CN1826693A - 利用临时衬底制造太阳能电池薄片的方法 - Google Patents
利用临时衬底制造太阳能电池薄片的方法 Download PDFInfo
- Publication number
- CN1826693A CN1826693A CNA2004800211613A CN200480021161A CN1826693A CN 1826693 A CN1826693 A CN 1826693A CN A2004800211613 A CNA2004800211613 A CN A2004800211613A CN 200480021161 A CN200480021161 A CN 200480021161A CN 1826693 A CN1826693 A CN 1826693A
- Authority
- CN
- China
- Prior art keywords
- layer
- temporary substrate
- tco
- resist
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/139—Manufacture or treatment of devices covered by this subclass using temporary substrates
- H10F71/1395—Manufacture or treatment of devices covered by this subclass using temporary substrates for thin-film devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
- H10F19/35—Structures for the connecting of adjacent photovoltaic cells, e.g. interconnections or insulating spacers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1694—Thin semiconductor films on metallic or insulating substrates the films including Group I-III-VI materials, e.g. CIS or CIGS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1696—Thin semiconductor films on metallic or insulating substrates the films including Group II-VI materials, e.g. CdTe or CdS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种制造太阳能电池薄片的方法,包括以下步骤:提供可蚀刻的临时衬底,在所述临时衬底上施加透明导电氧化物(TCO)的正面电极,在所述TCO层上施加光伏层,施加背面电极层,施加永久载体,确保所述正面电极和所述背面电极在互连中电连接,以建立串联连接,在所述互连的不同侧,分别通过正面凹槽和背面凹槽阻断各所述正面电极和所述背面电极,在上述步骤的任何一个步骤中,至少在所述互连位置,且至少不在所述正面凹槽的整个位置,在所述临时衬底的非TCO侧上设置抗蚀剂,以及选择性去除没有用抗蚀剂覆盖的所述临时衬底。发明的方法在所述互连上设置了保护性材料帽盖,产生具有改善的性能的太阳能电池薄片。
Description
技术领域
本发明涉及一种利用临时衬底制造太阳能电池单元的方法。本发明还涉及由此得到的太阳能电池薄片。
背景技术
太阳能电池薄片,又称光伏薄片,一般包括载体和光伏(PV)层,其中,光伏层由在包括透明导电氧化物(TCO)的正面电极(在薄片的正面)与背面电极(在薄片的背面)之间设置的半导体材料构成。正面电极透明,使入射光能够到达半导体材料,其中入射辐射转换为电能。以此方式,光可用于产生电流,这为例如化石燃料或核能提供了一种令人关注的替换物。
WO 98/13882和WO 99/49483说明了一种制造光伏薄片的方法,包括以下步骤:提供临时衬底,施加透明导电氧化物,施加光伏层,施加背面电极层,施加载体,去除临时衬底,以及,优选地在透明导体层上施加透明的保护性顶部涂覆。该方法能够卷至卷(roll-to-roll)制造光伏薄片或器件,同时可以利用任何希望的透明导体材料和沉积方法,而不危害PV层的电流产生作用。在WO 98/13882中,抗蚀剂可能用于覆盖非邻近的最左和最右透明导体导电线,以在这些侧面导电线和侧面电极之间提供电接触。通过以这种方式使部分临时衬底保持在合适位置,不需要单独施加这些接触。WO 01/78156和WO 01/47020说明了基于该方法的变化。
太阳能电池的最大电压由入射光的强度并由电池的构成,更具体地说,由半导体材料的性质确定。当太阳能电池的表面积增加时,产生更多的能量,但电压保持不变。为了增大电压,通常将太阳能电池薄片分成串联连接的不同电池。这可通过以下方法实现,例如利用激光、蚀刻或任何其它构图方法在太阳能电池电极层中设置凹槽,以及在一块电池的正面电极与另一块电池的背面电极之间建立导电接触,同时阻断各自在互连的不同侧的正面电极和背面电极,以防止短路。当采用太阳能电池薄片时,通过载体结合各电池。上述专利申请说明了实现串联连接的各种方法。
然而,当具有串联连接时,通过以上参考文献中所述的方法制备的光伏薄片看起来具有质量降低的缺点。已发现很难提供均匀且高产品质量的光伏薄片。更具体地说,已发现在通过蚀刻去除临时衬底期间,在互连位置可能损伤TCO层。在蚀刻步骤期间,蚀刻剂可渗入损伤的TCO层,并进入互连,从而破坏互连。一个问题是,通过保留临时衬底,在TCO层的两个隔离部分之间可能发生短路。因此,需要一种更耐用的方法,用于制备具有通过临时衬底串联连接的太阳能电池薄片,该方法产生更高质量和最小短路问题的更均匀产品。本发明提供了这样一种方法。
发明内容
因此,本发明涉及一种制造太阳能电池薄片的方法,包括以下步骤:
提供可蚀刻的临时衬底;
在所述临时衬底上施加透明导电氧化物(TCO)的正面电极;
在所述TCO层上施加光伏层;
施加背面电极层;
施加永久载体;
确保所述正面电极和所述背面电极在互连中电连接,以建立串联连接,在所述互连的不同侧,分别通过正面凹槽和背面凹槽阻断各所述正面电极和所述背面电极;
在上述步骤的任何一个步骤中,至少在所述互连位置,且至少不在所述正面凹槽的整个位置,在所述临时衬底的非TCO侧上设置抗蚀剂;以及
选择性去除没有用抗蚀剂覆盖的所述临时衬底。
根据本发明的方法的结果是,在互连的位置,部分临时衬底保留在TCO层上。已发现得到的临时衬底材料的保护性帽盖的存在改善了太阳能电池薄片的均匀性和质量方面的特性。更具体地说,通过根据本发明的方法制备的太阳能电池薄片得到的无效电池少于临时衬底被整个去除的类似的太阳能电池薄片。
本发明还涉及一种太阳能电池单元,包括正面电极、PV层,以及背面电极层,其中所述太阳能电池单元被分成串联连接的至少两个分立的电池,所述串联连接包括电连接一个电池的所述正面电极和邻近电池的所述背面电极的互连,同时在所述互连的不同侧阻断各所述正面电极和所述背面电极,在所述太阳能电池单元中,在所述互连位置的所述正面电极上存在保护性帽盖,其中所述保护性帽盖为不同于所述互连的材料。该太阳能电池单元可通过本发明构思的方法得到,但也可通过不同的方法得到。优选地,所述太阳能电池单元是适于在卷至卷方法中处理的柔性太阳能电池薄片。
本发明的方法和太阳能电池单元具有多个其它优点。
首先,如果保护性帽盖由导电材料制成,例如,当其源于由导电材料制成的临时衬底时,该保护性帽盖可用作部分互连,从而改善互连的导电特性。这也允许较不严格地控制在制造互连时所采用的与TCO的性能相关的条件,因为即使在制造互连期间TCO遭到损伤,导电临时衬底材料的保护性帽盖的存在也可以确保互连正常作用。
此外,通过适当的连接,可使得在TCO层上保留的临时衬底条用作部分电流收集栅极(grid),即导电材料的线状图形,其以这样的方式施加,以使得能够容易地收集在光伏层中产生并流过电极的载流子(电子)。由于在互连位置太阳能电池不产生能量,该互连是栅极的理想位置,因为在该位置栅极的存在没有不利地影响太阳能电池薄片的电流产生特性。
此外,在互连上的导电条的存在使得将太阳能电池薄片分为分立的单元更容易,因为可以这样的方式设置导电条,可将其用于连接电极,以将太阳能电池薄片连接到“外部世界”。
在本说明书的上下文中,术语蚀刻旨在表示通过例如溶解的化学方法去除。可蚀刻的衬底是通过化学方法可被去除的衬底;抗蚀剂是可至少暂时抵抗在去除临时衬底期间应用的条件的材料。抗蚀剂可以是对在互连位置的临时衬底施加的,且将至少暂时保护临时衬底不受蚀刻剂作用的任何材料。各种抗蚀剂均可考虑。首先,具有这样的抗蚀剂,其可抵抗蚀刻剂的作用,并将在方法的某个阶段不会从临时衬底被去除。将这种抗蚀剂表示为永久抗蚀剂。相反地,还可以考虑临时抗蚀剂,即在处理的某个后续阶段将被去除的抗蚀剂。
可以各种方式实现利用抗蚀剂从临时衬底形成保护性帽盖。例如,可施加抗蚀剂,进行蚀刻步骤,并且可选地在某个后续步骤中去除抗蚀剂。可能临时衬底比希望的保护性帽盖的厚度厚。在这种情况下,可以首先蚀刻部分临时衬底,然后施加抗蚀剂,并随后去除临时衬底的未受保护部分。在这种情况下,也可以首先施加临时抗蚀剂,然后部分去除未受抗蚀剂保护的临时衬底。然后,去除临时抗蚀剂,并进行后续的蚀刻步骤,以减小保护性帽盖的厚度。为实现后一种选择,也可以采用仅对蚀刻剂临时抵抗的材料。如果采用实际上为蚀刻延缓剂的这种材料,将发生以下情况。首先,该蚀刻延缓剂确保仅仅在临时衬底未受蚀刻延缓剂保护的位置发生蚀刻。然后,当蚀刻延缓剂已溶解时,该蚀刻剂确保减小了保护性帽盖的厚度。
本发明的方法的一个具体实施例是这样的方法,其中抗蚀剂是永久抗蚀剂,可选择其颜色,以使互连上的帽盖的颜色与太阳能电池单元的能量产生部分的颜色匹配或形成反差。
太阳能电池单元的能量产生部分与彩色的互连帽盖之间的颜色差异可通过dEab表示,其定义如下:
dEab=(dL2+da2+db2)1/2
其中dL、da和db分别是具有染色材料的部分与太阳能电池单元的能量产生部分之间的亮度、蓝色和红色的差异。可利用D65光源根据CIELAB程序确定L、a和b值。如果互连帽盖的颜色与太阳能电池单元的颜色匹配,dEab通常在约5以下,优选在约2以下,更优选在约0.3以下。在这种情况下,可提到利用伪装颜色。如果将互连帽盖的颜色选择为与太阳能电池单元的能量产生部分的颜色形成反差时,dEab通常在约10以上,优选在约12以上,更优选在约20与100之间。如果使用的颜色多于一种时,通常这些颜色中的至少一种将满足dEab值的以上要求。
区别颜色和匹配颜色的组合使用使得可以在均匀背景上用彩色设计装饰太阳能电池单元。可考虑的设计实例为图形、字母、数字、条纹、矩形和方形。在该实施例中,通常10-90%的抗蚀剂具有区别颜色,而90-10%的抗蚀剂具有伪装颜色。
在根据本发明的方法中,可在任何阶段进行在临时衬底上施加抗蚀剂。例如,可以在方法的开始之前,即在临时衬底的另一侧上施加TCO之前施加抗蚀剂。可以在任何中间阶段施加,也可以在方法结束时,如果可应用,在施加背面电极或者永久载体之后,且正好在通过蚀刻去除临时衬底之前施加抗蚀剂。优选后一种选择,因为其防止在方法的在前部分期间抗蚀剂图形受到损伤。后一种选择也防止在临时衬底“背面”上的抗蚀剂图形的存在受到其它处理步骤的干扰。在根据本发明的方法的优选卷至卷实施例中,如果在一卷或多卷上引入在其背面上的抗蚀剂中具有图形的临时衬底,两种情况都可发生。在施加透明导电氧化物层之前施加抗蚀剂具有其它缺点,即抗蚀剂应能够承受在沉积透明导电氧化物层时经常施加的高温。
在根据本发明的方法的首选实施例中,临时衬底是柔性的,施加柔性永久载体,并且通过卷至卷方法实施该方法。
串联连接
进行串联连接的方式对于本发明来说不是关键的。通常,通过确保一个电池的正面电极和相邻电池的背面电极在互连中电连接,同时在互连的不同侧阻断各正面电极和背面电极,建立串联连接。
如上所述,在各太阳能电池单元中,各自在互连的另一侧阻断背面电极和正面电极(TCO层)。对于这两种阻断而言,阻断凹槽穿过电极层本身且可选地穿过PV层存在。对于下面将要讨论的一些实施例,将明确地说明穿过PV层凹槽存在,但其可普遍适用。然而,应注意,如果穿过电极层并穿过PV层阻断凹槽存在,那么应注意确保电极没有与在PV层中穿过凹槽的其它电极非故意地短路。例如,通过激光划线,可在将施加上述阻断凹槽的位置施加绝缘材料条。该绝缘材料将用作激光停止层,以防止通过下面材料的溶化形成短路。对于下面将要讨论的一些实施例,将明确说明绝缘材料条的提供,但它们也可用于其它实施例。当可应用时,绝缘材料可施加于TCO层和/或PV层上。
可以各种方式建立互连。可以通过穿过PV层施加凹槽,然后用导电材料填充凹槽建立互连。凹槽可延伸穿过或不延伸穿过TCO层、背面电极层,或TCO层和背面电极层两者。这尤其取决于施加凹槽的方法步骤。在一个实施例中,用于在PV层中填充凹槽的导电材料是背面电极材料。如果PV层是非晶Si层,还可通过熔合非晶Si层与背面电极,建立导电连接。如果PV层是非晶Si层,还可通过使Si再结晶为导电材料,建立互连。然而,较不优选该选择。
施加互连和阻断凹槽的顺序不重要,其将取决于在应用的具体方法中什么是最合适的。
通常通过以下考虑确定互连以及阻断TCO层与背面电极层的凹槽的宽度。在互连和阻断凹槽的位置,太阳能电池不能将光转化成电。考虑到这一点,互连和凹槽必须尽可能的窄。另一方面,它们必须足够宽,以确保取得希望的效果,即不同层的阻断和具有充分电导率的正面与背面电极的连接。阻断TCO层和背面电极层的凹槽的宽度一般为2至200μm,优选5至75μm。互连的宽度一般为20至200μm,优选50至150μm。
可在将要施加上述阻断凹槽的位置施加的绝缘材料条应足够宽,以允许在该条的宽度内容易地提供阻断凹槽。通常,该条的宽度在25与1,000μm之间,优选在50与400μm之间,更优选在50与200μm之间。
保护性帽盖应该足够宽,以确保互连真正得到保护。通常,保护性帽盖在两侧延伸超出互连至少10μm,优选至少50μm。通常,保护性帽盖在两侧延伸超出互连至多200μm,优选至多100μm。很明显,如果保护性帽盖导电,则它不可延伸超出阻断TCO层的凹槽,如果保护性帽盖延伸超出凹槽,就意味着凹槽两侧将变为电连接。
阻断正面电极和背面电极的凹槽通常是连续凹槽,因为其目的在于实现不同电池条的适当绝缘。另一方面,互连不必连续。如果需要,其可以具有不连续的形式,采用孔、条或坑的形式。由于工作效率的原因,可优选连续的实施例。
附图说明
图1示出了在本发明的太阳能模块的两个相邻电池之间形成互连的方法步骤;
图2示出了太阳能模块的另一个实施例;
图3示出了形成太阳能模块的实施例的方法步骤;
图4示出了在太阳能模块中形成具有另一互连的实施例的方法步骤;
图5示出了具有绝缘条的太阳能模块的实施例;以及
图6示出了具有绝缘条的太阳能模块的另一个实施例。
具体实施方式
可以考虑根据本发明的方法的各种实施例。
第一个实施例是基于WO 98/13882中说明的串联连接方法的变化。在图1中示出了该方法。该方法包括以下步骤:
提供可蚀刻的临时衬底;
在所述临时衬底上施加透明导电氧化物(TCO)的正面电极,并在所述TCO层直到所述临时衬底中设置凹槽;
在所述TCO层上以及在所述TCO层中存在的所述凹槽中施加光伏层(PV层),并且在所述PV层直到所述TCO层中设置凹槽;
在所述PV层上以及在所述PV层中存在的所述凹槽中施加背面电极层,以形成将所述背面电极层连接到所述TCO层的互连,并且在所述背面电极层直到所述PV层中设置凹槽;
在所述背面电极上施加永久载体;
在上述步骤的任何一个步骤中,在所述互连位置的所述临时衬底的非TCO侧上施加抗蚀剂;以及
选择性去除没有用抗蚀剂覆盖的所述临时衬底。
在图1中示出了该方法,其中图1a示出了太阳能电池薄片,包括其上具有TCO 2a、2b的临时衬底1、PV层3、背面电极4和永久衬底5。互连6将TCO层连接到背面电极4。在互连位置的临时衬底上设置抗蚀剂帽盖7。图1b中示出了在去除除了具有抗蚀剂帽盖之外的临时衬底后的同一个系统。在正面凹槽fg的位置没有抗蚀剂存在,因此在正面凹槽fg的位置没有剩余的临时衬底(通常是导体,例如铝)存在,不会在隔离的TCO部分2a和2b之间引起短路。
一些步骤示于图2的第二个实施例的方法包括以下步骤:
提供可蚀刻的临时衬底;
在所述临时衬底上施加透明导电氧化物(TCO)的正面电极;
在所述TCO层上施加光伏层(PV层),并且在所述PV层直到所述TCO层中设置凹槽;
在所述PV层上以及在所述PV层中存在的所述凹槽中施加背面电极层,以形成将所述背面电极层连接到所述TCO层的互连,并且在所述背面电极层直到所述PV层或穿过所述PV层直到所述TCO层中设置凹槽;
施加永久载体;
在上述步骤的任何一个步骤中,在所述互连位置的所述临时衬底的非TCO侧上设置抗蚀剂;
选择性去除没有用抗蚀剂覆盖的所述临时衬底;以及
从所述TCO层的存在所述临时衬底的侧穿过所述TCO层直到所述PV层或直到所述背面电极设置凹槽。
图2a示出了太阳能电池薄片,包括其上具有TCO 2的临时衬底1、PV层3、背面电极4和永久衬底5。互连6将TCO层连接到背面电极。在互连位置的临时衬底上设置抗蚀剂帽盖7。图2b中示出了在去除除了具有抗蚀剂帽盖之外的临时衬底后的同一个系统。此外,已在TCO层中建立了凹槽fg,以消除短路并完成串联连接。
在该实施例的优选变型中,在施加背面电极之前,在PV层上施加绝缘材料的保护条8、9。在适时地得到在背面电极中和在TCO层中的凹槽的位置施加这些条。这些条旨在在例如通过激光划线设置凹槽期间保护下面的材料。该实施示于图2c。
根据本发明的方法的第三实施例包括以下步骤:
提供可蚀刻的临时衬底;
在所述临时衬底上施加透明导电氧化物(TCO)的正面电极;
在所述TCO层上施加光伏层(PV层),并且穿过所述PV层直到所述TCO层或穿过所述TCO层直到所述临时衬底设置凹槽;
以这样的方式在所述PV层上以及所述凹槽中施加背面电极层,在所述凹槽内部将所述背面电极互连到所述正面电极,而在所述凹槽两侧上的所述背面电极相互电绝缘;
施加永久载体;
在上述步骤的任何一个步骤中,在所述互连位置的所述临时衬底的非TCO侧上设置抗蚀剂;
选择性去除没有用抗蚀剂覆盖的所述临时衬底;以及
从所述TCO层存在所述临时衬底的侧穿过所述TCO层直到所述PV层或直到所述背面电极设置凹槽。
该方法的一个实施例的一些步骤示于图3。图3a示出了太阳能电池薄片,包括其上具有TCO 2的临时衬底1、PV层3、背面电极4和永久衬底5。穿过PV层和TCO层直到临时衬底存在凹槽g。在穿过PV层和TCO层的凹槽位置的临时衬底上设置抗蚀剂帽盖7。图3b中示出了在去除除了具有抗蚀剂帽盖之外的临时衬底后的同一个系统。临时衬底的保留部分也用于将背面电极从凹槽一侧连接到电池另一侧的TCO层。此外,在TCO层中建立凹槽fg,以消除短路并完成串联连接。该方法的特性之一在于,保护性帽盖也用作部分互连。因此,对该实施例而言,可蚀刻临时衬底应是导电的。
该实施例的第二个变型示于图4。在该实施例中,PV层中的凹槽g没有延伸穿过TCO层。在该实施例中,保护性帽盖没有用作部分互连,因此不必是导电的。然而,优选利用导电临时衬底。
本发明的第四实施例包括以下步骤:
提供可蚀刻的临时衬底;
在所述临时衬底上施加透明导电氧化物(TCO)的正面电极;
在所述TCO上施加光伏层(PV层),并穿过所述PV层和所述TCO直到所述临时衬底设置凹槽,用绝缘材料填充所述凹槽,可选地同时施加帽盖,并且,如果需要,施加绝缘条,并穿过所述PV层直到所述TCO建立导电连接(的前体);
在所述PV层上施加背面电极;
在所述背面电极直到所述PV层凹槽,或者如果存在,直到所述绝缘条中设置凹槽;
可选地施加永久载体;
在上述步骤的任何一个步骤中,在所述互连位置的所述临时衬底的非TCO侧上设置抗蚀剂;以及
选择性去除没有用抗蚀剂覆盖的所述临时衬底。
该方法示于图5。图5a示出了太阳能电池薄片,包括其上具有TCO 2的临时衬底1和PV层3。穿过PV层和TCO层直到临时衬底存在凹槽fg。将用绝缘材料8填充该凹槽fg。已穿过PV层直到TCO设置另一个凹槽6。该凹槽6将形成互连的基础,从而可视为互连前体。在图5b中,已设置绝缘材料条8和9,一个在凹槽中穿过PV层和TCO层直到临时衬底,一个在互连前体6的另一侧上的PV层上。图5c中,已添加背面电极4,其中凹槽bg在绝缘条9的顶部上。从而完成互连。另外,在互连位置的临时衬底上设置抗蚀剂帽盖7。图5d示出了在施加永久载体5并去除除了具有抗蚀剂帽盖之外的临时衬底之后的同一个系统。
在该实施例中,互连(的前体)可以是凹槽,在施加背面电极时用背面电极材料填充该凹槽。该实施示于图5。可选地,虽然此时较不优选该方法,但可以在单独的步骤中用导电材料填充凹槽。最后,如果PV层是非晶Si层,也可以通过使非晶Si再结晶形成导电材料建立导电连接。该最后的选择是最不优选的选择。
本发明的第五实施例包括以下步骤:
a.提供临时衬底;
b.施加透明导电氧化物(TCO);
c.在所述TCO上施加光伏层(PV层);
d.如果需要,在所述PV层上施加一个或两个绝缘条;
e.在所述PV层上以及,如果存在,在所述绝缘条上施加背面电极;
f.如果需要,如果还没有建立互连,在所述背面电极中修复分路(shunt);
g.在所述背面电极直到所述PV层,或者如果存在,直到绝缘条中施加凹槽;
h.如果需要,施加永久载体;
i.在上述步骤的任何一个步骤中,在所述互连的位置的所述临时衬底的非TCO侧上施加抗蚀剂;
j.选择性去除没有用抗蚀剂覆盖的所述临时衬底;
k.从所述TCO侧穿过所述TCO层,并可选地,穿过所述PV层直到所述背面电极,或者如果存在,直到绝缘条,设置凹槽;以及
l.如果需要,在所述TCO层上施加密封剂,在该方法中,在步骤f与h之间,或者在步骤c与e之间,建立穿过所述PV层的导电连接。
图6示出了由该方法的不同实施例得到的各种产品。这些图形都示出了太阳能电池薄片,包括TCO 2、PV层3、背面电极4和永久衬底5。互连6将TCO层连接到背面电极4。在临时衬底1的保留部分上存在抗蚀剂帽盖7以保护互连。在步骤f和h之间建立导电连接的实施例的优点在于,可以在TCO层与背面电极之间的导电连接建立之前实现在TCO层、PV层和背面电极装配上的分路修复。
通过包括以下步骤的方法得到图6a的产品:
a.提供临时衬底;
b.施加透明导电氧化物(TCO);
c.在所述TCO上施加光伏层(PV层);
d.在所述PV层上施加背面电极;
e.如果需要,在所述背面电极中修复分路;
f.在所述背面电极直到所述PV层中设置凹槽,并在所述背面电极与所述TCO层之间设置互连;
g.设置永久载体;
h.在上述步骤的任何一个步骤中,在所述互连位置的所述临时衬底的非TCO侧上设置抗蚀剂;
i.选择性去除没有用抗蚀剂覆盖的所述临时衬底;以及
j.从所述TCO侧穿过所述TCO层直到所述PV层设置凹槽。
图6b的系统与图6a的系统的不同之处在于,在施加背面电极之前在PV层上施加绝缘材料的两个保护性条。从背面电极侧直到绝缘条形成背面电极中的凹槽。穿过TCO层和PV层直到另一个绝缘条,形成TCO侧的凹槽fg。
在图6a和6b的实施例中,可通过各种方式建立TCO层与背面电极之间的导电连接。当在建立互连6时背面电极已经存在时,出现以下选项。如果在该实施例中,PV层是非晶Si层,可以通过利用激光熔合背面电极和非晶Si层建立导电连接。可选地,在这些实施例中,可以首先从太阳能电池单元的背面电极侧划刻凹槽,并通过用导电材料填充凹槽建立或改善互连。然而,较不优选该选择。
图6c的产品与图6a的产品的不同之处在于,互连阻断了TCO层,而不是太阳能电池薄片的背面电极。其可以通过包括以下步骤方法得到:
a.提供临时衬底;
b.施加透明导电氧化物(TCO);
c.在所述TCO层上施加光伏层(PV层);
d.穿过所述PV层以及可选地穿过所述TCO层设置互连;
e.在所述PV层上施加背面电极;
f.在所述背面电极直到所述PV层中设置凹槽;
g.设置永久载体;
h.在上述步骤的任何一个步骤中,在互连位置的所述临时衬底的非TCO侧上施加抗蚀剂;
i.选择性去除没有用抗蚀剂覆盖的临时衬底;以及
j.从所述TCO侧穿过所述TCO层直到所述PV层设置凹槽。
图6d的系统与图6c的系统的不同之处在于,在施加背面电极之前,在PV层上施加绝缘材料的两个保护性条。从背面电极侧直到绝缘条形成背面电极中的凹槽。穿过TCO层和PV层直到另一个绝缘条形成TCO侧的凹槽。在该实施例中,可通过各种方式建立TCO层与背面电极之间的导电连接。如果在该实施例中,PV层是非晶Si层,可以通过利用激光使非晶Si层再结晶形成导电连接建立导电连接。可选地,并且优选地,在该实施例中,可以首先穿过PV层和TCO层划刻凹槽,并通过用导电材料填充凹槽建立互连。
临时衬底
临时衬底必须满足几个条件。如上所述,临时衬底必须可蚀刻。临时衬底必须足够耐热以能够承受在制造太阳能电池薄片期间,更具体地说在沉积TCO和PV层期间通常使用的条件。其强度必须足够高以能够在制造太阳能电池薄片期间支撑该薄片。它必须容易从TCO层去除,而不损伤TCO层。如果旨在在互连中起作用,它必须高效导电。本领域的技术人员将能够在该方针下选择合适的临时衬底。
在根据本发明的方法中所采用的临时衬底优选金属或金属合金的薄片。其主要原因在于,这些薄片呈现良好的导电性,通常能够承受高处理温度,升华逸散很慢,且利用已知蚀刻技术比较容易去除。选择金属薄片,更具体地说铝或铜的另一个原因在于,最后太阳能电池薄片必须具有边缘电极,该边缘电极必须将太阳能电池薄片连接到装置或电网。临时衬底的剩余部分可用于此目的,因此不需要单独提供边缘电极。
适合的金属包括钢、铝、铜、铁、镍、银、锌、钼、铬及其合金或多层结构。主要由于经济原因,优选采用Fe、Al、Cu或其合金。已知其性能(且考虑到成本),最优选铝、铁和铜。
已知用于去除金属的合适的蚀刻剂和技术,虽然它们依据金属的不同而不同,技术人员将能够作出合适的选择。优选的蚀刻剂包括酸(Lewis酸和Bronstedt酸)。因此,对于铜,优选利用FeCl3、硝酸或硫酸。用于铝的合适蚀刻剂为,例如NaOH、KOH,以及磷酸与硝酸的混合物。
如果将可选地通过电沉积制备的铜用作临时衬底,优选可选地通过电沉积的方法提供铜,该铜具有非还原性的扩散阻挡层,例如抗侵蚀层,更具体地说氧化锌。这是因为铜有穿过TCO层扩散到PV层中的趋势。也可以选择能够防止该扩散的TCO,例如SnO2或ZnO。可通过例如电沉积、物理气相沉积(PVD)或化学气相沉积(CVD)施加抗扩散层。抗扩散层通常与临时衬底一起从TCO去除。
为了方便去除,临时衬底优选尽可能薄。当然,其厚度是这样的厚度,可在其上设置其它层,且它必须能够结合这些层,但这通常不要求其厚度大于500μm(0.5mm)。该厚度优选在1到200μm(0.2mm)的范围内。根据弹性模量,许多材料的最小厚度是5μm。因此,优选厚度为5-150μm,更具体地说10-100μm。
TCO层
合适透明导电氧化物(TCO)的实例是氧化铟锡、氧化锌、掺有铝、氟、镓或硼的氧化锌、硫化镉、氧化镉、氧化锡,以及最优选的F掺杂SnO2。优选所述最后提到的透明电极材料,因为当其在高于400℃的温度下,优选在500到600℃范围内施加,或在所述温度下后处理时,其可形成希望的具有柱状光散射构造的晶面。正是在这种TCO材料情况下,能够承受如此高温的临时衬底的使用具有相当的吸引力。此外,该材料可以抵抗大多数蚀刻剂,且与常用的氧化铟锡相比,该材料对化学物具有更好的抵抗力。并且,该材料便宜得多。
可通过本领域已知的方法,例如,通过金属有机化学气相沉积(MOCVD)、溅射、常压化学气相沉积(APCVD)、PECVD、喷射热分解、蒸发(物理气相沉积)、电沉积、无电镀、丝网印刷、溶胶-凝胶方法等或这些方法的组合制备TCO。优选在大于250℃,优选大于400℃,更优选在450与600℃之间的温度下施加和后处理TCO层,以得到希望的组分、特性和/或构造的TCO层。
缓冲层
如果需要,在TCO层与光伏层之间可存在缓冲层。缓冲层旨在保护TCO层不受主要在沉积PV层期间的条件的影响。缓冲层的性质取决于PV层的性质。在本领域中已知用于各种PV层的合适缓冲层。对于碲化镉CdS而言,可提到In(OH,S)和Zn(OH,S)。如果在本说明书中提到在TCO上沉积PV层,在所述TCO上可存在或不存在缓冲层。
光伏(PV)层
施加TCO层后,可以适当方法施加PV层。这里应注意,在本说明书中,术语“PV”层或“光伏层”包括吸收光并将光转换为电所需的整个层系统。已知合适的层结构及其施加的方法。对于本领域的一般常识可以参考Yukinoro Kuwano,“Photovoltaic Cells”,Ullmann’s Encyclopedia,Vol.A20(1992),161和“Solar Technology”,Ullmann’s Encyclopedia,Vol.A24(1993),369。
制造PV层可以采用各种薄膜半导体材料。例如,非晶硅(a-Si:H)、微晶硅、多晶非晶碳化硅(a-SiC)、a-SiC:H、非晶硅-锗(a-SiGe),以及a-SiGe:H。另外,根据本发明的太阳能电池薄片中的PV层可包括CIS(联硒化铜铟,CulnSe2)、碲化镉(CdTe)、CIGSS(Cu(In,Ga)(Se,S))、Cu(In,Ga)Se2、ZnSe/CIS、ZnO/CIS,和/或Mo/CIS/CdS/ZnO,以及染料敏化太阳能电池。
当TCO包括掺F氧化锡时,PV层优选非晶硅层。在这种情况下,PV层一般包括一组或多组p型掺杂、本征和n型掺杂的非晶硅层,其中p型掺杂层位于接收入射光的一侧。
在a-Si-H实施例中,PV层至少包括p型掺杂非晶硅层(Si-p)、本征非晶硅层(Si-i)和n型掺杂非晶硅层(Si-n)。可以在第一组p-i-n层上施加第二组和更多组的p-i-n层。并且,可连续施加多个重复的p-i-n(“pinpinpin”或“pinpinpinpin”)层。通过层叠多个的p-i-n层,增大每个电池的电压,并提高系统的稳定性。降低了光致劣化,即所谓的Staebler-Wronski效应。此外,可通过选择各层中,主要是i层中,尤其在i层内的不同带隙材料,优化光谱响应。PV层,更具体地说所有a-Si层的总厚度,一般约为100至2,000nm,更典型地约为200至600nm,优选约为300至500nm。
背面电极
根据本发明的薄膜太阳能电池薄片中的背面电极优选用作反射器和电极。一般来说,背面电极的厚度约为50至500nm,且可包括具有反光性能的任何合适的材料,优选铝、银或两者组合的层,并且该材料与下层的半导体层形成良好欧姆接触。优选地,可以通过例如电沉积、(真空)物理气相沉积或溅射,在较低的温度,例如低于250℃下施加金属层。在银的情况下,优选首先施加粘附力促进剂层。TiO2、TiN、ZnO和氧化铬是用于粘附力促进剂层的合适材料的实例,并且当以合适厚度,例如50-100nm的厚度施加时,具有还拥有反射性能的优势。所需的背面电极可以是透明或不透明的。
永久载体
太阳能电池薄片具有永久载体。因为,否则薄片如此薄,以致其易碎性导致很难操作。在背面电极上施加永久载体。合适的载体层材料包括商业可得的聚合物膜,例如聚对苯二甲酸乙二醇酯、聚(2,6-萘二甲酸乙二醇酯)、聚碳酸酯、聚氯乙烯、PVDF、PVDC、PPS、PES、PEEK、PEI,或具有非常良好性能的聚合物膜,例如芳族聚酰胺或聚酰亚胺膜,以及,例如其上可已施加了绝缘(介质)表面层的金属箔,或塑料、强化纤维和填充物的合成物。优选具有热塑性粘合剂层的聚合“复合”膜,该粘合剂层的软化点低于衬底本身的软化点。如果需要,复合膜可具有例如聚酯(PET)、共聚多酯或铝的抗扩散层。优选地,载体是厚度优选为50μm至10mm的膜或薄片。优选范围为75μm至3mm和100μm至300μm。优选载体的弯曲刚度高于16×10-2Nmm,并通常低于15×106Nmm,在本说明书的上下文中,载体的弯曲刚度定义为以N/mm2为单位的弹性模量E和以mm为单位的厚度t的三次方的乘积(E×t3)。载体优选适于用于卷至卷方法中。
载体可包括其最终用途所需要的结构。因此,衬底可包括瓦片、屋顶薄钢板和部件、正面部件、车和大篷车顶。然而,一般优选柔性载体。在这种情况下,得到太阳能电池薄片卷,该太阳能电池薄片卷随时可用,其中可从该卷中切出具有希望的功率和电压的片。然后,可将这些片任意地并入(混合)屋顶部件或应用到瓦片、屋顶薄钢板、车和大篷车顶等。
如果需要,可在太阳能电池的TCO侧上设置顶部帽盖或表面层,以保护TCO不受外界的影响。表面层一般是聚合物片(如果需要,具有腔)或聚合物膜。要求表面层具有高透射率,并且例如包括以下材料:(全)氟化聚合物、聚碳酸酯、聚甲基丙烯酸甲酯、PET、PEN或任何可用的透明涂料,例如用于汽车工业的透明涂料。如果需要,可设置额外的抗反射层或抗污层。可选地,如果需要,可将整个太阳能电池引入这样的密封剂中。
抗蚀剂
抗蚀剂可以是任何可施加到在互连位置的临时衬底上的材料,其将保护临时衬底不受蚀刻剂的作用。技术人员可以通过例行测试选择合适的材料。合适的抗蚀剂包括热塑性和热固性的聚氨基甲酸酯和聚酰亚胺,热固性聚合物例如EP、UP、VE、SI、(环氧)树脂及丙烯酸脂,以及热塑性聚合物例如PVC、PI及含氟聚合物等。抗蚀剂一般包括添加剂,例如光敏引发剂或其它硬化剂、填充剂和增塑剂等。抗蚀剂可以是临时的,也就是说其在方法的某个后续阶段被去除。可选地,并且优选地,抗蚀剂可以是永久的。
通过蒸发或印刷/写入适当地施加抗蚀剂。优选通过已知的印刷方法施加抗蚀剂。合适的印刷方法包括丝网印刷、旋转筛网(roto screen)印刷、喷墨方法和柔性凹版印刷(flexgravure)等。抗蚀剂的颜色可通过对于技术人员所知的掺入合适色素和染料进行调节。尤其对于永久抗蚀剂,可优选存在色素和UV稳定剂。
Claims (8)
1.一种制造太阳能电池薄片的方法,包括以下步骤:
提供可蚀刻的临时衬底;
在所述临时衬底上施加透明导电氧化物(TCO)的正面电极;
在所述TCO层上施加光伏层;
施加背面电极层;
施加永久载体;
确保所述正面电极和所述背面电极在互连中电连接,以建立串联连接,在所述互连的不同侧,分别通过正面凹槽和背面凹槽阻断各所述正面电极和所述背面电极;
在上述步骤的任何一个步骤中,至少在所述互连位置,且至少不在所述正面凹槽的整个位置,在所述临时衬底的非TCO侧上设置抗蚀剂;以及
选择性去除没有用抗蚀剂覆盖的所述临时衬底。
2.根据权利要求1的方法,其中在所述选择性去除没有用抗蚀剂覆盖的所述临时衬底的步骤之前,直接进行所述在所述临时衬底的所述非TCO侧上施加所述抗蚀剂的步骤。
3.根据权利要求1或2的方法,其中所述抗蚀剂是永久抗蚀剂。
4.根据权利要求3的方法,其中选择所述抗蚀剂的颜色,以使其与所述太阳能电池单元的能量产生部分的颜色匹配或形成反差。
5.根据权利要求1或2的方法,其中所述抗蚀剂是临时抗蚀剂。
6.根据上述权利要求中任何一项的方法,其中以卷至卷的方法进行所述方法。
7.一种太阳能电池单元,包括正面电极、PV层和背面电极层,其中将所述太阳能电池单元分为至少两个分立的串联连接的电池,所述串联连接包括电连接一个电池的所述正面电极与相邻电池的所述背面电极的互连,同时在所述互连的不同侧,阻断各所述正面电极和所述背面电极,在所述太阳能电池单元中,在所述互连的位置的所述正面电极上存在保护性帽盖,其中所述保护性帽盖是不同于所述互连的材料。
8.根据权利要求7的太阳能电池单元,是适于在卷至卷方法中处理的柔性太阳能电池薄片。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03077278.4 | 2003-07-22 | ||
EP03077278 | 2003-07-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1826693A true CN1826693A (zh) | 2006-08-30 |
CN100505280C CN100505280C (zh) | 2009-06-24 |
Family
ID=34130222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800211613A Expired - Fee Related CN100505280C (zh) | 2003-07-22 | 2004-07-16 | 用临时衬底制造太阳能电池薄片的方法和太阳能电池单元 |
Country Status (13)
Country | Link |
---|---|
US (1) | US8101851B2 (zh) |
EP (1) | EP1647057A1 (zh) |
JP (1) | JP2006528420A (zh) |
KR (1) | KR101098065B1 (zh) |
CN (1) | CN100505280C (zh) |
AU (1) | AU2004263949B2 (zh) |
BR (1) | BRPI0412878A (zh) |
CA (1) | CA2533331A1 (zh) |
EA (1) | EA008894B1 (zh) |
MX (1) | MXPA06000789A (zh) |
TW (1) | TWI340475B (zh) |
WO (1) | WO2005015638A1 (zh) |
ZA (1) | ZA200601522B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102265408A (zh) * | 2008-12-26 | 2011-11-30 | 琳得科株式会社 | 太阳能电池组件用背面保护片 |
CN102292822A (zh) * | 2009-01-27 | 2011-12-21 | 株式会社爱发科 | 太阳能电池以及制造太阳能电池的方法 |
US8105868B2 (en) | 2006-12-21 | 2012-01-31 | Helianthos B.V. | Method for making solar sub-cells from a solar cell |
CN101399298B (zh) * | 2007-09-24 | 2012-06-27 | 昂科公司 | 倒置变质多结太阳能电池中的障壁层 |
CN105264673A (zh) * | 2013-06-28 | 2016-01-20 | 太阳能公司 | 图案化的薄箔 |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2894990B1 (fr) | 2005-12-21 | 2008-02-22 | Soitec Silicon On Insulator | Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede |
ES2672648T3 (es) | 2005-04-06 | 2018-06-15 | Hyet Energy Systems B.V. | Proceso para la fabricación de piezas de una lámina que tiene un revestimiento inorgánico de tco |
US10170656B2 (en) | 2009-03-10 | 2019-01-01 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
US10381501B2 (en) | 2006-06-02 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9634172B1 (en) | 2007-09-24 | 2017-04-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9117966B2 (en) | 2007-09-24 | 2015-08-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell |
US20100122724A1 (en) | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers |
US20100229926A1 (en) | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US20090078308A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support |
US20080115821A1 (en) * | 2006-11-22 | 2008-05-22 | Li Xu | Multilayer transparent conductive oxide for improved chemical processing |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
DE102007055733A1 (de) * | 2007-12-07 | 2009-06-10 | Kuraray Europe Gmbh | Photovoltaikmodule mit reflektierenden Klebefolien |
US20090155952A1 (en) | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
EP2093804A1 (en) | 2008-02-19 | 2009-08-26 | Helianthos B.V. | Solar cell system with encapsulant |
US20100012175A1 (en) | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US9287438B1 (en) | 2008-07-16 | 2016-03-15 | Solaero Technologies Corp. | Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation |
US8263853B2 (en) | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8236600B2 (en) | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
FR2939239B1 (fr) * | 2008-12-03 | 2010-12-31 | Ecole Polytech | Module photovoltaique comprenant une electrode transparente conductrice d'epaisseur variable et procedes de fabrication d'un tel module |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US10541349B1 (en) | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
US7785989B2 (en) | 2008-12-17 | 2010-08-31 | Emcore Solar Power, Inc. | Growth substrates for inverted metamorphic multijunction solar cells |
US7960201B2 (en) | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US8778199B2 (en) | 2009-02-09 | 2014-07-15 | Emoore Solar Power, Inc. | Epitaxial lift off in inverted metamorphic multijunction solar cells |
US9018519B1 (en) | 2009-03-10 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
JP2010282998A (ja) * | 2009-06-02 | 2010-12-16 | Seiko Epson Corp | 太陽電池、太陽電池の製造方法 |
JP5384224B2 (ja) * | 2009-06-29 | 2014-01-08 | 三洋電機株式会社 | 太陽電池 |
US8263856B2 (en) | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
US20110120532A1 (en) * | 2009-11-23 | 2011-05-26 | Tim Neugent | Solar module system and method of making the same |
US10283657B1 (en) * | 2010-01-08 | 2019-05-07 | Magnolia Optical Technologies, Inc. | Broadband photovoltaic sheets and method of constructing the same |
KR101149677B1 (ko) | 2010-01-20 | 2012-07-11 | 주식회사 엘지실트론 | 플렉서블 소자 제조방법 및 이에 의하여 제조된 플렉서블 소자, 태양전지, led |
TW201134386A (en) * | 2010-04-09 | 2011-10-16 | Tung-Teh Lee | Automatic water-supply control device |
US8187907B1 (en) | 2010-05-07 | 2012-05-29 | Emcore Solar Power, Inc. | Solder structures for fabrication of inverted metamorphic multijunction solar cells |
EP2732477B1 (en) * | 2011-07-14 | 2016-11-23 | Eurotron B.V. | A method of assembling a solar panel |
EP2599626A1 (en) * | 2011-11-29 | 2013-06-05 | 3M Innovative Properties Company | Solar modules containing a backsheet with a polyolefin bonding layer |
EP2600425A1 (en) * | 2011-11-29 | 2013-06-05 | 3M Innovative Properties Company | Solar modules containing a single-layer polyolefin-based backsheet |
KR20130107115A (ko) * | 2012-03-21 | 2013-10-01 | 삼성에스디아이 주식회사 | 태양전지 및 이의 제조방법 |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
US10553738B2 (en) * | 2013-08-21 | 2020-02-04 | Sunpower Corporation | Interconnection of solar cells in a solar cell module |
CN104009117B (zh) * | 2014-05-15 | 2017-02-01 | 浙江正泰太阳能科技有限公司 | 一种柔性薄膜太阳能电池及其制备方法 |
US10186628B2 (en) * | 2014-06-20 | 2019-01-22 | Vismunda Srl | Apparatus for the automatic horizontal assembly of photovoltaic panels |
US20160163901A1 (en) * | 2014-12-08 | 2016-06-09 | Benjamin Ian Hsia | Laser stop layer for foil-based metallization of solar cells |
US10403778B2 (en) | 2015-10-19 | 2019-09-03 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
US10361330B2 (en) | 2015-10-19 | 2019-07-23 | Solaero Technologies Corp. | Multijunction solar cell assemblies for space applications |
US9985161B2 (en) | 2016-08-26 | 2018-05-29 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US9935209B2 (en) | 2016-01-28 | 2018-04-03 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10263134B1 (en) | 2016-05-25 | 2019-04-16 | Solaero Technologies Corp. | Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell |
US12249667B2 (en) | 2017-08-18 | 2025-03-11 | Solaero Technologies Corp. | Space vehicles including multijunction metamorphic solar cells |
US10636926B1 (en) | 2016-12-12 | 2020-04-28 | Solaero Technologies Corp. | Distributed BRAGG reflector structures in multijunction solar cells |
US20190181289A1 (en) | 2017-12-11 | 2019-06-13 | Solaero Technologies Corp. | Multijunction solar cells |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243432A (en) * | 1978-09-25 | 1981-01-06 | Photon Power, Inc. | Solar cell array |
LU84238A1 (fr) | 1982-06-29 | 1984-03-07 | Carbochimique Sa | Nouveaux sels de polyisocyanates organiques et leur preparation |
DE3527001A1 (de) * | 1985-07-27 | 1987-02-19 | Telefunken Electronic Gmbh | Solargenerator |
US4749454A (en) * | 1986-11-17 | 1988-06-07 | Solarex Corporation | Method of removing electrical shorts and shunts from a thin-film semiconductor device |
DE3935826A1 (de) * | 1989-02-17 | 1990-06-13 | Gen Electric | Solarplatte, damit ausgeruestetes raumfahrzeug und verfahren zum herstellen der solarplatte |
DE69132358T2 (de) * | 1990-05-07 | 2000-12-28 | Canon K.K., Tokio/Tokyo | Solarzelle |
JP3035565B2 (ja) * | 1991-12-27 | 2000-04-24 | 株式会社半導体エネルギー研究所 | 薄膜太陽電池の作製方法 |
JP3332487B2 (ja) * | 1993-07-30 | 2002-10-07 | 三洋電機株式会社 | 光起電力装置の製造方法 |
JP3169497B2 (ja) * | 1993-12-24 | 2001-05-28 | 三菱電機株式会社 | 太陽電池の製造方法 |
JPH1093125A (ja) | 1996-09-13 | 1998-04-10 | Sanyo Electric Co Ltd | 太陽電池モジュール |
ES2227677T3 (es) * | 1996-09-26 | 2005-04-01 | Akzo Nobel N.V. | Hoja fina fotovoltaica y metodo para fabricarla. |
EP0948004A1 (en) | 1998-03-26 | 1999-10-06 | Akzo Nobel N.V. | Method for making a photovoltaic cell containing a dye |
EP1135809B1 (en) * | 1999-09-09 | 2013-03-27 | Helianthos B.V. | Hybrid roof covering element |
NL1013900C2 (nl) | 1999-12-21 | 2001-06-25 | Akzo Nobel Nv | Werkwijze voor de vervaardiging van een zonnecelfolie met in serie geschakelde zonnecellen. |
US6951770B2 (en) * | 2000-04-06 | 2005-10-04 | Akzo Nobel N.V. | Method of manufacturing a photovoltaic foil |
EP1397837A2 (en) * | 2001-06-21 | 2004-03-17 | Akzo Nobel N.V. | Manufacturing a solar cell foil connected in series via a temporary substrate |
WO2008074879A2 (en) * | 2006-12-21 | 2008-06-26 | Helianthos B.V. | Method for making solar sub-cells from a solar cell |
-
2004
- 2004-07-16 EP EP04741120A patent/EP1647057A1/en not_active Withdrawn
- 2004-07-16 MX MXPA06000789A patent/MXPA06000789A/es active IP Right Grant
- 2004-07-16 AU AU2004263949A patent/AU2004263949B2/en not_active Ceased
- 2004-07-16 BR BRPI0412878-8A patent/BRPI0412878A/pt not_active IP Right Cessation
- 2004-07-16 WO PCT/EP2004/008007 patent/WO2005015638A1/en active Application Filing
- 2004-07-16 KR KR1020067001292A patent/KR101098065B1/ko not_active IP Right Cessation
- 2004-07-16 EA EA200600296A patent/EA008894B1/ru not_active IP Right Cessation
- 2004-07-16 CN CNB2004800211613A patent/CN100505280C/zh not_active Expired - Fee Related
- 2004-07-16 US US10/563,761 patent/US8101851B2/en not_active Expired - Fee Related
- 2004-07-16 JP JP2006520758A patent/JP2006528420A/ja active Pending
- 2004-07-16 CA CA002533331A patent/CA2533331A1/en not_active Abandoned
- 2004-07-22 TW TW093121921A patent/TWI340475B/zh not_active IP Right Cessation
-
2006
- 2006-02-21 ZA ZA200601522A patent/ZA200601522B/en unknown
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8105868B2 (en) | 2006-12-21 | 2012-01-31 | Helianthos B.V. | Method for making solar sub-cells from a solar cell |
CN101636842B (zh) * | 2006-12-21 | 2013-05-01 | 海利安特斯有限公司 | 由太阳能电池制造太阳能子电池的方法 |
CN101399298B (zh) * | 2007-09-24 | 2012-06-27 | 昂科公司 | 倒置变质多结太阳能电池中的障壁层 |
CN102265408A (zh) * | 2008-12-26 | 2011-11-30 | 琳得科株式会社 | 太阳能电池组件用背面保护片 |
CN102292822A (zh) * | 2009-01-27 | 2011-12-21 | 株式会社爱发科 | 太阳能电池以及制造太阳能电池的方法 |
CN105264673A (zh) * | 2013-06-28 | 2016-01-20 | 太阳能公司 | 图案化的薄箔 |
CN105264673B (zh) * | 2013-06-28 | 2018-05-22 | 太阳能公司 | 图案化的薄箔、太阳能电池串及其组装方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101098065B1 (ko) | 2011-12-26 |
WO2005015638A1 (en) | 2005-02-17 |
AU2004263949A1 (en) | 2005-02-17 |
BRPI0412878A (pt) | 2006-10-03 |
EA200600296A1 (ru) | 2006-06-30 |
TWI340475B (en) | 2011-04-11 |
MXPA06000789A (es) | 2006-04-18 |
AU2004263949B2 (en) | 2010-06-03 |
US8101851B2 (en) | 2012-01-24 |
EP1647057A1 (en) | 2006-04-19 |
JP2006528420A (ja) | 2006-12-14 |
TW200509406A (en) | 2005-03-01 |
EA008894B1 (ru) | 2007-08-31 |
ZA200601522B (en) | 2007-04-25 |
KR20060063899A (ko) | 2006-06-12 |
CA2533331A1 (en) | 2005-02-17 |
CN100505280C (zh) | 2009-06-24 |
US20060151023A1 (en) | 2006-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1826693A (zh) | 利用临时衬底制造太阳能电池薄片的方法 | |
TWI437720B (zh) | A solar cell and a manufacturing method thereof, and a solar cell module | |
CN1330413A (zh) | 光电元件、其制造方法及太阳能电池模块 | |
CN1195201A (zh) | 太阳能电池组件 | |
WO2015147225A1 (ja) | 太陽電池モジュールおよびその製造方法 | |
EP1481427B1 (en) | Process for manufacturing a solar cell unit using a temporary substrate | |
CN107112378A (zh) | 太阳能电池及其制造方法、以及太阳能电池模块 | |
CN100568544C (zh) | 用于制造具有tco无机涂层的箔片的方法以及使用该方法制造的箔片 | |
JP5584846B1 (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール | |
US20050109389A1 (en) | Process for manufacturing a solar cell unit using a temporary substrate | |
JP2014232821A (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール | |
JP6151566B2 (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール | |
JP2014232820A (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1092942 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1092942 Country of ref document: HK |
|
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090624 Termination date: 20120716 |