvent.
- the HOMO energy (maximum occupied orbital energy) calculated by the semi-empirical molecular orbital calculation method using the PM 3 method for the Hamiltonian in the nonaqueous electrolyte is -8.5 eV to 11.1 O
- An organic compound having an eV and an LUMO energy (lowest unoccupied orbital energy) of -0.135 eV to 3.5 eV is added as an electrolyte additive.
- the additive in the range of 0.1 to 20% by weight based on the total amount of the nonaqueous solvent and the additive.
- FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an example of the present invention and a comparative example.
- FIG. 2 is a diagram showing voltage-temperature behavior during overcharge of the battery of the comparative example.
- FIG. 3 is a diagram showing voltage-temperature behavior during overcharging of the battery of this example.
- the present invention uses a lithium-containing composite oxide as a positive electrode active material, a material capable of occluding and releasing lithium as a negative electrode, a non-aqueous electrolytic solution containing a non-aqueous solvent,
- the HOMO energy maximum occupied orbital energy
- OeV and LUMO energy lowest
- An organic compound with an empty orbital energy of -0.135 eV to 3.5 eV is added as an electrolyte additive.
- the added organic compound is in the positive electrode potential region where the battery normally operates (the positive electrode
- the present inventors attempted to evaluate the appropriate electrochemical oxidizing property by using the orbital energy level of the occupied electrons (HOMO energy (maximum occupied orbital energy)), which is most easily removed.
- HOMO energy maximum occupied orbital energy
- the HOMO energy can be calculated by the semi-empirical molecular orbital calculation method using the Hamiltonian PM3 method. (Recently, it can be easily calculated with a computer using M ⁇ PAC: for example, Japanese Patent Application Laid-Open No. 6-333576)
- M ⁇ PAC for example, Japanese Patent Application Laid-Open No. 6-333576
- a study of the relationship between the electrochemical oxidation resistance of the added organic compound and the HOMO energy revealed that the battery was normally used when the HOMO energy was -8.5 eV- ⁇ 11.11 OeV. It was found that oxidative electropolymerization was stable in a certain potential range and that it was efficient when overcharged. Accordingly, it is desirable that the organic compound as an additive in the present
- the organic compound added in the present invention is different from the prior art additives in that the potential region of the negative electrode usually used to maintain good cycle characteristics and storage characteristics (0 V with respect to the Li metal electrode reference). It must be stable at ⁇ 1.5V).
- the present inventors have attempted to evaluate this stability using reduction resistance as a scale. It is known that the reduction resistance of organic compounds correlates with the LUM ⁇ energy of molecular orbitals (the lowest unoccupied orbital energy). (For example, Japanese Patent Application Laid-Open No. 5-290882 specifies the reduction resistance of a non-aqueous electrolyte by LUMO energy. However, this publication does not disclose any reduction resistance of additives.)
- Such LUMO energies can also be calculated by the semi-empirical molecular orbital calculation method using the PM3 method on Hamiltonian like the HOMO energy.
- the range is 0.135 eV to 3.5 eV, and it is more preferable that the range be 0.3 to 3.5 eV.
- an organic compound having the specific HOMO energy and LUMO energy described above is added to the electrolyte.
- the organic compound initiates electrolytic polymerization on the positive electrode active material when the battery enters the overcharge region. This reaction significantly reduces the reaction efficiency of extracting lithium ions from the positive electrode, thereby preventing a decrease in the thermal stability of the positive electrode active material.
- the polymer formed by polymerization is formed on the surface of the positive electrode, which inhibits the charge transfer reaction of the positive electrode active material, and can significantly increase the internal resistance of the battery. The current can be stopped. In this way, stability during overcharging is ensured.
- this organic compound since this organic compound has high resistance to reduction, the coating of the negative electrode with the decomposition product of the organic compound is suppressed, and the normal cycle characteristics and storage characteristics are maintained well.
- an aromatic compound or a compound having a vinyl group easily undergoes oxidative electrolytic polymerization, has high conversion efficiency, and effectively promotes oxidative electrolytic polymerization.
- the additive of the present invention is represented by the following formula (1), and has a HOMO energy (maximum occupied orbital energy) of -8.5 eV to 11.1 OeV, and Aromatic compounds having a LUMO energy (lowest unoccupied orbital energy) of -0.135 eV to 3.5 eV are mentioned.
- R 1 to R 6 are independently a group selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an amino group, provided that the number of hydrogen atoms is 5 or less. Further, a 5- or 6-membered ring may be formed by two adjacent alkyl groups).
- the alkyl group refers to a linear or branched alkyl group, a linear or branched cycloalkyl group, and may be saturated or unsaturated such as alkenyl-substituted alkyl. It may be unsubstituted or substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or an ethoxy group, an aryl group such as a phenyl group, or a cycloalkyl group. May contain a heteroatom selected from S, N, O, P in the ring, preferably N.
- the alkyl group is a lower alkyl group
- a lower alkyl group is a straight or branched chain alkyl group having 1-10 carbon atoms or a straight chain having 3-10 carbon atoms. Or a branched cycloalkyl group.
- Preferred lower alkyl groups include a cyclopentyl group, a cyclohexyl group, a vinyl group, and an aryl group.
- Preferred cycloalkyl groups having a hetero atom in the ring include a piperazinyl group and a piperidyl group.
- An aryl group refers to a group containing one or more aromatic rings.
- the aromatic ring may be a heterocyclic ring containing a hetero atom selected from S, N, ⁇ , and P, or may be a pseudoaromatic.
- Pseudoaromatics are groups that are not aromatic in the exact sense, but which behave similarly to aromatics due to electron delocalization, such as furan, thiophene, and pyrrole.
- the aryl group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkyl group such as a methyl group or an ethyl group, or an alkoxy group such as a methoxy group or a ethoxy group.
- aromatic rings examples include benzene, biphenyl, naphthalene, 1-benzylnaphthalene, anthracene, dihydroanthracene, pyridine, 4-phenylpyridine, 3-phenylenopyridine, thiophene, benzothiophene, furan, pyran, isobenzofuran, Examples include chromene, pyrrole, imidazonole, villazonole, pyrimidin, indole, indolizine, isoindole, quinoline, isoquinoline, quinoxaline, and kyrubazole.
- Preferred aryl groups are substituted or unsubstituted phenyl groups, and unsubstituted ones are preferred.
- Amino groups are substituted by halogen atoms such as fluorine and chlorine atoms, lower alkyl groups such as methyl and ethyl groups, alkoxy groups such as methoxy and ethoxy groups, and aryl groups such as phenyl groups. It may be.
- the ring formed by two adjacent alkyl groups is preferably a 6-membered ring, and the number of rings is preferably 1-3.
- aromatic compound represented by the formula (1) examples include, for example, hexafyuinolebenzene, pheninolecyclohexane, 1,3,5-tripheninolebenzene, p-tenolefeni ⁇ /, dodecahydrophenelene, and 1-phenylene. Ninolebiperazine, dibininolebenzene, and dicyclohexeneolebenzene.
- One maximal occupied orbital energy is 18.5 eV to 1 1 .1 OeV
- L UMO energy lowest unoccupied orbital energy
- R 1 to R 4 are independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an oxycarbonyl group represented by R 5 C, R 1 and R 2; Two adjacent alkyl groups of R 3 and R 4 may form a 5- or 6-membered ring).
- the alkyl group means a linear or branched alkyl group, a linear or branched cycloalkyl group, and may be saturated or unsaturated. It may be substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or an ethoxy group, an aryl group such as a phenyl group, and the like. It may contain a heteroatom selected from N, 0, and P.
- a halogen atom such as a fluorine atom or a chlorine atom
- an alkoxy group such as a methoxy group or an ethoxy group
- an aryl group such as a phenyl group, and the like. It may contain a heteroatom selected from N, 0, and P.
- the alkyl group is a lower alkyl group, wherein the lower alkyl group is a linear or branched alkyl group having 11 to 10 carbon atoms or a linear or branched alkyl group having 3 to 10 carbon atoms. Refers to a branched cycloalkyl group.
- Preferred lower alkyl groups include a cyclopentyl group, a cyclohexyl group, a vinyl group, an aryl group, a methyl group, a methyl group, a t-butyl group and the like.
- the alkoxy group refers to a linear or branched alkoxy group or a linear or branched cycloalkoxy group, which may be saturated or unsaturated. It may be substituted by a halogen atom such as a fluorine atom or a chlorine atom, or an aryl group such as a fuunyl group, and may contain an unsaturated bond.
- the alkoxy group is a lower alkoxy group, wherein the lower alkoxy group is a straight or branched chain alkoxy group having 1 to 10 carbon atoms or a straight chain having 3 to 10 carbon atoms.
- Chain or branched cycloa Refers to a lucoxy group.
- a branched or unsubstituted alkoxy group containing an unsaturated bond a branched or unsubstituted alkoxy group containing an unsaturated bond.
- An aryl group refers to a group containing one or more aromatic rings or composed of one or more aromatic rings.
- the aromatic ring may be a heterocyclic ring containing a heteroatom selected from S, N, 0, and P, and may be a pseudoaromatic.
- Pseudoaromatics are groups that are not aromatic in the exact sense, but behave like aromatics due to electron delocalization, such as furan, thiophene, and pyrrole.
- the aryl group may be substituted by a halogen atom such as a fluorine atom or a chlorine atom, a lower alkyl group such as a methyl group or an ethyl group, or an alkoxy group such as a methoxy group or an ethoxy group.
- a halogen atom such as a fluorine atom or a chlorine atom
- a lower alkyl group such as a methyl group or an ethyl group
- an alkoxy group such as a methoxy group or an ethoxy group.
- aromatic rings examples include benzene, biphenyl, naphthalene, 1-benzylnaphthalene, anthracene, dihydroanthracene, pyridine, 4-phenylpyridine, 3-phenylenopyridine, thiophene, benzothiophene, furan, pyran, isobenzofuran,
- aromatic rings include chromene, pyrrole, imidazole, virazole, pyrimidin, indole, indolizine, isoindole, quinoline, isoquinoline, quinoxaline, and levazole.
- Preferred aryl groups are substituted or unsubstituted phenyl groups, and unsubstituted ones are preferred.
- R 5 of the oxycarbonyl group represented by R 5 ⁇ CO— is an alkyl group or an aryl group, and a preferred alkyl group or aryl group is as described above in relation to the formula (2). Of these, a methyl group and an ethyl group are preferred.
- Examples of such unsaturated compounds of formula (2) include butylcyclohexane, t-butynolevinyl ether, methyl methacrylate monomer, cis-stilbene, methylenecyclohexane, tetraphenylenoleethylene, 2,3 —Dimethinoles 1,3-butadiene.
- the additive is represented by the formula (3).
- the H OMO energy (the highest occupied orbital energy) is 18.5 eV 11 .1 OeV, and the LUMO energy
- the (lowest unoccupied orbital energy) may be a tertiary amine having an energy of 0.135 eV to 3.5 eV.
- R 1 to R 3 are independently an alkyl group or an aryl group
- the alkyl group means a linear or branched alkyl group or a linear or branched cycloalkyl group, which may be saturated or unsaturated. It may be unsubstituted or substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or an ethoxy group, or an aryl group such as a phenyl group.
- the ring may contain a heteroatom selected from S, N, O, P, preferably N.
- the alkyl group is a lower alkyl group, wherein the lower alkyl group is a straight-chain or branched alkyl group having 11 to 10 carbon atoms or a straight-chain or branched alkyl group having 3 to 10 carbon atoms. Refers to a cycloalkyl group in the chain.
- Preferred lower alkyl groups include a lower phenyl group substituted by a phenyl group such as a benzyl group.
- An aryl group refers to a group containing one or more aromatic rings.
- the aromatic ring may be a heterocyclic ring containing a heteroatom selected from S, N, 0, and P, and may be a pseudoaromatic.
- Pseudoaromatics are groups that are not aromatic in the exact sense, but which behave similarly to aromatics due to electron delocalization, such as furan, thiophene, and pyrrole.
- the aryl group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkyl group such as a methyl group or an ethyl group, or an alkoxy group such as a methoxy group or a ethoxy group.
- aromatic rings examples include benzene, biphenyl, naphthalene, 1-benzylnaphthalene, anthracene, dihydroanthracene, pyridine, 4-phenylpyridine, 3-phenylpyridine, thiophene, benzothiophene, furan, pyran, isobenzofuran, Chromene, —pyrrole, imidazole, pyrazole, pyrimidi , Indole, indolizine, isoindole, quinoline, isoquinoline, quinoxaline, kylvazole and the like.
- Preferred aryl groups are substituted or unsubstituted phenyl groups and naphthyl groups, and unsubstituted ones are preferred.
- Examples of such a compound of formula (3) include tribenzylamine and N-phenyldibenzylamine.
- the HOMO energy (the highest occupied orbital energy) is , -8.5 eV to 1 l 1.
- O eV and LUMO energy (lowest free orbital energy) is 0.135 eV to 3.5 eV. Is also good.
- Such additives include squalene or (E)-) 3-fuarnesene.
- Specific examples include dihydroanthracene, triptycene, and [2,2] paracyclophane.
- the positive electrode and the negative electrode are insulating microporous polyolefin membranes capable of impregnating and holding the electrolyte or an electrolyte consisting essentially of the electrolyte and the polymer, at least a part of which is gelled. It works more effectively in non-aqueous electrolyte batteries facing each other through the electrolyte.
- overcharging current can be stopped by the appearance of a separator down mechanism caused by thermal melting.
- the addition of the additive significantly reduces the reaction efficiency of lithium ions being extracted from the positive electrode, and raises the battery temperature while maintaining the thermal stability 14 of the positive electrode active material. Without abnormal heat generation, the battery temperature gradually drops when the current stops, ensuring safety.
- non-aqueous batteries with the function of sensing the rise in battery temperature and disconnecting the charging circuit
- the reliability can be further improved by using it together with the charge control system of the lysate secondary battery.
- a positive temperature coefficient thermistor (PTC) or a temperature fuse is preferable.
- the operating temperature of the positive temperature coefficient thermistor (PTC) or the temperature fuse is 60 to 120 °. The highest reliability is obtained when it is within the range of C.
- the additive in the present invention is not intended for redox shuttle, the oxidation reaction is desirably irreversible, and JP-A-7-362614 and JP-A-9-91 for the purpose of reversibility of oxidation-reduction reaction are disclosed. The purpose is different from that of 50822.
- Li x C O_ ⁇ 2 L i X N i 0 2 ( U.S. Patent No. 430251 8), L i x MnO 2, L i xC o vN i -yOz (JP-A-63- 299056 JP), L i x CO f V -! f O z, L i X N i!
- the lithium-containing composite oxide used as the positive electrode active material in the present invention is a carbonate, nitrate, oxide or hydroxide of lithium and a carbonate, nitrate, oxide or hydroxide of a transition metal such as cobalt, manganese or nickel.
- the calcination method is particularly preferable.
- the calcination temperature is 250 to 1500, which is the temperature at which a part of the mixed compound is decomposed and melted. ° C.
- the firing time is preferably from 1 to 80 hours.
- the firing gas atmosphere may be air, an oxidizing atmosphere, or a reducing atmosphere, and is not particularly limited.
- a plurality of different positive electrode active materials may be used in combination. For example, those having the opposite expansion and contraction behavior during charge and discharge can be used.
- a preferred example of a positive electrode active material that expands when discharging (when lithium ions are inserted) and contracts when charging (when lithium ions are released) is a spinel-type lithium-containing manganese oxide, and contracts when discharging (when lithium ions are inserted).
- a preferable example of the positive electrode active material that expands during charging (when releasing lithium ions) is a lithium-containing cobalt oxide.
- the conductive agent in the positive electrode mixture according to the present invention may be any conductive material that does not cause a chemical change in the configured battery.
- graphites such as natural graphite (flaky graphite, etc.), artificial graphite, etc., carbon blacks such as acetylene black, ketjen black, cyanne black, furnace black, lamp black, therma black, carbon black, metal fiber
- Conductive fibers such as carbon fluoride, metal powders such as copper, nickel, aluminum and silver; conductive whiskers such as zinc oxide and potassium titanate; and conductive metal oxides such as titanium oxide.
- An organic conductive material such as a polyfurene derivative or the like can be included alone or as a mixture thereof.
- conductive agents artificial graphite, acetylene black, and nickel powder are particularly preferred.
- the amount of the conductive agent is not particularly limited, but is preferably 1 to 50% by weight, and particularly preferably 1 to 30% by weight. For carbon and graphite, 2 to 15% by weight is particularly preferred.
- a preferred binder in the positive electrode mixture of the present invention is a polymer having a decomposition temperature of 300 ° C or higher.
- any electronic conductor that does not cause a chemical change in the configured battery may be used.
- a material obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver is used.
- aluminum or an aluminum alloy is preferable. It is also used to oxidize the surface of these materials.
- the surface of the current collector may be made uneven by surface treatment.
- a film, a sheet, a net, a punched material, a lath body, a porous body, a foam, a fiber group, a nonwoven fabric, and the like are used.
- the thickness is not particularly limited, but a thickness of 1 to 500 ⁇ m is used.
- the negative electrode material used in the present invention may be any compound that can occlude and release lithium ions, such as lithium, lithium alloys, alloys, intermetallic compounds, carbon, organic compounds, inorganic compounds, metal complexes, and organic polymer compounds. . These may be used alone or in combination.
- Li-Al US Patent No. 4002492, etc.
- Li-Al-Mn Li-AI-Mg, Li-A1-Sn, Li-AtoIn , L i—A l—C d, L i—A l—T e, L i—G a
- Japanese Patent Laid-Open No. 257072/1985 Japanese Patent Laid-Open No. 257072/1985
- L i—C d L i—I In, L i—i Pb, Li-Bi, Li-Mg, and the like.
- the content of lithium is preferably 10% or more.
- alloys and intermetallic compounds include compounds of transition metals and silicon, and compounds of transition metals and tin. Particularly preferred are compounds of nickel and silicon.
- carbonaceous materials include coke, pyrolytic carbon, natural graphite, artificial graphite, mesocabon microbeads, graphitized mesophase spheres, vapor-grown carbon, glassy carbon, carbon fiber (polyacrylonitrile, pitch System, cellulosic system, vapor-grown carbon system), amorphous carbon, and organically calcined carbon. These may be used alone or in combination.
- graphite materials such as natural graphite and artificial graphite, which are obtained by graphitizing mesophase microspheres, are preferred.
- the carbonaceous material even outside carbon than, 0, B, P, N , S, S i C, also include heterologous compounds, such as B 4 C good Rere.
- the content is preferably from 0 to 10% by weight.
- Inorganic compounds include, for example, tin compounds, silicon compounds, and inorganic oxides include, for example, titanium oxides, tungsten oxides, molybdenum oxides, niobium oxides, vanadium oxides, iron oxides, and the like. Is mentioned.
- Examples of the inorganic chalcogenide include iron sulfide, molybdenum sulfide, and titanium sulfide.
- High molecular compounds such as polythiophene and polyacetylene are used as organic high molecular compounds, and cobalt nitrides, copper nitrides, nickel nitrides, iron nitrides, manganese nitrides, etc. are used as nitrides. be able to.
- These negative electrode materials may be used in combination, for example, a combination of carbon and an alloy, carbon and an inorganic compound, and the like.
- the average particle size of the carbon material used in the present invention is preferably from 0.1 to 60 // m. More preferably, it is 0.5 to 3 ⁇ .
- the specific surface area is preferably from 1 to 10 m 2 Z g.
- graphite having a carbon hexagonal plane interval (d002) of 3.35 to 3.4 OA and a crystallite size (LC) in the c-axis direction (LC) of 10 OA or more is preferable. .
- a negative electrode material such as carbon
- Li is contained in the positive electrode active material
- a negative electrode material such as carbon
- Li is contained in such a negative electrode material containing no Li
- the negative electrode material in order to make the negative electrode material contain Li, for example, the molten lithium metal is applied on a current collector to which the negative electrode material is pressed, and the negative electrode material is impregnated with Li.
- lithium metal may be attached to the electrode group in advance by pressure bonding or the like, and Li may be doped into the negative electrode material electrochemically in the electrolytic solution.
- the conductive agent in the negative electrode mixture may be any electronic conductive material that does not cause a chemical change in the configured battery.
- the carbonaceous material when used as the negative electrode material, the carbonaceous material itself has electronic conductivity, and therefore, contains a conductive agent.
- the binder in the negative electrode mixture may be either a thermoplastic resin or a thermosetting resin. Although preferred, a binder in the present invention is a polymer having a decomposition temperature of 300 ° C. or higher.
- the current collector of the negative electrode may be any electronic conductor that does not cause a chemical change in the configured battery.
- nickel, copper, titanium, carbon, etc. copper, stainless steel with carbon, nickel, titanium, or silver treated on its surface, A1-Cd alloy, etc. are used. .
- copper or a copper alloy is preferable. Oxidizing the surface of these materials is also used.
- the surface of the current collector may be made uneven by surface treatment. Shapes include oil, film, sheet, net, punched, lath, porous, foam, fiber group And the like are used.
- the thickness is not particularly limited, but a thickness of 1 to 500 ⁇ is used.
- a filler As the electrode mixture, a filler, a dispersant, an ionic conductive agent, a pressure enhancer, and other various additives can be used in addition to the conductive agent and the binder.
- any fibrous material that does not cause a chemical change in the configured battery can be used.
- fibers such as polypropylene, polyethylene, and other olefin polymers, glass, and carbon are used.
- the amount of the filler is not particularly limited, but is preferably 0 to 30% by weight.
- the positive electrode and the negative electrode in the present invention are introduced for the purpose of improving the adhesion between the current collector and the mixture layer and improving the conductivity, cycle characteristics, charge / discharge efficiency, etc., in addition to the mixture layer containing the positive electrode active material or the negative electrode material. It may have an undercoat layer or a protective layer introduced for the purpose of mechanical or chemical protection of the mixture layer.
- the undercoat layer and the protective layer can include a binder, conductive agent particles, and particles having no conductivity.
- the non-aqueous electrolytic solution in the present invention is composed of a non-aqueous solvent containing at least one or more acyclic esters, and a lithium salt dissolved in the solvent.
- Non-cyclic esters include non-cyclic carbonates such as dimethyl carbonate (DMC), getyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), methyl formate, methyl acetate, and propionic acid.
- DMC dimethyl carbonate
- DEC getyl carbonate
- EMC ethyl methyl carbonate
- DPC dipropyl carbonate
- methyl formate methyl acetate
- propionic acid examples include aliphatic carboxylic esters such as methyl and ethyl propionate.
- acyclic carbonates such as dimethyl carbonate, getyl carbonate, and ethyl methyl carbonate are preferred.
- Non-aqueous solvents also include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), and ⁇ -petitions such as ⁇ -petit mouth ratatotone.
- cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC)
- ⁇ -petitions such as ⁇ -petit mouth ratatotone.
- Non-cyclic ethers such as ratatones, 1,2-dimethoxetane (DME), 1,2-diethoxyxetane (DEE) and ethoxymethoxetane (EME); cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; dimethyl sulfoxide , 1,3-dioxolane, formamide, acetoamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, Triester phosphate, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3 dimethyl-2 imidazolidinone, 3-methyl-2 oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propanesanoletone, It may
- a mixed system of a cyclic carbonate and a non-cyclic carbonate or a mixed system of a cyclic carbonate, a non-cyclic carbonate and a lunar aliphatic carboxylic acid ester is preferably used as a main component.
- the lithium salt dissolved in those solvents for example, L i C 10 4,
- Particularly preferred non-aqueous electrolyte solution in the present invention comprises at least ethylene carbonate and Echirume chill carbonate, an electrolytic solution containing L i PF 6 as the lithium salt.
- the amount of these electrolytes to be added to the battery is not particularly limited, but the required amount can be used depending on the amounts of the positive electrode active material and the negative electrode material and the size of the battery.
- the amount of the lithium salt dissolved in the nonaqueous solvent is not particularly limited, but is preferably 0.2 to 2 mol Zl force S. In particular, it is more preferable to set 0.5 to 1.5mo 1/1.
- a known additive may be further added to the above-described electrolyte solution as needed, as long as the effects of the present invention are not impaired.
- the electrolyte is usually used by impregnating or filling a separator such as a porous polymer, a glass filter, or a nonwoven fabric.
- a halogen-containing solvent such as carbon tetrachloride, Fluorinated ethylene chloride can be included in the electrolyte.
- carbon dioxide gas can be included in the electrolytic solution to make it suitable for high-temperature storage.
- a gel electrolyte in which the above non-aqueous electrolyte is contained in an organic solid electrolyte can also be used.
- the above-mentioned organic solid electrolyte includes, for example, polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene snolide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, derivatives thereof, mixtures, and composites.
- Polymer matrix material such as body is effective.
- a copolymer of vinylidene fluoride and hexafluoropropylpyrene or a mixture of polyvinylidene fluoride and polyethylene oxide is preferable.
- an insulating microporous thin film having a large ion permeability, a predetermined opportunistic strength, and an insulating property is used.
- Sheets or non-woven fabrics made of olefin-based polymers such as polypropylene or polyethylene alone or in combination or glass fibers are used because of their organic solvent resistance and hydrophobicity.
- the pore size of the separator is desirably in a range that does not allow the active material, binder, and conductive agent detached from the electrode sheet to pass therethrough.
- the pore diameter is desirably 0.01 to 1 Atm.
- the thickness of the separator is 10 to 300 ⁇ m.
- the porosity is determined depending on the permeability of electrons and ions, the material and the film pressure, and is generally preferably 30 to 80%.
- the battery shape can be applied to any of coin type, button type, sheet type, cylindrical type, flat type, square type, etc.
- the shape of the battery is a coin type or a button type
- the mixture of the positive electrode active material and the negative electrode material is mainly used after being compressed into a pellet shape.
- the thickness and diameter of the pellets are determined by the size of the battery.
- the shape of the battery is a sheet type, a cylindrical type, or a square type
- the mixture of the positive electrode active material and the negative electrode material is mainly used after being coated (coated) on a current collector, dried, and compressed.
- a coating method a general method can be used.
- Examples of the method include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a casting method, a dip method, and a squeeze method.
- the blade method, the knife method, and the etus extrusion method are preferred.
- the application is 0.1 l to 100 m It is preferably carried out at a rate of / min. At this time, by selecting the above-described coating method in accordance with the solution physical properties and drying properties of the mixture, a good surface state of the coated layer can be obtained.
- the coating may be performed on one side at a time or on both sides simultaneously.
- the coating layer on both sides of the current collector may be composed of a plurality of layers including a mixture layer.
- the mixture layer contains a conductive material for a binder and the like, in addition to a material related to insertion and release of lithium ions such as a positive electrode active material and a negative electrode material.
- it may have a protective layer containing no active material, an undercoat layer provided on the current collector, an intermediate layer provided between the mixture layers, and the like.
- the layer having no active material preferably contains conductive particles, insulating particles, and a binder.
- the application may be continuous, intermittent, or striped.
- the thickness, length and width of the coating layer are determined depending on the size of the battery.
- the thickness of the coating layer on one side is preferably 1 to 200 ⁇ m in a compressed state after drying.
- a generally employed method can be used.
- the temperature is preferably in the range of 80 to 350 ° C, particularly preferably in the range of 100 to 250 ° C.
- the water content of the entire battery is preferably 2000 ppm or less, and the positive electrode mixture, the negative electrode mixture and the electrolyte are each preferably 500 ppm or less from the viewpoint of cycleability.
- a method for pressing a sheet a method generally used can be used, but a die pressing method and a force render pressing method are particularly preferable.
- the pressing pressure is not particularly limited, 0.
- the press speed of the calender press method is preferably from 0.1 to 50 mZ.
- the pressing temperature is preferably from room temperature to 200 ° C.
- the ratio of the width of the positive electrode sheet to the width of the negative electrode sheet is preferably 0.9 to 1.1. Particularly, 0.95 to 1.0 is preferable.
- the content ratio of the positive electrode active material and the negative electrode material varies depending on the type of compound and the formulation of the mixture, and cannot be limited. However, it can be set to an optimal value from the viewpoint of capacity, cycleability, and safety.
- the wound body of the electrode in the present invention does not necessarily have to be a true cylindrical shape, and may have a prismatic shape such as a long cylindrical shape or a rectangular shape having an elliptical cross section.
- Preferred combinations of the present invention include the preferred chemical Although it is preferred to combine from, particularly as the positive electrode active material, L ix C o 0 2, L ix N i ⁇ 2, L ix M n 2 0 containing 4 (where 0 ⁇ X ⁇ l), a conductive agent Also includes acetylene black.
- the positive electrode current collector is made of stainless steel or aluminum, and has a net, sheet, foil, or lath shape.
- the negative electrode material preferably contains not only lithium metal but also at least one compound such as an alloy or a carbonaceous material.
- the negative electrode current collector is made of stainless steel and has a net, sheet, foil, lath, and other shapes.
- the mixture used with the positive electrode active material or the negative electrode material may be mixed with a carbon material such as acetylene black or graphite as an electron conductive agent.
- As the binder use fluorinated thermoplastic compounds such as polyvinylidene fluoride and polytetrafluoroethylene, polymers containing acrylic acid, styrene-butadiene rubber, and elastomers such as ethylene propylene terpolymer alone or in combination. Can be.
- the electrolyte ethylene carbonate, and cyclic or non-cyclic carbonates such as getyl carbonate, dimethyl carbonate and ethyl methyl carbonate, or aliphatic carboxylic acid ester compounds such as methyl acetate and methyl propionate are added.
- the lithium salt Shi preferred to include an L i PF 6 les.
- the separator polypropylene or polyethylene alone or a combination thereof is preferable.
- the shape of the battery may be any shape such as a cylindrical shape, a flat shape, a thin shape, and a square shape. It is preferable that the battery is provided with means that can ensure safety against malfunction (eg, an internal pressure release type safety valve, a current cutoff type safety valve, and a separator that increases resistance at high temperatures).
- FIG. 1 shows a longitudinal sectional view of the cylindrical battery used in this example.
- 1 is a battery case processed from a stainless steel sheet having an organic electrolyte resistance
- 2 is a sealing plate provided with a safety valve
- 3 is an insulating packing.
- Reference numeral 4 denotes an electrode group, in which a positive electrode and a negative electrode are spirally wound a plurality of times via a separator and housed in a case 1.
- a positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2
- a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1.
- 7 is an electrode plate with insulating ring Group 4 is provided at the top and bottom, respectively.
- the positive and negative electrode plates will be described in detail.
- the positive electrode was mixed with L i 2 C_ ⁇ 3 and C o 3 0 4, relative to the weight of L i C o 0 2 of the powder form if and calcined 1 0 hour at 900 ° C, acetylene black 3% Then, 7% of a fluororesin binder was mixed and suspended in an aqueous solution of carboxymethylcellulose to prepare a positive electrode mixture paste.
- a 30 ⁇ thick aluminum foil was coated with a positive electrode mixture paste, dried, and rolled to form a 0.18 mm thick, 37 mm wide, 390 mm long positive electrode plate.
- the negative electrode used was mesophase small spheres graphitized at a high temperature of 2800 ° C (hereinafter referred to as mesophase graphite). After mixing 5% of styrene / butadiene rubber with respect to the weight of the mesophase graphite, the mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then, this negative electrode mixture paste was applied to both sides of a 0.02 mm thick Cu foil, dried and rolled to obtain a negative electrode plate having a thickness of 0.20 mm, a width of 39 mm, and a length of 42 Omm.
- a lead made of aluminum is attached to the positive electrode plate and a nickel lead is attached to the negative electrode plate, and spirally wound through a polypropylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 95 Omm. Delivered to a battery case with a diameter of 17. Omm and a height of 50 Omm.
- electrolytic solution and EC and DEC MP 3 ⁇ 50: using a solution of L i PF 6 in 1 mo 1 Z 1 to 20 solvent were mixed at a volume ratio of, as an additive in electrolytic solution, Hexafluorobenzene, p-terphenyl, 1-phenylbiperazine, 1,2,3,4-tetrahydroisoquinoline, pheninolecyclohexane, 1,3,5-triphenolene are organic compounds falling under the formula (1).
- Benzene, dodecahydrotriphenylene, and dibutylbenzene were added in an amount of 2% by weight based on the total amount of the organic solvent and the additives, and after injecting the solution, the cells were sealed to obtain batteries 1 to 9 of the invention.
- a spiral-type cylindrical battery was constructed in the same manner as in Example 1). These were designated as batteries 10 to 14 of the present invention.
- Example 3 A spiral-wound tubular battery was constructed in the same manner as in (Example 1) except that tribenzylamine and N-phenylenedibenzylamine were used as organic compounds corresponding to the formula (3) as additives for the electrolyte. did. These were designated as batteries 15 and 16 of the present invention.
- Tris (4-methoxyphenyl) phosphine, (1R) -1-(+)-hibinene, dicyclopentadiene, di (ethylene glycol) divinyl ether, 9,10-dihydroanthracene, triptycene A spiral type cylindrical battery was constructed in the same manner as in (Example 1) except that [2, 2] paracyclophane was used. This was designated as batteries 19 to 25 of the present invention.
- a spiral-type cylindrical battery was constructed in the same manner as in Example 1 except that no battery additive was added to the electrolyte. This was used as a comparative battery (battery 26).
- a spiral-type cylindrical battery was constructed in the same manner as in (Example 1) except that biphenyl, thiophene, and 3-chlorothiophene were used as additives for the electrolytic solution. This was used as a comparative battery (batteries 27 to 29).
- the batteries 1 to 25 of the present invention and the batteries 26 to 29 for comparison were prepared by 5 cells each, and at an ambient temperature of 20 ° C., a charging voltage of 4.2 V and a charging time of 2 hours were limited.
- a charging voltage of 4.2 V and a charging time of 2 hours were limited.
- the capacity recovery rate after storage (capacity after storage Z capacity before storage X 100 (%)) was determined. Tables 1 to 6 show the results.
- Figure 2 shows the results of measuring the overcharge voltage and battery side temperature of Comparative Example 1 (battery 26).
- FIG. 3 shows the overcharge behavior of the battery to which hexaphenylbenzene of Example 1 was added.
- the reliability of the battery charging system can be further improved by installing a positive temperature coefficient thermistor (PTC) or thermal fuse as a function to detect the rise in battery temperature and disconnect the charging circuit.
- the operating temperature of the positive temperature coefficient thermistor (PTC) or temperature fuse is 60 to 1 because it is essential that the positive electrode active material operates at a thermally stable temperature and does not operate at the general environmental temperature of battery devices. It is desirable to be in the range of 20 ° C.
- the additive used in this example was excellent in the reduction resistance of the negative electrode, and thus had better storage characteristics at high temperatures than the conventional additive used in Comparative Example 2.
- the additive amount of the additive to the electrolytic solution be in the range of 0.1 to 20% by weight.
- an additive having a HOMO energy of -8.5 eV 11 1.O eV and an LUMO energy of -0.135 eV to 3.5 eV is used as a solvent in the electrolyte.
- a non-aqueous electrolyte secondary battery with higher reliability can be provided by providing a charge control means for detecting a rise in battery temperature and disconnecting a charging circuit.
- a charge control means for detecting a rise in battery temperature and disconnecting a charging circuit.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Cell Separators (AREA)
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00940876A EP1215745A4 (en) | 1999-06-30 | 2000-06-29 | NON-AQUEOUS ELECTROLYTIC SECONDARY CELL AND THIS USING DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11/184931 | 1999-06-30 | ||
JP18493199A JP4411691B2 (ja) | 1999-06-30 | 1999-06-30 | 非水電解液二次電池および非水電解液二次電池の充電制御システムおよびこれを用いた機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001003226A1 true WO2001003226A1 (fr) | 2001-01-11 |
Family
ID=16161861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/004291 WO2001003226A1 (fr) | 1999-06-30 | 2000-06-29 | Accumulateur electrolytique non aqueux et dispositif le contenant |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080014496A1 (ja) |
EP (1) | EP1215745A4 (ja) |
JP (3) | JP4411691B2 (ja) |
KR (2) | KR20070037749A (ja) |
CN (1) | CN1190864C (ja) |
WO (1) | WO2001003226A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065744A2 (en) * | 1999-06-30 | 2001-01-03 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
EP1414099A1 (en) * | 2001-07-27 | 2004-04-28 | Mitsubishi Chemical Corporation | Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary cell using the same |
US8148007B2 (en) * | 2007-10-26 | 2012-04-03 | Samsung Sdi Co., Ltd. | Organic electrolyte solution including vinyl-based compound and lithium battery using the same |
US8481216B2 (en) | 2005-10-24 | 2013-07-09 | Lg Chem, Ltd. | Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same |
WO2018150624A1 (ja) * | 2017-02-17 | 2018-08-23 | 株式会社村田製作所 | リチウムイオン二次電池用電解液、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
CN111354902A (zh) * | 2020-03-10 | 2020-06-30 | 清华大学 | 隔膜及电化学电池 |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4517440B2 (ja) * | 2000-03-10 | 2010-08-04 | ソニー株式会社 | リチウムイオン固体電解質二次電池 |
JP4695748B2 (ja) * | 2000-10-12 | 2011-06-08 | パナソニック株式会社 | 非水系電池用電解液および非水系二次電池 |
WO2002047192A1 (fr) * | 2000-12-04 | 2002-06-13 | Nippon Steel Chemical Co., Ltd. | Electrolyte non aqueux et element secondaire utilisant un tel electrolyte |
JP2002222663A (ja) * | 2001-01-26 | 2002-08-09 | Mitsubishi Chemicals Corp | 電解液及び二次電池 |
JP4934914B2 (ja) * | 2001-06-11 | 2012-05-23 | 三菱化学株式会社 | 電解液及び二次電池 |
JP2003115325A (ja) * | 2001-07-27 | 2003-04-18 | Mitsubishi Chemicals Corp | 非水系電解液及びこれを用いた非水系電解液二次電池 |
US7049029B2 (en) | 2001-10-20 | 2006-05-23 | Samsung Sdi Co., Ltd. | Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same |
KR100424259B1 (ko) * | 2001-10-20 | 2004-03-22 | 삼성에스디아이 주식회사 | 과충전 안전성이 우수한 비수계 전해액 및 이를 채용한리튬 전지 |
KR100424260B1 (ko) * | 2001-10-20 | 2004-03-22 | 삼성에스디아이 주식회사 | 과충전 안전성이 우수한 비수계 전해액 및 이를 채용한리튬 전지 |
KR100402746B1 (ko) * | 2001-10-20 | 2003-10-17 | 삼성에스디아이 주식회사 | 과충전 안전성이 우수한 비수계 전해액 및 이를 채용한리튬 전지 |
JP4183412B2 (ja) * | 2001-11-21 | 2008-11-19 | 日立マクセル株式会社 | 非水二次電池 |
JP4056302B2 (ja) | 2002-06-21 | 2008-03-05 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2004055253A (ja) * | 2002-07-18 | 2004-02-19 | Hitachi Maxell Ltd | 非水二次電池およびこれを用いた電子機器 |
CN100355143C (zh) * | 2002-07-31 | 2007-12-12 | 宇部兴产株式会社 | 二次锂电池 |
JP3873844B2 (ja) * | 2002-08-06 | 2007-01-31 | 松下電器産業株式会社 | 電気二重層コンデンサ用電解液の評価方法 |
KR100482816B1 (ko) * | 2002-09-12 | 2005-04-14 | 주식회사 엘지화학 | 비수전해액을 이용한 리튬 이차 전지 |
JP4056346B2 (ja) * | 2002-09-30 | 2008-03-05 | 三洋電機株式会社 | 非水電解質二次電池 |
JP4512776B2 (ja) | 2003-09-11 | 2010-07-28 | 独立行政法人 宇宙航空研究開発機構 | リチウムイオン電池の容量向上用添加剤を含有する非水系電解液およびこれを用いたリチウムイオン電池 |
US7247177B2 (en) | 2003-09-11 | 2007-07-24 | Matsushita Electric Industrial Co., Ltd. | Production method for electric double-layer capacitor |
JP4569129B2 (ja) * | 2004-03-04 | 2010-10-27 | 三菱化学株式会社 | リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池 |
JP4527605B2 (ja) * | 2004-06-21 | 2010-08-18 | 三星エスディアイ株式会社 | リチウムイオン二次電池用電解液及びこれを含むリチウムイオン二次電池 |
EP1798792B1 (en) * | 2004-10-05 | 2011-01-05 | Bridgestone Corporation | Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same |
JP4911888B2 (ja) * | 2004-10-05 | 2012-04-04 | 株式会社ブリヂストン | 非水電解液及びそれを備えた非水電解液2次電池 |
JP4949223B2 (ja) * | 2005-01-26 | 2012-06-06 | パナソニック株式会社 | 非水電解質およびこれを含む二次電池 |
US7767340B2 (en) | 2005-02-22 | 2010-08-03 | Panasonic Corporation | Non-aqueous electrolyte secondary battery and method of producing coating for negative electrode active material thereof |
JP2007087714A (ja) * | 2005-09-21 | 2007-04-05 | Hitachi Chem Co Ltd | エネルギー貯蔵デバイス |
EP3840101A1 (en) | 2005-10-20 | 2021-06-23 | Mitsubishi Chemical Corporation | Lithium secondary batteries and nonaqueous electrolyte for use in the same |
JP2007172968A (ja) * | 2005-12-21 | 2007-07-05 | Sony Corp | 電解質および電池 |
JP2007172969A (ja) * | 2005-12-21 | 2007-07-05 | Sony Corp | 電池 |
CN101682084A (zh) | 2007-06-07 | 2010-03-24 | 株式会社Lg化学 | 锂离子二次电池的非水电解质溶液和具有该溶液的锂离子二次电池 |
US20090035646A1 (en) * | 2007-07-31 | 2009-02-05 | Sion Power Corporation | Swelling inhibition in batteries |
EP2249426B1 (en) | 2008-02-29 | 2019-07-10 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
JP4433329B2 (ja) | 2008-04-02 | 2010-03-17 | トヨタ自動車株式会社 | リチウム二次電池の正極およびその製造方法 |
US7699916B1 (en) * | 2008-05-28 | 2010-04-20 | The United States Of America As Represented By The United States Department Of Energy | Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack |
KR101002566B1 (ko) * | 2008-07-29 | 2010-12-17 | 삼성에스디아이 주식회사 | 리튬 이온 이차 전지용 전해액 및 이를 포함하는 리튬 이온이차 전지 |
EP2450983B1 (en) * | 2008-10-29 | 2013-12-11 | Samsung Electronics Co., Ltd. | Electrolyte composition and catalyst ink and solid electrolyte membrane formed by using the same |
US9601804B2 (en) | 2008-11-10 | 2017-03-21 | Samsung Electronics Co., Ltd. | Gel polymer electrolyte, lithium battery including gel polymer electrolyte, and method of preparing gel polymer electrolyte |
EP2184799B1 (en) | 2008-11-10 | 2013-01-09 | Samsung Electronics Co., Ltd. | Polymer electrolyte, lithium battery comprising the polymer electrolyte, method of preparing the polymer electrolyte, and method of preparing the lithium battery |
JP5143053B2 (ja) * | 2009-02-25 | 2013-02-13 | 株式会社日立製作所 | リチウムイオン二次電池 |
DE102009032050A1 (de) * | 2009-07-07 | 2011-01-27 | Li-Tec Battery Gmbh | Sekundärbatterie mit Schnellladefähigkeit |
CN104112870A (zh) | 2009-08-31 | 2014-10-22 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质电池 |
CN102576858B (zh) * | 2009-09-25 | 2015-09-30 | 日本瑞翁株式会社 | 锂离子二次电池负极及锂离子二次电池 |
JP2011187626A (ja) * | 2010-03-08 | 2011-09-22 | Sony Corp | 薄膜トランジスタおよび電子機器 |
WO2011129053A1 (ja) * | 2010-04-12 | 2011-10-20 | 三洋化成工業株式会社 | 電極保護膜形成剤及び電解液 |
KR101245287B1 (ko) | 2010-08-13 | 2013-03-19 | 주식회사 엘지화학 | 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 |
KR20130073971A (ko) | 2010-10-29 | 2013-07-03 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | 비수계 전해액 및 비수계 이차 전지 |
WO2012061928A1 (en) * | 2010-11-08 | 2012-05-18 | Dana Canada Corporation | Double baseplate oil cooler construction |
CA2858813A1 (en) * | 2011-12-22 | 2013-06-27 | Jx Nippon Oil & Energy Corporation | Organic electrolyte and organic electrolyte storage battery |
CN104205472B (zh) | 2012-03-30 | 2017-04-12 | 三菱化学株式会社 | 非水电解液及使用其的非水电解质电池 |
CN103531847B (zh) * | 2012-07-06 | 2015-12-16 | 微宏动力系统(湖州)有限公司 | 锂离子固体电池及其合成方法和合成装置 |
CN102856588B (zh) * | 2012-08-29 | 2016-01-20 | 深圳新宙邦科技股份有限公司 | 锂离子电池用非水电解液与锂离子电池 |
JP5614433B2 (ja) * | 2012-08-31 | 2014-10-29 | Tdk株式会社 | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 |
JP5614432B2 (ja) * | 2012-08-31 | 2014-10-29 | Tdk株式会社 | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 |
WO2014046283A1 (ja) * | 2012-09-21 | 2014-03-27 | 富士フイルム株式会社 | 非水二次電池用電解液および非水二次電池 |
JP2014192145A (ja) * | 2013-03-28 | 2014-10-06 | Fujifilm Corp | 非水二次電池及び二次電池用電解液 |
KR102161266B1 (ko) * | 2013-08-30 | 2020-09-29 | 삼성전자주식회사 | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 |
JP2017506408A (ja) * | 2013-12-12 | 2017-03-02 | トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム | エネルギー貯蔵用途のための高電位有機材料 |
US10141607B2 (en) | 2014-03-03 | 2018-11-27 | Gs Yuasa International Ltd. | Nonaqueous electrolyte secondary battery |
KR102391094B1 (ko) | 2014-04-08 | 2022-04-28 | 테슬라, 인크. | 에너지 저장 장치, 그 애노드 및 에너지 저장 장치의 제조 방법 |
US10249910B2 (en) | 2014-07-18 | 2019-04-02 | Board Of Trustees Of Michigan State University | Rechargeable lithium-ion cell |
WO2017049471A1 (en) * | 2015-09-23 | 2017-03-30 | Basf Corporation | Electrolyte for lto type lithium ion batteries |
TWI627786B (zh) * | 2016-10-03 | 2018-06-21 | 財團法人工業技術研究院 | 電極及包含其之裝置 |
US11094964B2 (en) | 2016-11-22 | 2021-08-17 | Board Of Trustees Of Michigan State University | Rechargeable electrochemical cell |
US20200144668A1 (en) * | 2017-04-26 | 2020-05-07 | Envision Aesc Energy Devices Ltd. | Lithium ion secondary battery, manufacturing method of lithium ion secondary battery, and electrolyte for lithium ion secondary battery |
WO2019018741A1 (en) | 2017-07-20 | 2019-01-24 | Board Of Trustees Of Michigan State University | REDOX FLOW BATTERY |
US10044060B1 (en) * | 2017-08-18 | 2018-08-07 | Edgar D Young | Secondary batteries with improved electrolyte |
JP7015450B2 (ja) * | 2018-02-23 | 2022-02-03 | トヨタ自動車株式会社 | 非水電解質二次電池の容量回復方法 |
KR102633167B1 (ko) * | 2018-08-02 | 2024-02-05 | 에스케이온 주식회사 | 리튬 이차전지 |
EP3939111A4 (en) * | 2019-03-14 | 2023-01-11 | Indian Space Research Organisation | METHOD FOR PREPARING A COMPOSITE CATHODE FOR LITHIUM-ION CELL |
CN114267880A (zh) * | 2021-12-10 | 2022-04-01 | 珠海冠宇电池股份有限公司 | 一种电解液及包括该电解液的电池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316876A (en) * | 1991-07-18 | 1994-05-31 | Yuasa Battery Co., Ltd. | Lithium secondary battery |
JPH09330739A (ja) * | 1996-04-09 | 1997-12-22 | Fuji Photo Film Co Ltd | 非水電解液二次電池 |
EP0827230A2 (en) * | 1996-09-03 | 1998-03-04 | Fuji Photo Film Co., Ltd. | Non-aqueous lithium ion secondary battery |
JPH1074537A (ja) * | 1996-08-30 | 1998-03-17 | Fuji Photo Film Co Ltd | 非水電解液二次電池 |
JPH10106624A (ja) * | 1996-09-24 | 1998-04-24 | Fuji Photo Film Co Ltd | 非水電解液二次電池 |
JPH11195427A (ja) * | 1998-01-06 | 1999-07-21 | Fujitsu Ltd | リチウム二次電池 |
JP2000058116A (ja) * | 1998-07-31 | 2000-02-25 | Sanyo Electric Co Ltd | 非水系電池用電解液およびこの電解液を用いた二次電池 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5244757A (en) * | 1991-01-14 | 1993-09-14 | Kabushiki Kaisha Toshiba | Lithium secondary battery |
JPH0536439A (ja) * | 1991-07-31 | 1993-02-12 | Sony Corp | 非水電解液二次電池 |
DE69228065T3 (de) * | 1991-09-13 | 2003-05-08 | Asahi Kasei Kogyo K.K., Osaka | Sekundärzelle |
JPH05266878A (ja) * | 1992-03-23 | 1993-10-15 | Nippon Telegr & Teleph Corp <Ntt> | 円筒型二次電池 |
US5478671A (en) * | 1992-04-24 | 1995-12-26 | Fuji Photo Film Co., Ltd. | Nonaqueous secondary battery |
US5478673A (en) * | 1992-10-29 | 1995-12-26 | Fuji Photo Film Co., Ltd. | Nonaqueous secondary battery |
JP3213408B2 (ja) * | 1992-11-04 | 2001-10-02 | 旭化成株式会社 | 二次電池 |
EP0627776B1 (en) * | 1993-05-14 | 1997-08-13 | Sharp Kabushiki Kaisha | Lithium secondary battery |
JPH07263028A (ja) * | 1994-03-25 | 1995-10-13 | Fuji Photo Film Co Ltd | 非水二次電池 |
WO1996023324A1 (en) * | 1995-01-27 | 1996-08-01 | Asahi Kasei Kogyo Kabushiki Kaisha | Nonaqueous battery |
US5702843A (en) * | 1995-05-24 | 1997-12-30 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery |
JP3669024B2 (ja) * | 1995-05-26 | 2005-07-06 | ソニー株式会社 | 非水電解液二次電池 |
US5698341A (en) * | 1995-08-18 | 1997-12-16 | Petoca, Ltd. | Carbon material for lithium secondary battery and process for producing the same |
CA2156800C (en) * | 1995-08-23 | 2003-04-29 | Huanyu Mao | Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries |
JP3426903B2 (ja) * | 1996-03-14 | 2003-07-14 | 株式会社東芝 | 非水電解液二次電池 |
US5783326A (en) * | 1996-03-14 | 1998-07-21 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
JP3538500B2 (ja) * | 1996-06-12 | 2004-06-14 | 日機装株式会社 | 非水電解液系二次電池 |
US5853912A (en) * | 1996-07-10 | 1998-12-29 | Saft America, Inc. | Lithium ion electrochemical cell with safety valve electrical disconnect |
JP3666540B2 (ja) * | 1996-09-03 | 2005-06-29 | 宇部興産株式会社 | 非水電解液二次電池 |
DE69722879T2 (de) * | 1996-09-30 | 2004-05-13 | Sharp K.K. | Lithium-Nickel-Oxid Herstellungsverfahren und dieses enthältende nichtwasserige Sekundärbatterie |
JPH10289733A (ja) * | 1997-02-14 | 1998-10-27 | Fuji Film Selltec Kk | 非水二次電池及びその製造方法 |
JP3275998B2 (ja) * | 1997-03-28 | 2002-04-22 | 日立マクセル株式会社 | 有機電解液二次電池 |
JPH1125978A (ja) * | 1997-07-04 | 1999-01-29 | Fuji Photo Film Co Ltd | 非水電解質二次電池用負極材料の製造方法と電池 |
GB9717220D0 (en) * | 1997-08-15 | 1997-10-22 | Aea Technology Plc | Eklectrolyte for a rechargeable cell |
JP4359942B2 (ja) * | 1998-03-12 | 2009-11-11 | 株式会社ジーエス・ユアサコーポレーション | 非水電解質電池 |
JP3163078B2 (ja) * | 1998-08-31 | 2001-05-08 | エヌイーシーモバイルエナジー株式会社 | 非水電解液電池 |
JP2000223154A (ja) * | 1999-01-29 | 2000-08-11 | Sanyo Electric Co Ltd | リチウム二次電池。 |
US6165647A (en) * | 1999-04-09 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Secondary battery comprising a polymerizable material in its electrolyte solution |
JP4568922B2 (ja) * | 1999-04-19 | 2010-10-27 | パナソニック株式会社 | 非水電解液二次電池 |
JP3113652B1 (ja) * | 1999-06-30 | 2000-12-04 | 三洋電機株式会社 | リチウム二次電池 |
US6653953B2 (en) * | 2001-08-22 | 2003-11-25 | Intel Corporation | Variable length coding packing architecture |
-
1999
- 1999-06-30 JP JP18493199A patent/JP4411691B2/ja not_active Expired - Lifetime
-
2000
- 2000-06-29 WO PCT/JP2000/004291 patent/WO2001003226A1/ja not_active Application Discontinuation
- 2000-06-29 CN CNB008069794A patent/CN1190864C/zh not_active Expired - Fee Related
- 2000-06-29 EP EP00940876A patent/EP1215745A4/en not_active Withdrawn
- 2000-06-29 KR KR1020077005770A patent/KR20070037749A/ko not_active Ceased
- 2000-06-29 KR KR1020017013915A patent/KR100721230B1/ko not_active IP Right Cessation
-
2001
- 2001-06-01 JP JP2001166615A patent/JP3633510B2/ja not_active Expired - Lifetime
-
2007
- 2007-07-19 US US11/780,317 patent/US20080014496A1/en not_active Abandoned
-
2009
- 2009-10-01 JP JP2009229435A patent/JP2010027616A/ja not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316876A (en) * | 1991-07-18 | 1994-05-31 | Yuasa Battery Co., Ltd. | Lithium secondary battery |
JPH09330739A (ja) * | 1996-04-09 | 1997-12-22 | Fuji Photo Film Co Ltd | 非水電解液二次電池 |
JPH1074537A (ja) * | 1996-08-30 | 1998-03-17 | Fuji Photo Film Co Ltd | 非水電解液二次電池 |
EP0827230A2 (en) * | 1996-09-03 | 1998-03-04 | Fuji Photo Film Co., Ltd. | Non-aqueous lithium ion secondary battery |
JPH10106624A (ja) * | 1996-09-24 | 1998-04-24 | Fuji Photo Film Co Ltd | 非水電解液二次電池 |
JPH11195427A (ja) * | 1998-01-06 | 1999-07-21 | Fujitsu Ltd | リチウム二次電池 |
JP2000058116A (ja) * | 1998-07-31 | 2000-02-25 | Sanyo Electric Co Ltd | 非水系電池用電解液およびこの電解液を用いた二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1215745A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065744A2 (en) * | 1999-06-30 | 2001-01-03 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
EP1065744A3 (en) * | 1999-06-30 | 2002-03-13 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
US6632572B1 (en) | 1999-06-30 | 2003-10-14 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
EP1414099A1 (en) * | 2001-07-27 | 2004-04-28 | Mitsubishi Chemical Corporation | Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary cell using the same |
EP1414099A4 (en) * | 2001-07-27 | 2009-05-27 | Mitsubishi Chem Corp | NONAQUEOUS ELECTROLYTIC SOLUTION AND SECONDARY CELL USING SAID NONAQUEOUS ELECTROLYTIC SOLUTION |
US8481216B2 (en) | 2005-10-24 | 2013-07-09 | Lg Chem, Ltd. | Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same |
US8673507B2 (en) | 2005-10-24 | 2014-03-18 | Lg Chem, Ltd. | Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same |
US8148007B2 (en) * | 2007-10-26 | 2012-04-03 | Samsung Sdi Co., Ltd. | Organic electrolyte solution including vinyl-based compound and lithium battery using the same |
US8632917B2 (en) | 2007-10-26 | 2014-01-21 | Samsung Sdi Co., Ltd. | Organic electrolyte solution including vinyl-based compound and lithium battery using the same |
WO2018150624A1 (ja) * | 2017-02-17 | 2018-08-23 | 株式会社村田製作所 | リチウムイオン二次電池用電解液、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
US11482730B2 (en) | 2017-02-17 | 2022-10-25 | Murata Manufacturing Co., Ltd. | Electrolyte for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device |
CN111354902A (zh) * | 2020-03-10 | 2020-06-30 | 清华大学 | 隔膜及电化学电池 |
CN111354902B (zh) * | 2020-03-10 | 2021-04-13 | 清华大学 | 隔膜及电化学电池 |
Also Published As
Publication number | Publication date |
---|---|
JP4411691B2 (ja) | 2010-02-10 |
JP3633510B2 (ja) | 2005-03-30 |
JP2001015158A (ja) | 2001-01-19 |
EP1215745A1 (en) | 2002-06-19 |
EP1215745A4 (en) | 2007-11-28 |
KR20070037749A (ko) | 2007-04-06 |
KR100721230B1 (ko) | 2007-05-22 |
CN1349672A (zh) | 2002-05-15 |
KR20020020698A (ko) | 2002-03-15 |
US20080014496A1 (en) | 2008-01-17 |
JP2002050398A (ja) | 2002-02-15 |
CN1190864C (zh) | 2005-02-23 |
JP2010027616A (ja) | 2010-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001003226A1 (fr) | Accumulateur electrolytique non aqueux et dispositif le contenant | |
JP4695748B2 (ja) | 非水系電池用電解液および非水系二次電池 | |
US7201994B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4172423B2 (ja) | 正極活物質および非水電解質二次電池 | |
JP5298419B2 (ja) | 二次電池 | |
JP4374661B2 (ja) | 非水電解液二次電池 | |
JP4527690B2 (ja) | 有機電解液及びそれを採用したリチウム電池 | |
JP5109329B2 (ja) | 二次電池 | |
KR20200108466A (ko) | 마이크로 캡슐을 포함하는 음극 및 이를 구비한 리튬이온 이차전지 | |
WO2001028027A1 (fr) | Dispositif electrochimique non-aqueux | |
JP2005142141A (ja) | 有機電解液及びこれを採用したリチウム電池 | |
JP2013122901A (ja) | 非水二次電池用電解液及び二次電池 | |
JP4686801B2 (ja) | 非水電解液二次電池 | |
JP2007180041A (ja) | 電池 | |
WO2002073731A1 (en) | Battery | |
JP4352503B2 (ja) | 非水電解液二次電池 | |
JP2006252917A (ja) | リチウムイオン二次電池 | |
JP2002279995A (ja) | 電 池 | |
JP2013171659A (ja) | 過充電防止剤及びそれを用いたリチウムイオン電池 | |
JP4568922B2 (ja) | 非水電解液二次電池 | |
JPH10199505A (ja) | 電 池 | |
JPH07201360A (ja) | 非水電解液二次電池 | |
JPH04269466A (ja) | 非水電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00806979.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000940876 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09959429 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017013915 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017013915 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2000940876 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020017013915 Country of ref document: KR |