[go: up one dir, main page]

JPS62252965A - Thin film integrated device and manufacture thereof - Google Patents

Thin film integrated device and manufacture thereof

Info

Publication number
JPS62252965A
JPS62252965A JP61097101A JP9710186A JPS62252965A JP S62252965 A JPS62252965 A JP S62252965A JP 61097101 A JP61097101 A JP 61097101A JP 9710186 A JP9710186 A JP 9710186A JP S62252965 A JPS62252965 A JP S62252965A
Authority
JP
Japan
Prior art keywords
thin film
resistor
resistor layer
layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61097101A
Other languages
Japanese (ja)
Inventor
Koji Nomura
幸治 野村
Masaharu Terauchi
正治 寺内
Kuni Ogawa
小川 久仁
Atsushi Abe
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61097101A priority Critical patent/JPS62252965A/en
Publication of JPS62252965A publication Critical patent/JPS62252965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to manufacture a semiconductor layer and a resistor layer by the same process, by constituting the semiconductor layer and the resistor layer with the same material, and setting the thickness of the resistor layer at the value, so that a desired resistance value is obtained. CONSTITUTION:On an insulating substrate 1 made of glass and the like, a gate electrode 2 comprising Al, a gate insulating film 3 comprising alumina and a semiconductor layer 4 comprising CdSe are formed. Then, a resistor layer 5 comprising the same CdSe of the semiconductor layer 4 is formed. A source electrode 6, a drain electrode 7 and a pair of electrodes 8 and 9 comprising thin film resistors are further formed. Since the semiconductor layer 4 and the resistor layer 5 can be formed at the same time in this way, the manufacturing processes can be shortened to a large extent.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、薄膜トランジスタ、薄膜抵抗等の複数個の
薄膜素子が集積されて成る薄膜集積装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a thin film integrated device in which a plurality of thin film elements such as thin film transistors and thin film resistors are integrated.

従来の技術 従来、薄膜集積装置に用いられる抵抗体層としては、酸
化物と金属との複合膜がある。これはたとえば酸化シリ
コン(SiO)とクロム(Cr)との複合膜などである
が、SiOとCrの分子比率を変化させて複合膜の比抵
抗を調節することが可能である。
2. Description of the Related Art Conventionally, a composite film of oxide and metal has been used as a resistor layer used in a thin film integrated device. This is, for example, a composite film of silicon oxide (SiO) and chromium (Cr), and the resistivity of the composite film can be adjusted by changing the molecular ratio of SiO and Cr.

このほかにも、アルミニウム(Ae)とタンタル(Ta
)の合金のように金属同士の複合膜等もあり、さらに一
部を陽極酸化して、薄膜コンデンサを構成した薄膜集積
装置もある。
In addition, aluminum (Ae) and tantalum (Ta)
) There are also composite films of metals such as alloys, and there are also thin film integrated devices in which a part of the capacitor is anodized to form a thin film capacitor.

発明が解決しようとする問題点 従来の薄膜集積装置では、薄膜トランジスタの半導体層
と薄膜抵抗の抵抗体層は、ちがう材料から構成されてお
り、たとえば半導体層を所定の形状にバターニングした
後、別の材料からなる抵抗体層を所定の形状にバターニ
ングするような場合には、前に形成した半導体層に対し
汚染等の影響を与えないように抵抗体層をバターニング
する必要があシ、製造工程において制約が生じるという
問題があった。
Problems to be Solved by the Invention In conventional thin film integrated devices, the semiconductor layer of the thin film transistor and the resistor layer of the thin film resistor are made of different materials. When patterning a resistor layer made of a material into a predetermined shape, it is necessary to pattern the resistor layer so as not to affect the previously formed semiconductor layer by contamination or the like. There was a problem in that restrictions occurred in the manufacturing process.

また、抵抗体層として酸化物と金属との複合膜を用いた
場合には、一般に高い抵抗率を得ようとすれば酸化物の
分子比率を多くする必要がある。
Further, when a composite film of an oxide and a metal is used as a resistor layer, it is generally necessary to increase the molecular ratio of the oxide in order to obtain a high resistivity.

このとき金属と酸素とが反応しやすくなり、抵抗値が変
わ9やずいという欠点があった。
At this time, the metal and oxygen tend to react with each other, resulting in a change in resistance value of 9 mm.

上記した酸化物と金属との複合膜お金属同士の複合膜で
は高抵抗率のものは得がたく、高い抵抗値を得るために
は、薄膜抵抗の電極間の距離と抵抗体層の幅の比を十分
に大きくとる必要があシ、形状や寸法に制約が生ずると
いう問題があった。
It is difficult to obtain a high resistivity with the above-mentioned composite films of oxides and metals, and in order to obtain high resistance values, it is necessary to adjust the distance between the electrodes of the thin film resistor and the width of the resistor layer. There is a problem in that the ratio needs to be sufficiently large, which creates restrictions on the shape and dimensions.

また、膜厚と抵抗率とはほぼ反比例の関係にあり、膜厚
をいくらうすくしても限度があシ、高抵抗率のものを得
るのは困難であった。
Furthermore, the film thickness and resistivity are almost inversely proportional, and no matter how thin the film thickness is, there is a limit and it is difficult to obtain a film with high resistivity.

そこで本発明は、以上のような問題点を解決して、所望
の抵抗値を有する薄膜抵抗が容易に得られる薄膜集積装
置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a thin film integrated device in which a thin film resistor having a desired resistance value can be easily obtained.

問題点を解決するための手段 本発明の薄膜集積装置においては、絶縁性基板上に、少
なくとも、ドレイン電極、ソース電極。
Means for Solving the Problems In the thin film integrated device of the present invention, at least a drain electrode and a source electrode are formed on an insulating substrate.

ゲート電極、ゲート絶縁膜および半導体層を有する薄膜
トランジスタおよび、少なくとも一対の電極および抵抗
体層を有する薄膜抵抗が構成されるとともに、前記半導
体層および抵抗体層が同一材料で構成され、前記抵抗体
層の膜厚が所望の抵抗値を得る値に設定されたことを特
徴とする。
A thin film transistor having a gate electrode, a gate insulating film, and a semiconductor layer, and a thin film resistor having at least one pair of electrodes and a resistor layer are constructed, and the semiconductor layer and the resistor layer are made of the same material, and the resistor layer The film thickness is set to a value that provides a desired resistance value.

作  用 本発明によれば、抵抗体層が半導体層と同一の材料で構
成されているので、同様の工程で製造することができ、
製造装置を共用することができる。
Function According to the present invention, since the resistor layer is made of the same material as the semiconductor layer, it can be manufactured in the same process.
Manufacturing equipment can be shared.

また、抵抗体層が半導体であるので、膜厚により抵抗率
が大きく変化し、広い範囲にわたって所望の抵抗値を得
ることができる。このため、専有面積の少ない薄膜抵抗
を構成することができ、薄膜集積装置の小型化が容易に
なる。
Further, since the resistor layer is a semiconductor, the resistivity changes greatly depending on the film thickness, and a desired resistance value can be obtained over a wide range. Therefore, a thin film resistor can be constructed that occupies a small area, and the thin film integrated device can be easily miniaturized.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例の薄膜集積装置の断面を示し
たものである。ガラス等の絶縁性基板1上に50 n 
m程度の膜厚を有するAIから成るゲート電極2、前記
ゲート電極2を被覆する300nm程度の膜厚を有する
アルミナ(Ag2O3)からなるゲート絶縁膜3、前記
ゲート絶縁膜3の上に50nm穆度の膜厚を有するCd
Seからなる半導体層4および200 n m程度の膜
厚を有し同様にCdSeからなる抵抗体層5、前記半導
体層4および抵怨体層6の上に数〜数十ミクロンの所定
の間隔を隔てて100 n m程度の膜厚を有するAl
からなるソース電極6、ドレイン電極7および薄膜抵抗
の一対の電極8、電極9から構成されている。
FIG. 1 shows a cross section of a thin film integrated device according to an embodiment of the present invention. 50 nm on an insulating substrate 1 made of glass etc.
A gate electrode 2 made of AI having a film thickness of about m, a gate insulating film 3 made of alumina (Ag2O3) having a film thickness of about 300 nm covering the gate electrode 2, and a 50 nm thick film on the gate insulating film 3. Cd with a film thickness of
A semiconductor layer 4 made of Se, a resistor layer 5 having a film thickness of about 200 nm and also made of CdSe, and a predetermined interval of several to several tens of microns above the semiconductor layer 4 and the resistor layer 6. Al with a film thickness of about 100 nm separated by
It consists of a source electrode 6, a drain electrode 7, and a pair of thin film resistor electrodes 8 and 9.

前記半導体層4および抵抗体層6の形成には、たとえば
7オリレジスト膜を用いたりフトオフ法等がある。すな
わち、フォトレジスト膜を前記ゲート絶縁膜3の上に全
面塗布形成した後、露光。
The semiconductor layer 4 and the resistor layer 6 may be formed using, for example, a 7-way resist film, a foot-off method, or the like. That is, after a photoresist film is coated on the entire surface of the gate insulating film 3, it is exposed to light.

現像処理により半導体層4または抵抗体層5を付着する
領域のみの7オトレジスト膜を除去する。
By development, the photoresist film 7 is removed only in the region where the semiconductor layer 4 or the resistor layer 5 is to be attached.

この後、全面にたとえばCdSe等の半導体材料を真空
蒸着法などにより付着した後、7オトレジスト膜および
フォトレジスト膜上の半導体層または抵抗体層を除去す
る方法である。このように半導体層4と抵抗体層5は同
時に形成することができて、製造工程を大幅に短縮する
ことができる。
Thereafter, a semiconductor material such as CdSe is deposited on the entire surface by vacuum evaporation, and then the semiconductor layer or resistor layer on the photoresist film and the photoresist film is removed. In this way, the semiconductor layer 4 and the resistor layer 5 can be formed simultaneously, and the manufacturing process can be significantly shortened.

従来、抵抗体層の抵抗率は一定であり、薄膜抵抗の形状
を変化させて所望の抵抗値を実現していた。しかしなが
ら面積等の制約のため、実現可能な抵抗値の幅に制限が
あった。本発明のポイントは、薄膜抵抗の抵抗体層が半
導体であれば、その膜厚に依存して、その抵抗率が大き
く変化することを見出したことに基づいている。以下こ
のことを詳細に説明する。
Conventionally, the resistivity of the resistor layer was constant, and the desired resistance value was achieved by changing the shape of the thin film resistor. However, due to constraints such as area, there is a limit to the range of resistance values that can be realized. The point of the present invention is based on the discovery that if the resistor layer of a thin film resistor is a semiconductor, its resistivity changes greatly depending on its film thickness. This will be explained in detail below.

第2図は、一対の電極8および電極9の間の距離を1.
00μm、抵抗体層5の幅を500μm一定として、膜
厚を変化させた時の薄膜抵抗の抵抗率を調べた結果であ
る。抵抗体層としてはCd S eを用い、真空蒸着法
によシ形成した。図から明らかなように、膜厚を数倍す
ることにより、抵抗率は数千倍の範囲で変化し、所望の
抵抗値を有する薄膜抵抗を容易に得ることができる・;
したがって、微少面積中でも、所望の薄膜抵抗を構成す
ることができ、薄膜集積装置の微細化を促進することが
でき、設計の自由度が増すという特徴もかねそなえてい
る。
In FIG. 2, the distance between a pair of electrodes 8 and 9 is set to 1.
00 μm, and the width of the resistor layer 5 was constant at 500 μm, and the resistivity of the thin film resistor was investigated when the film thickness was changed. The resistor layer was formed using CdSe by vacuum evaporation. As is clear from the figure, by increasing the film thickness several times, the resistivity changes over a range of several thousand times, making it easy to obtain a thin film resistor with a desired resistance value.
Therefore, a desired thin film resistor can be constructed even in a minute area, miniaturization of the thin film integrated device can be promoted, and the degree of freedom in design can be increased.

以上の例でも示したように、抵抗体層がポリシリコンや
CdSe  のように多結晶半導体薄膜であれば、膜厚
によって結晶性が大きく変化するため、抵抗率をより大
きく変化させることができ、本発明による効果がさらに
大きくなる。
As shown in the above examples, if the resistor layer is a polycrystalline semiconductor thin film such as polysilicon or CdSe, the crystallinity changes greatly depending on the film thickness, so the resistivity can be changed more greatly. The effects of the present invention are even greater.

第3図は2相の転送パルスにより入力パルスを順次転送
する薄膜集積装置の一例を示す回路図である。すなわち
、4個のT1〜T4  で示す薄膜トランジスタと2個
の薄膜抵抗R5,R6によシ、その基板ブロックが構成
されておシ、T1のソース電極とT2のゲート電極、T
2のドレイン電極とR5の一方の電極およびT3のドレ
イン電極、T3ノソース電極とT4のゲート電極、T4
ノドレイン電橿とR6の一方の電極をそれぞれ接続して
、次段の同様にして構成した基本ブロックに接続してい
る。この回路は、T1.T3のゲート電極にCK1.C
K2の2相の転送パルスをそれぞれ印加してT1のドレ
イン電極に印加された入力パルス■xNを順次転送して
いくダイナミックシフトレジスタを構成している。この
回路においてA点およびB点の電位は、T2またはT4
のゲート電極に印加された電圧により、たとえば、T2
1”4がOFFの時には、0点、D点の電位であるVB
の値暉近づき、T21T4がONの時には、EA、F点
の電位であるvoの値に近づく。この時、A点。
FIG. 3 is a circuit diagram showing an example of a thin film integrated device that sequentially transfers input pulses using two-phase transfer pulses. That is, the substrate block is composed of four thin film transistors T1 to T4 and two thin film resistors R5 and R6, a source electrode of T1, a gate electrode of T2, and a gate electrode of T2.
2 drain electrode, one electrode of R5, drain electrode of T3, T3 source electrode and gate electrode of T4, T4
The nodrain electric rod and one electrode of R6 are connected to each other and connected to the next stage basic block constructed in the same manner. This circuit has T1. CK1. to the gate electrode of T3. C
A dynamic shift register is constructed in which two-phase transfer pulses of K2 are applied to sequentially transfer input pulses xN applied to the drain electrode of T1. In this circuit, the potentials at points A and B are T2 or T4
For example, the voltage applied to the gate electrode of T2
When 1"4 is OFF, VB which is the potential of point 0 and point D
When T21 and T4 are ON, the value approaches the value of vo, which is the potential at points EA and F. At this time, point A.

B点の電位の振幅を大きくするには・R6・R6の抵抗
値と、T2.T4のOFF時または、08時の抵抗値の
比の値を大きくする必要がある。したがって、R5,R
6の抵抗体層と、T2.T4の半導体層を同一材料で構
成すれば、それぞれの膜厚をかえるだけで任意の抵抗値
の比を得ることができる。T2.T4 の特性は、製造
工程によシ所望の値から多少ずれることがしばしばある
がR5゜R6の材料が同一であれば同様に特性が変化す
るため、抵抗値の比を常に一定に保つことができ、薄膜
集積装置の動作を正確に行なうことができる。
To increase the amplitude of the potential at point B, the resistance values of R6 and R6 and T2. It is necessary to increase the ratio of the resistance values when T4 is OFF or when T4 is 08. Therefore, R5,R
6 resistor layer, and T2.6 resistor layer. If the semiconductor layers T4 are made of the same material, any resistance value ratio can be obtained by simply changing the thickness of each layer. T2. The characteristics of T4 often deviate from the desired value due to the manufacturing process, but if the materials of R5 and R6 are the same, the characteristics will change in the same way, so it is possible to always keep the ratio of resistance values constant. Therefore, the thin film integrated device can be operated accurately.

発明の効果 本発明によれば、薄膜集積装置中の薄膜抵抗を容易に構
成することかで′き、所望の抵抗値を簡単に得ることが
できる。また、薄膜抵抗の専有面積を最小にすることが
でき、各種薄膜集積装置に広く利用できるものである。
Effects of the Invention According to the present invention, a thin film resistor in a thin film integrated device can be easily configured, and a desired resistance value can be easily obtained. Furthermore, the area occupied by the thin film resistor can be minimized, and it can be widely used in various thin film integrated devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜集積装置の断面図、第
2図は抵抗体層の膜厚を変化させた時の薄膜抵抗の抵抗
率を示すグラフ、第3図は本発明の他の実施例である薄
膜集積装置の回路図である。 4・・・・・−半導体層、6・・−・・・抵抗体層・代
理人の氏名 弁理士 中 尾 敏 男 ほか1名第1図 澗」曵トランジスタ 27′−ト11不色 第2図
FIG. 1 is a cross-sectional view of a thin film integrated device according to an embodiment of the present invention, FIG. 2 is a graph showing the resistivity of a thin film resistor when the film thickness of the resistor layer is changed, and FIG. FIG. 7 is a circuit diagram of a thin film integrated device according to another embodiment. 4...-Semiconductor layer, 6...-Resistor layer/Name of agent Patent attorney Toshi Nakao and one other person figure

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁性基板上に、少なくとも、ドレイン電極、ソ
ース電極、ゲート電極、ゲート絶縁膜および半導体層を
有する薄膜トランジスタ、および、少なくとも一対の電
極および抵抗体層を有する薄膜抵抗が構成されるととも
に、前記半導体層および抵抗体層が同一材料で構成され
、前記抵抗体層の膜厚が所望の抵抗値を得る値に設定さ
れたことを特徴とする薄膜集積装置。
(1) A thin film transistor having at least a drain electrode, a source electrode, a gate electrode, a gate insulating film, and a semiconductor layer, and a thin film resistor having at least one pair of electrodes and a resistor layer are formed on an insulating substrate, and A thin film integrated device, wherein the semiconductor layer and the resistor layer are made of the same material, and the thickness of the resistor layer is set to a value that provides a desired resistance value.
(2)半導体層および抵抗体層が多結晶半導体薄膜で構
成されていることを特徴とする特許請求の範囲第1項記
載の薄膜集積装置。
(2) The thin film integrated device according to claim 1, wherein the semiconductor layer and the resistor layer are composed of polycrystalline semiconductor thin films.
(3)多結晶半導体薄膜がセレン化カドミウム(CdS
e)で構成されていることを特徴とする特許請求の範囲
第2項記載の薄膜集積装置。
(3) Polycrystalline semiconductor thin film made of cadmium selenide (CdS)
3. The thin film integration device according to claim 2, characterized in that it is comprised of e).
(4)絶縁性基板上に、少なくとも、ドレイン電極、ソ
ース電極、ゲート電極、ゲート絶縁膜および半導体層を
有する薄膜トランジスタ、および、少なくとも一対の電
極および抵抗体層を有する薄膜抵抗を構成し、前記半導
体層および抵抗体層を同一材料で構成するとともに、前
記抵抗体層の膜厚を変化させて所望の抵抗値を得ること
を特徴とする薄膜集積装置の製造方法。
(4) A thin film transistor having at least a drain electrode, a source electrode, a gate electrode, a gate insulating film, and a semiconductor layer, and a thin film resistor having at least one pair of electrodes and a resistor layer are formed on an insulating substrate, and the semiconductor A method for manufacturing a thin film integrated device, characterized in that the resistor layer and the resistor layer are made of the same material, and the thickness of the resistor layer is varied to obtain a desired resistance value.
(5)半導体層および抵抗体層を多結晶半導体薄膜で構
成することを特徴とする特許請求の範囲第4項記載の薄
膜集積装置の製造方法。
(5) A method for manufacturing a thin film integrated device according to claim 4, wherein the semiconductor layer and the resistor layer are formed of polycrystalline semiconductor thin films.
(6)多結晶半導体薄膜をセレン化カドミウム(CdS
e)で構成することを特徴とする特許請求の範囲第4項
記載の薄膜集積装置の製造方法。
(6) Polycrystalline semiconductor thin film made of cadmium selenide (CdS)
5. The method for manufacturing a thin film integrated device according to claim 4, comprising step e).
JP61097101A 1986-04-25 1986-04-25 Thin film integrated device and manufacture thereof Pending JPS62252965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097101A JPS62252965A (en) 1986-04-25 1986-04-25 Thin film integrated device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097101A JPS62252965A (en) 1986-04-25 1986-04-25 Thin film integrated device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62252965A true JPS62252965A (en) 1987-11-04

Family

ID=14183222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097101A Pending JPS62252965A (en) 1986-04-25 1986-04-25 Thin film integrated device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62252965A (en)

Similar Documents

Publication Publication Date Title
JP4097694B2 (en) Electronic component comprising a thin film structure having passive elements
JPS62252965A (en) Thin film integrated device and manufacture thereof
JPS6346758A (en) Mos capacitor and manufacture thereof
JP3623377B2 (en) Manufacturing method of semiconductor device
JPH03124047A (en) Integrated circuit device
JP3604543B2 (en) Method for manufacturing semiconductor device
JP2809274B2 (en) Method for manufacturing semiconductor device
JPS62204569A (en) Thin film integrated device
JPH04324673A (en) Formation of thin film resistance
JPH0582733A (en) Capacitance element
JPH0595082A (en) Semiconductor device
JPH02113566A (en) semiconductor integrated circuit
JPS6115359A (en) semiconductor equipment
JPH03286563A (en) Semiconductor device and its manufacture
JPH04324972A (en) Manufacture of semiconductor device
JPH02165612A (en) Distributed cr circuit device
JPS5830150A (en) thin film integrated circuit
JPS63296277A (en) Semiconductor integrated circuit device
JPH05145062A (en) Fabrication method of single-electron transistor
JPS60113484A (en) Manufacture of josephson ic device
Bawa et al. Fabrication of Thin Film Resistors and Resistor Networks by a Selective Etching Process
JPS63219141A (en) Formation of multilayer interconnection of semiconductor element
JPH04254368A (en) Semiconductor device and manufacture thereof
JPS62177955A (en) Manufacture of thin film resistor
JPH02253663A (en) Mos capacitor