[go: up one dir, main page]

JPS6346758A - Mos capacitor and manufacture thereof - Google Patents

Mos capacitor and manufacture thereof

Info

Publication number
JPS6346758A
JPS6346758A JP61190652A JP19065286A JPS6346758A JP S6346758 A JPS6346758 A JP S6346758A JP 61190652 A JP61190652 A JP 61190652A JP 19065286 A JP19065286 A JP 19065286A JP S6346758 A JPS6346758 A JP S6346758A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
mos capacitor
semiconductor substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61190652A
Other languages
Japanese (ja)
Inventor
Toshiharu Katori
香取 利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61190652A priority Critical patent/JPS6346758A/en
Publication of JPS6346758A publication Critical patent/JPS6346758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/62Capacitors having potential barriers
    • H10D1/66Conductor-insulator-semiconductor capacitors, e.g. MOS capacitors
    • H10D1/665Trench conductor-insulator-semiconductor capacitors, e.g. trench MOS capacitors

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an MOS capacitor having a small size and a large capacity to take an electrostatic capacity in a large range by providing a semiconductor substrate having many grooves on its surface, a dielectric oxide film formed on the substrate and electrodes formed on the film. CONSTITUTION:The surface area of a semiconductor substrate 11 made of a silicon substrate is set, for example, to desired value by many grooves 11a formed in a stripe or lattice shape by etching. A dielectric oxide film 13 formed of a silicon oxide film (SiO2, epsilonapprox.=3.0-3.5) formed in a desired thickness by thermally oxidizing the substrate. Further, electrodes 14 formed by patterning are provided to become a desired size. Since the surface area of the substrate can be increased to be controlled by the etching degree of the grooves, the electrostatic capacity of an MOS capacitor can be arbitrarily set, and the size of the electrodes can be reduced as the surface area increases.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LSI等の半導体集積回路に使用されるM 
OS (Metal −Oxide−8emicond
actor ) コンデンサ及びその製造方法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to M
OS (Metal-Oxide-8emicond
Actor) The present invention relates to a capacitor and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、MOSコンデンサは主に平板状の構造全層するも
のであった。この製造方法を第3図について説明する。
Conventionally, MOS capacitors have mainly had a flat plate-like structure with all layers. This manufacturing method will be explained with reference to FIG.

まず第3図(a)に示す如く、シリコン基板31上に熱
酸化によりシリコン酸化膜(Si02) 32を所望す
る膜厚にして形成する。次に第3図(b)の如く、真空
蒸着によシ5iO1膜32上に金属膜33を形成する。
First, as shown in FIG. 3(a), a silicon oxide film (Si02) 32 is formed to a desired thickness on a silicon substrate 31 by thermal oxidation. Next, as shown in FIG. 3(b), a metal film 33 is formed on the 5iO1 film 32 by vacuum deposition.

次いで第3図(c)に示すように、公知のフォトリング
ラフィ技術を用いて金属膜33 f /#ターニングし
、所望する面積金層する電極34を形成する。
Next, as shown in FIG. 3(c), the metal film 33 f /# is turned using a known photolithography technique to form an electrode 34 having a gold layer over a desired area.

しかる後、不活性ガス雰囲気中で500℃程度の熱処理
を施す。
Thereafter, heat treatment is performed at about 500° C. in an inert gas atmosphere.

以上により、Δ=1OSコンデンサの製造方法を完了す
る。
With the above steps, the method for manufacturing a Δ=1OS capacitor is completed.

ここべおいて、静′4容量の異なるMOSコンデンサは
、熱酸化処理による5i021i莫32の膜厚変更と、
金属膜33金パターニングして形成する電極34の面積
の変更とにより製造するものである。
Taking this into account, MOS capacitors with different static capacitances are made by changing the film thickness of 5i021imo32 by thermal oxidation treatment,
It is manufactured by changing the area of the electrode 34 formed by patterning the metal film 33 and gold.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来のMOSコンデンサにおい
ては、構造が平板型であるので誘′1に体の素材を固定
した場合、静電容量の制御は誘電体である5i02膜(
誘電率εユ3.0〜3.5)の膜厚と電極面積とに大き
く依存することとなる。
However, in the conventional MOS capacitor described above, since the structure is a flat plate type, when the body material is fixed to the dielectric 1, the capacitance can be controlled by the dielectric 5i02 film (
The dielectric constant ε (3.0 to 3.5) is largely dependent on the film thickness and electrode area.

この為、例えばSiO□膜の膜厚に9X103人とし、
静或容iを8pFから24pFと3倍にするには、電極
面積?7.3X10’μm2から2.2 X 1010
5ttと比例的に3倍要することとなり、容量増加に伴
いチップ面積が大になるという問題がある。
For this reason, for example, the thickness of the SiO□ film is set to 9×103 people,
In order to triple the static capacity i from 8 pF to 24 pF, what is the electrode area? 7.3 x 10'μm2 to 2.2 x 1010
5tt, three times as much is required proportionally, and there is a problem that the chip area increases as the capacity increases.

また逆に、′這極面、績全2.2 X 105μm2と
し、静電容量を24pFから8pFと1/3にするには
、sio、膜の、@厚は3X103^から9×103又
と逆比例的に3倍要するので、容量減少に対し熱酸化処
理時間が長大となるという問題がある。
Conversely, to reduce the capacitance from 24 pF to 1/3 from 8 pF by setting the total surface area to 2.2 x 105 μm2, the thickness of the film should be changed from 3 x 10 3 to 9 x 10 3. Since it takes three times as much inversely, there is a problem that the thermal oxidation treatment time becomes longer than the capacity reduction.

従って、本発明は以上述べた問題を解消し、静電容量を
広範囲にとれる小型大容量のM OSコンデンサ及びそ
の製造方法全提供すること全目的とする。
Therefore, it is an object of the present invention to solve the above-mentioned problems and to provide a small, large-capacity MOS capacitor that can have a wide range of capacitances, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

特許請求の範囲記載の第1の発明のMOSコンデンサは
、表面に多数の溝を有する半導体基板と、この半導体基
板上に形成された誘電体酸化膜と、この誘電体酸化膜上
に形成された電極とを含むものである。
The MOS capacitor of the first invention described in the claims includes a semiconductor substrate having a large number of grooves on the surface, a dielectric oxide film formed on the semiconductor substrate, and a dielectric oxide film formed on the dielectric oxide film. and an electrode.

特許請求の範囲記載の第2の発明は、上記第1の発明の
MOSコンデンサ金製造する方法の発明であって、半導
体基板にエツチングを施して表面に多数の#全形成した
後、この基板上に誘電体酸化膜を形成し、しかる後に誘
電体酸化膜上に電極全形成するようにしたものである。
A second invention described in the claims is an invention of a method for manufacturing MOS capacitor gold according to the first invention, which comprises: etching a semiconductor substrate to form a large number of #s on the surface; A dielectric oxide film is formed first, and then the entire electrode is formed on the dielectric oxide film.

〔作用〕[Effect]

以上のように、本発明によれば、エツチングによって形
成された多数の溝を有する半導体基板上に、誘電体酸化
模全形成するようにしている。この為、溝のエツチング
量によって半導体基板の表面積全増加し制御できるので
、これによジMOSコンデンサの静電容量全任意設定す
ることができる。また、表面積の増加に伴い電極寸法を
縮少できるので、例えば静電容量を減少する場合には、
電極寸法を縮少できる分だけ誘電体酸化膜の膜厚増加を
低減でき、その変更が容易となる。
As described above, according to the present invention, a dielectric oxidation pattern is completely formed on a semiconductor substrate having a large number of grooves formed by etching. Therefore, the total surface area of the semiconductor substrate can be increased and controlled by changing the amount of etching of the grooves, so that the total capacitance of the MOS capacitor can be set arbitrarily. Additionally, as the surface area increases, the electrode dimensions can be reduced, so for example when reducing capacitance,
As the electrode dimensions can be reduced, the increase in the thickness of the dielectric oxide film can be reduced and changes can be made easily.

〔実施例〕〔Example〕

以下、第1図(e)に基き、第1の発明であるMOSコ
ンデンサの一実施例について詳細に説明する。
Hereinafter, an embodiment of a MOS capacitor according to the first invention will be described in detail based on FIG. 1(e).

同図において、11はシリコン基板から成る半導体基板
で、その表面積は、例えばエツチングによりストライプ
状または格子状に形成された多数の溝11aによって、
所望する程度に設定されている。また、13はシリコン
j夜化膜(S’0! r ’と3.0〜3.5)から成
る誘′i[体酸化膜であり、薄板金熱酸化することによ
り所望する膜厚に形成されている。史に、14aは所定
寸法となるようツクターニングして形成された電極であ
る。
In the figure, reference numeral 11 denotes a semiconductor substrate made of a silicon substrate, the surface area of which is defined by a large number of grooves 11a formed in a stripe or lattice shape by etching, for example.
It is set to the desired level. Further, 13 is a dielectric oxide film consisting of a silicon j oxide film (S'0! r' and 3.0 to 3.5), which is formed to a desired thickness by thermally oxidizing a thin sheet metal. has been done. Historically, 14a is an electrode formed by turning to a predetermined size.

上記実施例では、ストライプ状または格子状にTpi 
11 a f設けるようにしているが、この他、例えば
格子状に設ける場合には、第2図に示すように、更に斜
め方向(同図では右下り方向)の1311bを加えた構
成とすることもできる。
In the above embodiment, Tpi is formed in a stripe or grid pattern.
11 a f, but in addition to this, if it is arranged in a lattice shape, for example, as shown in Fig. 2, it is possible to add 1311b in the diagonal direction (downward to the right in the figure). You can also do it.

このように溝11aのパターンは、本発明の技術的忠恕
からすればストライブ状、格子状等に限定されるもので
はなく、半導体基板11のエツチング量によって規則性
、不規則性を問わず多数形成され、その表面積を増大し
制御できるようなパターンであれば良い。
In this way, the pattern of the grooves 11a is not limited to stripes, lattice patterns, etc. from the technical perspective of the present invention, but can be formed in many patterns, whether regular or irregular, depending on the amount of etching of the semiconductor substrate 11. Any pattern that can be formed and whose surface area can be increased and controlled may be used.

また溝11aは、必要に応じテーパー形状とすることも
できる。
Moreover, the groove 11a can also be formed into a tapered shape if necessary.

次に第1図(a)ないし第1図(e)に基き、第2の発
明である上述した構造のMOSコンデンサの製造方法に
ついて説明する。
Next, a method for manufacturing a MOS capacitor having the above-described structure, which is a second invention, will be described with reference to FIGS. 1(a) to 1(e).

まず第1図(a)に示す如く、シリコン基板から成る半
23体基板11上にレジストに塗布し、マスク合せ、露
光、現像を行って・!ターニングすることによりレジス
トマスク12全形成する。次に第1図(b)の釦く、レ
ジストマスク12を介してシリコン基&11にエツチン
グして、ストライプ状または格子状にf411 aを形
成し底面を凹凸状態とした後、レジストマスク12を除
去する。
First, as shown in FIG. 1(a), a resist is coated on a semi-23-piece substrate 11 made of a silicon substrate, masked, exposed, and developed. By turning, the entire resist mask 12 is formed. Next, as shown in FIG. 1(b), the silicon base &11 is etched through the resist mask 12 to form f411a in a stripe or lattice shape to make the bottom surface uneven, and then the resist mask 12 is removed. do.

次いで第1図(C)の如く、基板に熱酸化処理を施して
シリコン酸化B (St Ox )から成る誘電体酸化
膜13?所望する膜厚にして形成する。しかる後。
Next, as shown in FIG. 1(C), the substrate is thermally oxidized to form a dielectric oxide film 13 made of silicon oxide B (St Ox). Form the film to a desired thickness. After that.

第1図(d)に示すように、真空蒸着により5108膜
13上に金属膜14を被着する。
As shown in FIG. 1(d), a metal film 14 is deposited on the 5108 film 13 by vacuum deposition.

この後、第1図(6)の如く、公知のフオ) IJソグ
ラフイ技術により金属膜14 f /#ターニングして
、所定の面積全層する電極14aを形成する。更に不活
性がス雰囲気中にて、500℃程度の熱処理を施しオー
ミック特性を改善する。
Thereafter, as shown in FIG. 1(6), the metal film 14f/# is turned by the known F/IJ lithography technique to form an electrode 14a covering the entire predetermined area. Further, heat treatment is performed at approximately 500° C. in an inert gas atmosphere to improve the ohmic characteristics.

ここにおいて、本発明のMOSコンデンサの利点につい
て説明する。
Here, the advantages of the MOS capacitor of the present invention will be explained.

まず、電極マスク面積を2.2 X 105μm2とし
て、シリコン基板11に幅5μm、深さ511m、間隔
が10μmのストライプ状の$Ilaを形成したMOS
コンデンサの場合を例にとって説明すると、電極有効面
積は4.4 X 105μm2となり、電極マスク面積
の2倍となる。従って、電極マスク面積を同一とした場
合、従来の平板型コンデンサに比べ静電容量全2倍にす
ることができる。換言すれば、同一容量のMOSコンデ
ンサti造する場合、従来に比べ11!極寸法ヲ1/2
と小型にすることができる。
First, the electrode mask area was set to 2.2 x 105 μm2, and a striped $Ila with a width of 5 μm, a depth of 511 m, and an interval of 10 μm was formed on a silicon substrate 11.
Taking the case of a capacitor as an example, the effective area of the electrode is 4.4 x 105 μm2, which is twice the area of the electrode mask. Therefore, when the electrode mask area is the same, the capacitance can be doubled in total compared to a conventional flat plate capacitor. In other words, when manufacturing a MOS capacitor with the same capacity, it is 11 times smaller than the conventional one! Extreme dimension 1/2
and can be made small.

また、5iOffi膜13の膜厚コントロールの点から
すれば、従来の場合は、前述したよりにta電極面噴k
 2 、2 X 10’ pm2とし、静電容fn24
pFのものを8pFにするには5ift膜13の膜厚を
3倍にする必要があった。しかし、上記寸法のストライ
プ状の溝11at形成して製造した本発明のMOSコン
デンサでは、静電容量24pFのもの全電極マスク寸法
を変えずに8pFとするには、電極面積が従来の1/2
で済むのでSio、膜工3の膜厚全1.5倍にするだけ
で良く、作業性の点で優れている。
In addition, from the point of view of controlling the thickness of the 5iOffi film 13, in the conventional case, the ta electrode surface injection k
2,2 x 10' pm2, capacitance fn24
In order to increase the pF value to 8 pF, it was necessary to triple the thickness of the 5ift film 13. However, in the MOS capacitor of the present invention manufactured by forming striped grooves 11at with the above dimensions, the electrode area must be 1/2 that of the conventional one in order to increase the capacitance to 8 pF without changing the total electrode mask dimensions for a capacitance of 24 pF.
Therefore, it is only necessary to increase the total film thickness of Sio and Membrane 3 by 1.5 times, which is excellent in terms of workability.

このような、寸法縮少及び作業性上の利点等は、溝11
aがストライプ状の場合のみでなく、上述し之他のパタ
ーンについても同様にいえることは勿論である。
Such advantages in size reduction and workability are achieved by the groove 11.
Of course, the same can be said not only when a is striped but also for the other patterns described above.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明によれば、溝のエ
ツチング貴、即ち溝の形成度合いによって半導体基板の
表面種を増加し制御するようにしている。
As described in detail above, according to the present invention, the number of surface species on the semiconductor substrate is increased and controlled depending on the etching quality of the grooves, that is, the degree of formation of the grooves.

従って、MOSコンデンサの静電容fit広題囲に任意
設定でき、同コンデンサの小型大容量化全容易に実現す
ることができるという効果がある。
Therefore, the capacitance of the MOS capacitor can be arbitrarily set within a wide range of conditions, and the capacitor can be easily realized in a small size and with a large capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一笑施例の説明図、第2図は本発明の
他の実施例の説明図、第3図は従来例を説明する工程断
面図でおる。 11・・・半導体基板、lla・・・溝、13・・・誘
電体酸化膜、14a・・・電極。 特許出願人 沖電気工業株式会社、−−−1□′。 !!・半導体基板 ffa、lfb:鷹 オに155月ぬイヤニのつ;オヒイグ11の畜I月灰]
第2図
FIG. 1 is an explanatory diagram of a simple embodiment of the present invention, FIG. 2 is an explanatory diagram of another embodiment of the present invention, and FIG. 3 is a process cross-sectional diagram illustrating a conventional example. DESCRIPTION OF SYMBOLS 11... Semiconductor substrate, lla... Groove, 13... Dielectric oxide film, 14a... Electrode. Patent applicant Oki Electric Industry Co., Ltd. ---1□'. ! !・Semiconductor substrates ffa, lfb: Takao ni 155 month no yani no tsu;
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)表面に多数の溝を有する半導体基板と、この半導
体基板上に形成された誘電体酸化膜と、この誘電体酸化
膜上に形成された電極 とを具備することを特徴とするMOSコンデンサ。
(1) A MOS capacitor comprising a semiconductor substrate having a large number of grooves on its surface, a dielectric oxide film formed on the semiconductor substrate, and an electrode formed on the dielectric oxide film. .
(2)(a)半導体基板にエッチングを施して表面に多
数の溝を形成する工程と、 (b)この半導体基板上に誘電体酸化膜を形成する工程
と、 (c)しかる後に上記誘電体酸化膜上に電極を形成する
工程 とを含むことを特徴とするMOSコンデンサの製造方法
(2) (a) A step of etching a semiconductor substrate to form a large number of grooves on the surface; (b) A step of forming a dielectric oxide film on this semiconductor substrate; (c) After that, the above dielectric 1. A method for manufacturing a MOS capacitor, comprising the step of forming an electrode on an oxide film.
JP61190652A 1986-08-15 1986-08-15 Mos capacitor and manufacture thereof Pending JPS6346758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61190652A JPS6346758A (en) 1986-08-15 1986-08-15 Mos capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190652A JPS6346758A (en) 1986-08-15 1986-08-15 Mos capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6346758A true JPS6346758A (en) 1988-02-27

Family

ID=16261648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190652A Pending JPS6346758A (en) 1986-08-15 1986-08-15 Mos capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6346758A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216708A (en) * 1988-07-05 1990-01-19 Mitsubishi Mining & Cement Co Ltd Structure of capacitor
US5429965A (en) * 1991-07-08 1995-07-04 Shimoji; Noriyuki Method for manufacturing a semiconductor memory
JP2003309182A (en) * 2002-04-17 2003-10-31 Hitachi Ltd Semiconductor device manufacturing method and semiconductor device
JP2006054403A (en) * 2004-08-16 2006-02-23 Nec Electronics Corp Semiconductor device and its fabrication process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216708A (en) * 1988-07-05 1990-01-19 Mitsubishi Mining & Cement Co Ltd Structure of capacitor
US5429965A (en) * 1991-07-08 1995-07-04 Shimoji; Noriyuki Method for manufacturing a semiconductor memory
JP2003309182A (en) * 2002-04-17 2003-10-31 Hitachi Ltd Semiconductor device manufacturing method and semiconductor device
JP2006054403A (en) * 2004-08-16 2006-02-23 Nec Electronics Corp Semiconductor device and its fabrication process
JP4673589B2 (en) * 2004-08-16 2011-04-20 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6346758A (en) Mos capacitor and manufacture thereof
JPS6211068B2 (en)
JPS6222463B2 (en)
JP2522188B2 (en) Method for manufacturing semiconductor device
JPH0675360A (en) Reticle and production of semiconductor device using the same
JPS61263179A (en) Manufacture of josephson junction element
JP3604543B2 (en) Method for manufacturing semiconductor device
JPS626702Y2 (en)
JPH0360042A (en) Manufacture of thin film transistor
JPS6237383B2 (en)
JPH0564850B2 (en)
JPS6257114B2 (en)
JPH0527969B2 (en)
JPH04324673A (en) Formation of thin film resistance
JPH01157555A (en) Formation of interlayer insulating film
JPS61133667A (en) Manufacturing method of thin film transistor
JPS6033306B2 (en) Manufacturing method of semiconductor device
JPH0551892B2 (en)
JPS63207164A (en) Thin-film resistor device
JPS6350039A (en) Manufacture of semiconductor device
JPS63110728A (en) Manufacture of etching mask
JPS62252965A (en) Thin film integrated device and manufacture thereof
KR19980046574A (en) Manufacturing Method of Semiconductor Device
JPS6317327B2 (en)
JPS63177559A (en) Manufacture of semiconductor element