CN101399298B - 倒置变质多结太阳能电池中的障壁层 - Google Patents
倒置变质多结太阳能电池中的障壁层 Download PDFInfo
- Publication number
- CN101399298B CN101399298B CN2008102114162A CN200810211416A CN101399298B CN 101399298 B CN101399298 B CN 101399298B CN 2008102114162 A CN2008102114162 A CN 2008102114162A CN 200810211416 A CN200810211416 A CN 200810211416A CN 101399298 B CN101399298 B CN 101399298B
- Authority
- CN
- China
- Prior art keywords
- solar
- barrier layer
- band
- solar subcells
- subcells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1276—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising growth substrates not made of Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
- H10F10/1425—Inverted metamorphic multi-junction [IMM] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/144—Photovoltaic cells having only PN homojunction potential barriers comprising only Group III-V materials, e.g. GaAs,AlGaAs, or InP photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1272—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明提供一种形成包括上部子电池、中部子电池和下部子电池的多结太阳能电池的方法,所述方法包括:提供第一衬底,其用于半导体材料的外延生长;在所述衬底上形成第一太阳能子电池,其具有第一带隙;在所述第一太阳能子电池上方形成第二太阳能子电池,其具有小于所述第一带隙的第二带隙;在所述第二子电池上方形成障壁层,以减少穿透位错;在所述障壁层上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;以及在所述分级夹层上方形成第三太阳能子电池,其具有小于所述第二带隙的第四带隙,使得所述第三子电池相对于所述第二子电池而晶格失配。
Description
政府权利声明
本发明是依据美国空军授予的第FA9453-06-C-0345号合同在政府支持下进行的。政府在本发明中具有特定权利。
相关申请案的参考
本申请案与和本文同时申请的题为“具有刚性支撑件的薄倒置变质多结太阳能电池(Thin Inverted Metamorphic Multijunction Solar Cell with Rigid Support)”的共同待决的第_____号美国专利申请案相关。
本申请案与2006年12月27日申请的共同待决的第11/616,596号美国专利申请案相关。
本申请案还与2006年6月2日申请的共同待决的第11/445,793号美国专利申请案相关。
技术领域
本发明涉及太阳能电池半导体装置的领域,且明确地说,涉及包括变质层的多结太阳能电池。此类装置还包括倒置变质太阳能电池。
背景技术
光伏电池(也称为太阳能电池)是在过去几年中变得可用的最重要新能源之一。已对太阳能电池开发投入了相当大的努力。因而,太阳能电池当前正用于许多商业和面向消费者的应用中。尽管已经在这个领域中取得了显著进步,但对太阳能电池满足更复杂应用的需要的要求尚未能跟上需求。例如用于数据通信的卫星等应用已经剧烈增加了对具有改进的电力和能量转换特征的太阳能电池的需求。
在卫星和其它空间相关应用中,卫星电力系统的大小、质量和成本取决于所使用的太阳能电池的电力和能量转换效率。换句话说,有效负荷的大小和机载服务的可用性与所提供的电力量成比例。因此,随着有效负荷变得越来越复杂,充当机载电力系统的电力转换装置的太阳能电池也变得越来越重要。
太阳能电池通常制作成垂直多结结构并设置成水平阵列,其中各个太阳能电池串联连接在一起。阵列的形状和结构以及其所含有的电池数目部分由所需输出电压和电流确定。
例如M.W.云利斯(Wanless)等人的“用于高性能III-V族光伏能量转换器的晶格失配途径(Lattice Mismatched Approaches for High Performance,III-V Photovoltaic EnergyConverters)”(2005年1月3日到7日第31届IEEE光伏专家会议的会议论文集,IEEE出版社,2005年)中所描述的倒置变质太阳能电池结构提出将来商用高效率太阳能电池开发的重要起点。此现有技术中所描述的结构提出许多与材料和制作步骤的恰当选择有关的实际困难,尤其与“下部”子电池(具有最低带隙的子电池)与相邻子电池之间的晶格失配层相关联。在本发明之前,现有技术中所揭示的材料和制作步骤尚未足以使用倒置变质电池结构来生产商业上可行的且具有能量效率的太阳能电池。明确地说,从变质层传播的穿透位错(threading dislocation)提出处理挑战。
发明内容
本发明提供一种形成包括上部子电池、中部子电池和下部子电池的多结太阳能电池的方法,所述方法通过以下步骤实现:提供第一衬底,其用于半导体材料的外延生长;在所述衬底上形成第一太阳能子电池,其具有第一带隙;在所述第一太阳能子电池上方形成第二太阳能子电池,其具有小于所述第一带隙的第二带隙;在所述第二子电池上方形成障壁层,以抑制穿透位错;在所述障壁层上方形成分级夹层(grading interlayer),所述分级夹层具有大于所述第二带隙的第三带隙;以及在所述分级夹层上方形成第三太阳能子电池,其具有小于所述第二带隙的第四带隙,且所述第三子电池相对于所述第二子电池为晶格失配的。
在另一方面中,本发明还提供一种多结太阳能电池,所述多结太阳能电池包括:衬底;第一太阳能子电池,其位于所述衬底上且具有第一带隙;第二太阳能子电池,其设置在所述第一子电池上方且具有小于所述第一带隙的第二带隙;障壁层,其设置在所述第二子电池上方;分级夹层,其设置在所述障壁层上方且具有大于所述第二带隙的第三带隙;以及第三太阳能子电池,其设置在所述分级夹层上方且相对于中部子电池为晶格失配的并具有小于所述第三带隙的第四带隙。所述障壁层由适当材料构成且为晶格恒定的,以抑制或防止与分级夹层相关联的穿透位错传播。
附图说明
通过结合附图参看以下具体实施方式将更好且更全面地理解本发明,附图中:
图1是根据本发明构造的太阳能电池的放大横截面图;
图2是在下一工艺步骤之后的图1的太阳能电池的横截面图;
图3是在下一工艺步骤之后的图2的太阳能电池的横截面图;
图4是在下一工艺步骤之后的图3的太阳能电池的横截面图;
图5A是在下一工艺步骤之后的图4的太阳能电池的横截面图,其中移除了原始衬底;
图5B是图5A的太阳能电池的另一横截面图,其中在所述图式的底部具有替代衬底;
图6A是其中制作太阳能电池的晶片的俯视平面图;
图6B是其中制作太阳能电池的晶片的仰视平面图;
图7是在下一工艺步骤之后的图6B的晶片的俯视平面图;
图8是在下一工艺步骤之后的图5A的太阳能电池的横截面图;
图9是在下一工艺步骤之后的图8的太阳能电池的横截面图;
图10是在下一工艺步骤之后的图9的太阳能电池的横截面图;
图11是在下一工艺步骤之后的图10的太阳能电池的横截面图;
图12是在下一工艺步骤之后的图11的太阳能电池的横截面图;
图13是在下一工艺步骤之后的图12的太阳能电池的横截面图;
图14是在下一工艺步骤之后的图13的太阳能电池的横截面图;
图15是在下一工艺步骤之后的图14的太阳能电池的横截面图;
图16是根据本发明没有障壁层的倒置变质太阳能电池的外部量子效率(EQE)曲线图;
图17是具有和没有障壁层的中部太阳能子电池的EQE曲线图;以及
图18是根据本发明具有障壁层的倒置变质太阳能电池的EQE曲线图。
具体实施方式
现将描述本发明的细节,其中包括其示范性方面和实施例。参看附图和以下描述,相同参考标号用于识别相同或功能相似元件,且希望以高度简化的图解方式说明示范性实施例的主要特征。此外,附图不希望描绘实际实施例的每个特征,也不希望描绘所描绘元件的相对尺寸,且并非按比例绘制。
图1描绘在衬底上形成三个子电池A、B和C之后的根据本发明的多结太阳能电池。更明确地说,其中展示衬底101,其可为砷化镓(GaAs)、锗(Ge)或其它合适材料。在Ge衬底的情况下,在所述衬底上沉积成核层102。在所述衬底上或在所述成核层102上方,进一步沉积缓冲层103和蚀刻终止层104。接着,在层104上沉积接触层105,且在所述接触层上沉积窗口层106。接着,在所述窗口层106上沉积子电池A,其由n+发射极层107和p型基极层108组成。
应注意到,多结太阳能电池结构可由周期表中所列举的III到V族元素的符合晶格常数和带隙要求的任何合适的组合形成,其中III族包括硼(B)、铝(Al)、镓(Ga)、铟(In)和铊(T)。IV族包括碳(C)、硅(Si)、锗(Ge)和锡(Sn)。V族包括氮(N)、磷(P)、砷(As)、锑(Sb)和铋(Bi)。
在优选实施例中,发射极层107由InGa(Al)P构成,且基极层由InGa(Al)P组成。
括号中的A1项意味着A1是可选成分,且在此例子中,可以在0%到30%范围内的量使用。
在基极层108之上沉积背面场(“BSF”)层109,其用于降低重组损失。
BSF层109驱动来自位于基极/BSF分界面附近的区的少数载流子,以将重组损失的效应减到最小。换句话说,BSF层109降低太阳能子电池A的背侧处的重组损失,且进而降低基极中的重组。
在BSF层109之上沉积重度掺杂p型和n型层110的序列,其形成隧道二极管,所述隧道二极管是将子电池A连接到子电池B的电路元件。
在隧道二极管层110之上沉积窗口层111。子电池B中所使用的窗口层111也操作以降低重组损失。窗口层111还改进下伏结的电池表面的钝化作用。所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
在窗口层111之上沉积电池B的各层:发射极层112和p型基极层113。这些层优选地分别由InGaP和Ga(In)As构成,但也可使用符合晶格常数和带隙要求的任何其它合适的材料。
在电池B之上沉积BSF层114,其执行与BSF层109相同的功能。类似于层110,在BSF层114上方沉积p++/n++隧道二极管115,从而再次形成将电池B连接到电池C的电路元件。
在隧道二极管115上方沉积障壁层116a(优选地由InGa(Al)P构成),到达大约1.0微米的厚度。此障壁层希望防止穿透位错与进入中部子电池B和顶部子电池C的生长方向相反地或在进入底部子电池A的生长方向上传播。障壁层可以是带隙能量大于或等于分级夹层116且厚度足以降低穿透位错的传播的III-V族化合物半导体层的任何组合。典型的材料是基于As、P、N或Sb的III-V族半导体材料。
在障壁层116a上方沉积分级夹层或变质层116。层116优选地是一系列在成分上阶梯分级(step-graded)的InGaAlAs层,其具有希望实现从子电池B到子电池C的晶格常数过渡的单调变化的晶格常数。层116的带隙为1.5eV,其符合略大于中部子电池B的带隙的值。
分级夹层可由符合平面内晶格参数大于或等于第二太阳能电池B的晶格参数且小于或等于第三太阳能电池C的晶格参数且带隙能量大于第二太阳能电池B的带隙能量的限制的基于As、P、N、Sb的III-V族化合物半导体中的任一者构成。
在一个实施例中,如云利斯(Wanless)等人的论文中所建议的,阶梯级含有9个在成分上分级的InGaP阶梯,其中每一阶梯层具有0.25微米的厚度。在优选实施例中,层116由InGaAlAs构成,其在至少9个阶梯上具有单调变化的晶格常数。
在本发明的另一实施例中,可在InGaAlAs变质层116上方沉积可选的第二障壁层116b。第二障壁层116b将具有与障壁层116a不同的成分,且再次基极区可以是GaInAs、GaAsSb或GaInAsN。
在障壁层116b上方沉积窗口层117,此窗口层操作以降低子电池“C”中的重组损失。所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
在窗口层117顶上沉积电池C的各层:n+发射极层118和p型基极层119。这些层优选地分别由InGaP和Ga(In)As构成,但也可使用符合晶格常数和带隙要求的其它合适的材料。
在电池C顶上沉积BSF层120,所述BSF层执行与BSF层109和114相同的功能。
最后,在BSF层120上沉积p+接触层121。
所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
图2是在下一工艺步骤之后的图1的太阳能电池的横截面图,在所述工艺步骤中在p+半导体接触层121上方沉积金属接触层122。所述金属优选地为Ti/Au/Ag/Au。
图3是在下一工艺步骤之后的图2的太阳能电池的横截面图,在所述工艺步骤中在金属层122上方沉积粘合层123。粘合剂优选地为GenTak330(由通用化学公司(GeneralChemical Corp.)配售)。
图4是在下一工艺步骤之后的图3的太阳能电池的横截面图,在所述工艺步骤中附接替代衬底(优选地为蓝宝石)。所述替代衬底的厚度约为40密耳,且穿孔有间隔开4mm且直径约为1mm的孔以帮助随后移除粘合剂和衬底。
图5A是在下一工艺步骤之后的图4的太阳能电池的横截面图,在所述工艺步骤中通过研磨和/或蚀刻步骤序列移除原始衬底,在所述步骤序列中移除衬底101、缓冲层103和蚀刻终止层104。蚀刻剂是依赖于生长衬底的。
图5B是来自图5A的太阳能电池的从替代衬底124位于图式底部的定向上的图5A的太阳能电池的横截面图。
图6A是其中实施太阳能电池的晶片的俯视平面图。
在每一电池中,存在网格线501(图10中的横截面中更明确展示)、互连总线502和接触垫503。
图6B是图6A中所示的具有四个太阳能电池的晶片的仰视平面图。
图7是在下一工艺步骤之后的图6A的晶片的俯视平面图,在所述工艺步骤中使用磷化物和砷化物蚀刻剂在每一电池的周边周围蚀刻出台面510。
图8是图5B的太阳能电池的简化横截面图,其仅描绘位于替代衬底124上方的儿个顶部层和下部层。
图9是在下一工艺步骤之后的图8的太阳能电池的横截面图,在所述工艺步骤中通过HCl/H2O溶液移除蚀刻终止层104。
图10是在下一工艺步骤序列之后的图9的太阳能电池的横截面图,在所述工艺步骤序列中在接触层105上方放置光致抗蚀剂掩模(未图示)以形成网格线501。网格线501经由蒸发作用沉积,且以光刻方式进行图案化并沉积在接触层105上方。提离所述掩模以形成金属网格线501。
图11是在下一工艺步骤之后的图10的太阳能电池的横截面图,在所述工艺步骤中网络线用作掩模以使用柠檬酸/过氧化物蚀刻混合物沿着表面向下蚀刻到达窗口层106。
图12是在下一工艺步骤之后的图11的太阳能电池的横截面图,在所述工艺步骤中在晶片的具有网格线501的“底”侧的整个表面上方施加抗反射(ARC)介电涂层130。
图13是在下一工艺步骤之后的图12的太阳能电池的横截面图,在所述工艺步骤中使用磷化物和砷化物蚀刻剂向下蚀刻台面501到达金属层122。所述图式中的横截面描绘为如从图7所示的A-A平面所见的。接着,将一个或一个以上银电极焊接到接触垫。
图14是在通过EKC922移除替代衬底124和粘合剂123之后在下一工艺步骤之后的图13的太阳能电池的横截面图。替代衬底中所提供的优选穿孔具有0.033英寸的直径且分离0.152英寸。
图15是在下一工艺步骤之后的图14的太阳能电池的横截面图,在所述工艺步骤中在ARC层130上方施加粘合剂并向其附接玻璃罩。
图16到18中提供本发明的效力的实验指示。具有图1中所示的类型但没有障壁层116a和116b的结构经生长并制作为4cm2电池。进行外部量子效率(EQE)测量,且图16所示的结果指示中部子电池B的长波长响应低于预期。此观测暗示与生长方向相反的穿透位错传播可能是造成中部电池的效率降级的原因。Nomarski显微术指示晶格匹配子电池A的初始外延层上有未预期的交叉影线(应变消除模式)。光致发光测图进一步显示中部子电池B的发光低于预期。阴极发光测量指示穿透位错密度在中部子电池B中较高,但穿透位错未穿越顶部子电池A。这些测量符合图16所示的EQE测量。
图17说明根据本发明添加障壁层116a与不添加障壁层116a的三结太阳能电池中的中间子电池的EQE测量的比较。子电池B(没有障壁层)的曲线图具有15.6mA/cm2的集成电流(AMO)和低于子电池D(具有障壁层)的EQE,子电池D具有17.4mA/cm2的集成电流(AMO)。
可通过比较图16和18的EQE曲线图来了解在本发明的太阳能电池中使用障壁层的效力。图16是没有障壁层的图1的太阳能电池的EQE,且图18是具有障壁层的太阳能电池的EQE。图18的太阳能电池的中部子电池B的电流(17.4mA/cm2)仅略微低于顶部子电池C的电流(184mA/cm2)。中部子电池和顶部子电池的如此紧密的电流匹配证明了本发明的效力。
将了解,上文所描述的元件的每一者或者两个或两个以上元件一起也可有效地应用于不同于上述类型构造的其它类型的构造中。
虽然本发明的优选实施例利用具有顶部和底部电接触的垂直子电池堆叠,但子电池或者可借助于通往子电池之间的横向传导半导体层的金属接触来接触。此类布置可用于形成3端子、4端子和一般来说,n端子装置。子电池可使用这些额外端子在电路中互连,使得每一子电池中的大部分可用光生电流密度可被有效使用,从而得到多结电池的高效率,尽管光生电流密度通常在各个子电池中有所不同。
如上面提到的,本发明可利用一个或一个以上同质结电池或子电池,即其中p-n结形成在p型半导体与n型半导体之间且所述p型半导体与n型半导体两者具有相同化学成分和相同带隙只是掺杂剂种类和类型不同的电池或子电池。具有p型和n型InGaP的子电池A是同质结子电池的一个实例。或者,本发明可利用一个或一个以上异质结电池或子电池,即这样的电池或子电池:其中p-n结形成在p型半导体与n型半导体之间,且所述p型半导体与n型半导体除了在形成p-n结的p型和n型区中利用不同掺杂剂种类和类型外,还具有n型和n型区中的半导体材料的不同化学成分和/或p型区中的不同带隙能量。
窗口或BSF层的成分可利用符合晶格常数和带隙要求的其它半导体化合物,且可包含AlInP、AlAs、AlP、AlGaInP、AlGaAsP、AlGaInAs、AlGaInPAs、GaInP、GaInAs、GaInPAs、AlGaAs、AlInAs、AlInPAs、GaAsSb、AlAsSb、GaAlAsSb、AlInSb、GaInSb、AlGaInSb、AIN、GaN、InN、GaInN、AlGaInN、GaInNAs、AlGaInNAs、ZnSSe、CdSSe和类似材料,且仍在本发明的精神内。
尽管已经将本发明说明并描述为在倒置变质多结太阳能电池中实施,但不希望其限于所展示的细节,因为可在不以任何方式脱离本发明精神的情况下作出各种修改和结构变化。
在不作进一步分析的情况下,前文将全面显示本发明的要旨,以使得其他人可通过应用当前知识容易使其适用于各种应用,而不省略从现有技术的观点来看适当地组成本发明的一般或特定方面的基本特点的特征,且因此,此类调适应当且希望在所附权利要求书的等效物的意义和范围内来理解。
Claims (22)
1.一种形成包含第三太阳能子电池、第二太阳能子电池和第一太阳能子电池的多结太阳能电池的方法,所述方法包含:
提供第一衬底,其用于半导体材料的外延生长;
在所述衬底上形成第一太阳能子电池,其具有第一带隙;
在所述第一太阳能子电池上方形成第二太阳能子电池,其具有小于所述第一带隙的第二带隙;
在所述第二太阳能子电池上方形成障壁层;
在所述障壁层上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;以及
在所述分级夹层上方形成第三太阳能子电池,其具有小于所述第二带隙的第四带隙,使得所述第三太阳能子电池相对于所述第二太阳能子电池而晶格失配。
2.根据权利要求1所述的方法,其中所述障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成。
3.根据权利要求1所述的方法,其进一步包含在形成所述第三太阳能子电池之前在所述分级夹层上方形成第二障壁层。
4.根据权利要求3所述的方法,其中所述第二障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成,其中所述第二障壁层具有与所述障壁层不同的成分。
5.根据权利要求1所述的方法,其中所述第一衬底选自由锗或GaAs组成的群组。
6.根据权利要求1所述的方法,其中所述第一太阳能子电池由InGa(Al)P发射极区和InGa(Al)P基极区构成。
7.根据权利要求6所述的方法,其中所述第二太阳能子电池由GaInP、GaInAs、GaAsSb或GaInAsN发射极区和GaInAs、GaAsSb或GaInAsN基极区构成。
8.根据权利要求1所述的方法,其中所述分级夹层由基于As、P、N、Sb的III-V族化合物半导体中的任一者构成,其符合平面内晶格参数大于或等于所述第二太阳能子电池的晶格参数且小于或等于所述第三太阳能子电池的晶格参数且带隙能量大于所述第二太阳能子电池的带隙能量的限制。
9.根据权利要求6所述的方法,其中所述第二太阳能子电池由InGaP发射极区和GaAs基极区构成。
10.根据权利要求1所述的方法,其中所述分级夹层由InGaAlAs构成。
11.根据权利要求8所述的方法,其中所述分级夹层由具有单调变化的晶格常数的九个阶梯层构成。
12.根据权利要求1所述的方法,其进一步包含在所述第三太阳能子电池上方沉积接触层且因此形成电接触。
13.根据权利要求12所述的方法,其进一步包含在所述接触层上方附接替代第二衬底且移除所述第一衬底。
14.根据权利要求1所述的方法,其进一步包含:
将所述接触层图案化为网格;以及
围绕所述太阳能电池的周边蚀刻凹槽,以便在所述替代第二衬底上形成台面结构。
15.一种多结太阳能电池,其包含:
衬底;
第一太阳能子电池,其位于所述衬底上且具有第一带隙;
第二太阳能子电池,其设置在所述第一太阳能子电池上方且具有小于所述第一带隙的第二带隙;
障壁层,其设置在所述第二太阳能子电池上方以用于减小穿透位错的传播;
分级夹层,其设置在所述障壁层上方且具有大于所述第二带隙的第三带隙;以及
第三太阳能子电池,其设置在所述分级夹层上方且相对于所述二太阳能子电池而晶格失配并具有小于所述第二带隙的第四带隙。
16.根据权利要求15所述的太阳能电池,其中所述障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成。
17.根据权利要求15所述的太阳能电池,其进一步包含第二障壁层,所述第二障壁层设置在所述分级夹层与所述第三子电池之间。
18.根据权利要求17所述的太阳能电池,其中所述第二障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成,其中所述第二障壁层具有与所述障壁层不同的成分。
19.根据权利要求15所述的太阳能电池,其中所述衬底选自由锗或GaAs组成的群组。
20.根据权利要求15所述的太阳能电池,其中所述第一太阳能子电池由InGa(Al)P构成。
21.根据权利要求15所述的太阳能电池,其中所述第二太阳能子电池由GaInP、GaInAs、GaAsSb或GaInAsN发射极区和GaInAs、GaAsSb或GaInAsN基极区构成。
22.根据权利要求15所述的太阳能电池,其中所述第三太阳能子电池由InGaAs构成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/860,183 US20090078309A1 (en) | 2007-09-24 | 2007-09-24 | Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US11/860,183 | 2007-09-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101399298A CN101399298A (zh) | 2009-04-01 |
CN101399298B true CN101399298B (zh) | 2012-06-27 |
Family
ID=40435611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102114162A Active CN101399298B (zh) | 2007-09-24 | 2008-09-22 | 倒置变质多结太阳能电池中的障壁层 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090078309A1 (zh) |
JP (2) | JP2009076920A (zh) |
CN (1) | CN101399298B (zh) |
DE (1) | DE102008034711A1 (zh) |
TW (1) | TWI488314B (zh) |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9634172B1 (en) | 2007-09-24 | 2017-04-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9117966B2 (en) | 2007-09-24 | 2015-08-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell |
US20090078310A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US20100122724A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers |
US10170656B2 (en) | 2009-03-10 | 2019-01-01 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20100229926A1 (en) | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US10381501B2 (en) | 2006-06-02 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20080029151A1 (en) * | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US20100093127A1 (en) * | 2006-12-27 | 2010-04-15 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
KR101431296B1 (ko) | 2007-01-11 | 2014-08-20 | 레드 밴드 리미티드 | 저장 장치에 저장된 컨텐츠의 인-플레이스 업데이트 방법 및 시스템 |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100012175A1 (en) | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US9287438B1 (en) * | 2008-07-16 | 2016-03-15 | Solaero Technologies Corp. | Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation |
US8263853B2 (en) * | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8330036B1 (en) * | 2008-08-29 | 2012-12-11 | Seoijin Park | Method of fabrication and structure for multi-junction solar cell formed upon separable substrate |
US8236600B2 (en) * | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US10541349B1 (en) | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
US7960201B2 (en) * | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US8778199B2 (en) | 2009-02-09 | 2014-07-15 | Emoore Solar Power, Inc. | Epitaxial lift off in inverted metamorphic multijunction solar cells |
US20100206365A1 (en) * | 2009-02-19 | 2010-08-19 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers |
US9018519B1 (en) | 2009-03-10 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US20100282305A1 (en) * | 2009-05-08 | 2010-11-11 | Emcore Solar Power, Inc. | Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys |
KR101245371B1 (ko) * | 2009-06-19 | 2013-03-19 | 한국전자통신연구원 | 태양전지 및 그 제조방법 |
US8263856B2 (en) * | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
DE102009049397B4 (de) | 2009-10-14 | 2018-09-06 | Solaero Technologies Corp. | Herstellungsverfahren mit Surrogatsubstrat für invertierte metamorphische Multijunction-Solarzellen |
DE102009057020B4 (de) * | 2009-12-03 | 2021-04-29 | Solaero Technologies Corp. | Wachstumssubstrate für invertierte metamorphe Multijunction-Solarzellen |
JP5215284B2 (ja) | 2009-12-25 | 2013-06-19 | シャープ株式会社 | 多接合型化合物半導体太陽電池 |
US8187907B1 (en) | 2010-05-07 | 2012-05-29 | Emcore Solar Power, Inc. | Solder structures for fabrication of inverted metamorphic multijunction solar cells |
TWI453920B (zh) * | 2011-06-21 | 2014-09-21 | Inst Nuclear Energy Res Atomic Energy Council | 反向變質(imm)太陽能電池半導體結構及雷射剝離的方法 |
JP2013105869A (ja) * | 2011-11-14 | 2013-05-30 | Sharp Corp | 光電変換素子の製造方法、光電変換素子および光電変換素子モジュール |
US20140150856A1 (en) * | 2012-11-30 | 2014-06-05 | Intellectual Discovery Co., Ltd. | Photovoltaic module |
TWI602315B (zh) | 2013-03-08 | 2017-10-11 | 索泰克公司 | 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法 |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
US9853180B2 (en) | 2013-06-19 | 2017-12-26 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with surface passivation |
US9214594B2 (en) | 2013-08-07 | 2015-12-15 | Solaero Technologies Corp. | Fabrication of solar cells with electrically conductive polyimide adhesive |
US9768326B1 (en) | 2013-08-07 | 2017-09-19 | Solaero Technologies Corp. | Fabrication of solar cells with electrically conductive polyimide adhesive |
DE102013111981A1 (de) * | 2013-10-30 | 2015-04-30 | Hanergy Holding Group Ltd. | Verfahren zur Herstellung eines Dünnschicht-Solarzellenmoduls und Dünnschicht-Solarzellenmodul |
EP3161877B1 (en) | 2014-06-26 | 2022-01-19 | Soitec | Semiconductor structures including bonding layers, multijunction photovoltaic cells and related methods |
JP2016122752A (ja) * | 2014-12-25 | 2016-07-07 | 国立大学法人 東京大学 | 太陽電池 |
US9758261B1 (en) | 2015-01-15 | 2017-09-12 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with lightweight laminate substrate |
EP3091583B1 (en) | 2015-05-07 | 2020-09-23 | SolAero Technologies Corp. | Multijunction inverted metamorphic solar cell |
US9935209B2 (en) | 2016-01-28 | 2018-04-03 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10270000B2 (en) | 2015-10-19 | 2019-04-23 | Solaero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
EP3159942B1 (en) | 2015-10-19 | 2021-01-27 | SolAero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
US9985161B2 (en) | 2016-08-26 | 2018-05-29 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10403778B2 (en) * | 2015-10-19 | 2019-09-03 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
US10256359B2 (en) | 2015-10-19 | 2019-04-09 | Solaero Technologies Corp. | Lattice matched multijunction solar cell assemblies for space applications |
US10361330B2 (en) | 2015-10-19 | 2019-07-23 | Solaero Technologies Corp. | Multijunction solar cell assemblies for space applications |
US9929300B2 (en) | 2015-11-13 | 2018-03-27 | Solaero Technologies Corp. | Multijunction solar cells with electrically conductive polyimide adhesive |
EP3171413A1 (en) | 2015-11-20 | 2017-05-24 | SolAero Technologies Corp. | Inverted metamorphic multijunction solar cell |
DE102016001386A1 (de) * | 2016-02-09 | 2017-08-10 | Azur Space Solar Power Gmbh | Stapelförmige Mehrfachsolarzelle |
US10263134B1 (en) | 2016-05-25 | 2019-04-16 | Solaero Technologies Corp. | Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell |
US12249667B2 (en) | 2017-08-18 | 2025-03-11 | Solaero Technologies Corp. | Space vehicles including multijunction metamorphic solar cells |
US10636926B1 (en) | 2016-12-12 | 2020-04-28 | Solaero Technologies Corp. | Distributed BRAGG reflector structures in multijunction solar cells |
US20190181289A1 (en) | 2017-12-11 | 2019-06-13 | Solaero Technologies Corp. | Multijunction solar cells |
EP3514838B1 (en) | 2018-01-17 | 2021-09-01 | SolAero Technologies Corp. | Four junction solar cell and solar cell assemblies for space applications |
DE102018203509B4 (de) | 2018-01-17 | 2024-10-10 | Solaero Technologies Corp. | Vierfach-Solarzelle für Raumanwendungen |
CN112038425B (zh) * | 2019-06-03 | 2024-04-30 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种多结叠层激光光伏电池 |
CN112151635A (zh) * | 2019-06-27 | 2020-12-29 | 张家港恩达通讯科技有限公司 | 一种三结太阳能电池及其制备方法 |
EP3836231A1 (en) | 2019-12-11 | 2021-06-16 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells having a graded-index structure |
US11658256B2 (en) | 2019-12-16 | 2023-05-23 | Solaero Technologies Corp. | Multijunction solar cells |
US20220238747A1 (en) | 2021-01-28 | 2022-07-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell |
US11362230B1 (en) | 2021-01-28 | 2022-06-14 | Solaero Technologies Corp. | Multijunction solar cells |
EP4092761A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4092762A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4092763A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4170732A1 (en) | 2021-10-19 | 2023-04-26 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction metamorphic solar cell |
EP4213224A1 (en) | 2022-01-14 | 2023-07-19 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells with shifted junction |
EP4220740A1 (en) | 2022-01-31 | 2023-08-02 | SolAero Technologies Corp., a corporation of the state of Delaware | Space vehicles including multijunction metamorphic solar cells |
EP4235817A1 (en) | 2022-02-28 | 2023-08-30 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction metamorphic solar cells |
EP4243090A1 (en) | 2022-03-07 | 2023-09-13 | SolAero | Four junction metamorphic multijunction solar cells for space applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021360A (en) * | 1989-09-25 | 1991-06-04 | Gte Laboratories Incorporated | Method of farbicating highly lattice mismatched quantum well structures |
CN1826693A (zh) * | 2003-07-22 | 2006-08-30 | 阿克佐诺贝尔股份有限公司 | 利用临时衬底制造太阳能电池薄片的方法 |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US265113A (en) * | 1882-09-26 | Animal-catcher | ||
US716814A (en) * | 1899-11-16 | 1902-12-23 | James A Ekin Criswell | Machine for making matches. |
US730018A (en) * | 1901-07-30 | 1903-06-02 | Daniel L Holden | Freezing-cylinder for ice-machines. |
US708361A (en) * | 1901-10-31 | 1902-09-02 | John W Kelley | Stock-waterer. |
US775946A (en) * | 1902-02-04 | 1904-11-29 | Albert H Stebbins | Concentrating-machine. |
US756926A (en) * | 1903-12-23 | 1904-04-12 | Universal Compound Company | Wall-facing for dampproofing. |
US813408A (en) * | 1904-08-17 | 1906-02-27 | Washington M Dillon | Crimping mechanism for wire-fence machines. |
US844673A (en) * | 1905-10-27 | 1907-02-19 | Cottrell C B & Sons Co | Attachment for ink-fountains of printing-presses. |
US3488834A (en) * | 1965-10-20 | 1970-01-13 | Texas Instruments Inc | Microelectronic circuit formed in an insulating substrate and method of making same |
US3964155A (en) * | 1972-02-23 | 1976-06-22 | The United States Of America As Represented By The Secretary Of The Navy | Method of planar mounting of silicon solar cells |
US4001864A (en) * | 1976-01-30 | 1977-01-04 | Gibbons James F | Semiconductor p-n junction solar cell and method of manufacture |
US4255211A (en) * | 1979-12-31 | 1981-03-10 | Chevron Research Company | Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface |
DE3036260A1 (de) * | 1980-09-26 | 1982-04-29 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zur herstellung von elektrischen kontakten an einer silizium-solarzelle |
US4338480A (en) * | 1980-12-29 | 1982-07-06 | Varian Associates, Inc. | Stacked multijunction photovoltaic converters |
US4881979A (en) * | 1984-08-29 | 1989-11-21 | Varian Associates, Inc. | Junctions for monolithic cascade solar cells and methods |
JPH0666274B2 (ja) * | 1987-07-01 | 1994-08-24 | 日本電気株式会社 | ▲iii▼−v族化合物半導体の形成方法 |
US4759803A (en) * | 1987-08-07 | 1988-07-26 | Applied Solar Energy Corporation | Monolithic solar cell and bypass diode system |
US4824489A (en) * | 1988-02-02 | 1989-04-25 | Sera Solar Corporation | Ultra-thin solar cell and method |
US4963949A (en) * | 1988-09-30 | 1990-10-16 | The United States Of America As Represented Of The United States Department Of Energy | Substrate structures for InP-based devices |
DE68923061T2 (de) * | 1988-11-16 | 1995-11-09 | Mitsubishi Electric Corp | Sonnenzelle. |
US5053083A (en) * | 1989-05-08 | 1991-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Bilevel contact solar cells |
US5019177A (en) * | 1989-11-03 | 1991-05-28 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
US5322572A (en) * | 1989-11-03 | 1994-06-21 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
US5342453A (en) * | 1992-11-13 | 1994-08-30 | Midwest Research Institute | Heterojunction solar cell |
US5376185A (en) * | 1993-05-12 | 1994-12-27 | Midwest Research Institute | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
US5405453A (en) * | 1993-11-08 | 1995-04-11 | Applied Solar Energy Corporation | High efficiency multi-junction solar cell |
JP3169497B2 (ja) * | 1993-12-24 | 2001-05-28 | 三菱電機株式会社 | 太陽電池の製造方法 |
US5479032A (en) * | 1994-07-21 | 1995-12-26 | Trustees Of Princeton University | Multiwavelength infrared focal plane array detector |
JPH09232691A (ja) * | 1995-07-24 | 1997-09-05 | Fujitsu Ltd | 半導体レーザ |
US6281426B1 (en) * | 1997-10-01 | 2001-08-28 | Midwest Research Institute | Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge |
US6482672B1 (en) * | 1997-11-06 | 2002-11-19 | Essential Research, Inc. | Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates |
US5944913A (en) * | 1997-11-26 | 1999-08-31 | Sandia Corporation | High-efficiency solar cell and method for fabrication |
US6232138B1 (en) * | 1997-12-01 | 2001-05-15 | Massachusetts Institute Of Technology | Relaxed InxGa(1-x)as buffers |
US6043426A (en) * | 1998-02-20 | 2000-03-28 | The United States Of America As Represented By The United States Department Of Energy | Thermophotovoltaic energy conversion system having a heavily doped n-type region |
US6166318A (en) * | 1998-03-03 | 2000-12-26 | Interface Studies, Inc. | Single absorber layer radiated energy conversion device |
US6239354B1 (en) * | 1998-10-09 | 2001-05-29 | Midwest Research Institute | Electrical isolation of component cells in monolithically interconnected modules |
US6300557B1 (en) * | 1998-10-09 | 2001-10-09 | Midwest Research Institute | Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters |
US6165873A (en) * | 1998-11-27 | 2000-12-26 | Nec Corporation | Process for manufacturing a semiconductor integrated circuit device |
JP3657143B2 (ja) * | 1999-04-27 | 2005-06-08 | シャープ株式会社 | 太陽電池及びその製造方法 |
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
US6340788B1 (en) * | 1999-12-02 | 2002-01-22 | Hughes Electronics Corporation | Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications |
JP4642276B2 (ja) * | 2000-06-16 | 2011-03-02 | パナソニック株式会社 | 半導体装置の製造方法及び記録媒体 |
JP4269541B2 (ja) * | 2000-08-01 | 2009-05-27 | 株式会社Sumco | 半導体基板と電界効果型トランジスタ並びにSiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法 |
JP3909811B2 (ja) * | 2001-06-12 | 2007-04-25 | パイオニア株式会社 | 窒化物半導体素子及びその製造方法 |
US6660928B1 (en) * | 2002-04-02 | 2003-12-09 | Essential Research, Inc. | Multi-junction photovoltaic cell |
US6690041B2 (en) * | 2002-05-14 | 2004-02-10 | Global Solar Energy, Inc. | Monolithically integrated diodes in thin-film photovoltaic devices |
US8067687B2 (en) * | 2002-05-21 | 2011-11-29 | Alliance For Sustainable Energy, Llc | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
US20060162768A1 (en) * | 2002-05-21 | 2006-07-27 | Wanlass Mark W | Low bandgap, monolithic, multi-bandgap, optoelectronic devices |
US6794631B2 (en) * | 2002-06-07 | 2004-09-21 | Corning Lasertron, Inc. | Three-terminal avalanche photodiode |
US20060048700A1 (en) * | 2002-09-05 | 2006-03-09 | Wanlass Mark W | Method for achieving device-quality, lattice-mismatched, heteroepitaxial active layers |
US7122734B2 (en) * | 2002-10-23 | 2006-10-17 | The Boeing Company | Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers |
US7071407B2 (en) * | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
US6951819B2 (en) * | 2002-12-05 | 2005-10-04 | Blue Photonics, Inc. | High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same |
JP4471584B2 (ja) * | 2003-04-28 | 2010-06-02 | シャープ株式会社 | 化合物太陽電池の製造方法 |
US20050211291A1 (en) * | 2004-03-23 | 2005-09-29 | The Boeing Company | Solar cell assembly |
DE102004023856B4 (de) * | 2004-05-12 | 2006-07-13 | Rwe Space Solar Power Gmbh | Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode |
JP4518886B2 (ja) * | 2004-09-09 | 2010-08-04 | シャープ株式会社 | 半導体素子の製造方法 |
US7846759B2 (en) * | 2004-10-21 | 2010-12-07 | Aonex Technologies, Inc. | Multi-junction solar cells and methods of making same using layer transfer and bonding techniques |
FR2878076B1 (fr) * | 2004-11-17 | 2007-02-23 | St Microelectronics Sa | Amincissement d'une plaquette semiconductrice |
US10374120B2 (en) * | 2005-02-18 | 2019-08-06 | Koninklijke Philips N.V. | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
US7166520B1 (en) * | 2005-08-08 | 2007-01-23 | Silicon Genesis Corporation | Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process |
US7732705B2 (en) * | 2005-10-11 | 2010-06-08 | Emcore Solar Power, Inc. | Reliable interconnection of solar cells including integral bypass diode |
US8637759B2 (en) * | 2005-12-16 | 2014-01-28 | The Boeing Company | Notch filter for triple junction solar cells |
US20100186804A1 (en) * | 2009-01-29 | 2010-07-29 | Emcore Solar Power, Inc. | String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers |
US20090078308A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20100229926A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US8536445B2 (en) * | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US20100122724A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers |
US20090078310A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20080029151A1 (en) * | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US7842881B2 (en) * | 2006-10-19 | 2010-11-30 | Emcore Solar Power, Inc. | Solar cell structure with localized doping in cap layer |
US20080149173A1 (en) * | 2006-12-21 | 2008-06-26 | Sharps Paul R | Inverted metamorphic solar cell with bypass diode |
US20100093127A1 (en) * | 2006-12-27 | 2010-04-15 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film |
US20080245409A1 (en) * | 2006-12-27 | 2008-10-09 | Emcore Corporation | Inverted Metamorphic Solar Cell Mounted on Flexible Film |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
US20080185038A1 (en) * | 2007-02-02 | 2008-08-07 | Emcore Corporation | Inverted metamorphic solar cell with via for backside contacts |
US20090038679A1 (en) * | 2007-08-09 | 2009-02-12 | Emcore Corporation | Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US20090078311A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090223554A1 (en) * | 2008-03-05 | 2009-09-10 | Emcore Corporation | Dual Sided Photovoltaic Package |
US20090229658A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells |
US20090229662A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20100012175A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20090288703A1 (en) * | 2008-05-20 | 2009-11-26 | Emcore Corporation | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US8263853B2 (en) * | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) * | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8236600B2 (en) * | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US20100147366A1 (en) * | 2008-12-17 | 2010-06-17 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector |
US7785989B2 (en) * | 2008-12-17 | 2010-08-31 | Emcore Solar Power, Inc. | Growth substrates for inverted metamorphic multijunction solar cells |
US7960201B2 (en) * | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US8263856B2 (en) * | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
-
2007
- 2007-09-24 US US11/860,183 patent/US20090078309A1/en not_active Abandoned
-
2008
- 2008-07-25 DE DE102008034711A patent/DE102008034711A1/de active Granted
- 2008-07-25 TW TW097128500A patent/TWI488314B/zh not_active IP Right Cessation
- 2008-09-22 CN CN2008102114162A patent/CN101399298B/zh active Active
- 2008-09-24 JP JP2008243637A patent/JP2009076920A/ja active Pending
-
2014
- 2014-06-11 JP JP2014120291A patent/JP6194283B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021360A (en) * | 1989-09-25 | 1991-06-04 | Gte Laboratories Incorporated | Method of farbicating highly lattice mismatched quantum well structures |
CN1826693A (zh) * | 2003-07-22 | 2006-08-30 | 阿克佐诺贝尔股份有限公司 | 利用临时衬底制造太阳能电池薄片的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6194283B2 (ja) | 2017-09-06 |
JP2014195118A (ja) | 2014-10-09 |
TWI488314B (zh) | 2015-06-11 |
CN101399298A (zh) | 2009-04-01 |
TW200915588A (en) | 2009-04-01 |
JP2009076920A (ja) | 2009-04-09 |
US20090078309A1 (en) | 2009-03-26 |
DE102008034711A1 (de) | 2009-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101399298B (zh) | 倒置变质多结太阳能电池中的障壁层 | |
CN101499495B (zh) | 倒置变形多结太阳能电池中的异质结子电池 | |
US8039291B2 (en) | Demounting of inverted metamorphic multijunction solar cells | |
CN101399296B (zh) | 具有刚性支撑的薄倒置变质多结太阳能电池 | |
US8236600B2 (en) | Joining method for preparing an inverted metamorphic multijunction solar cell | |
US9691929B2 (en) | Four junction inverted metamorphic multijunction solar cell with two metamorphic layers | |
US8987042B2 (en) | Ohmic N-contact formed at low temperature in inverted metamorphic multijunction solar cells | |
US8969712B2 (en) | Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer | |
US20090078311A1 (en) | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells | |
US20090288703A1 (en) | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells | |
US20090229658A1 (en) | Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells | |
US20090229662A1 (en) | Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells | |
US20100012174A1 (en) | High band gap contact layer in inverted metamorphic multijunction solar cells | |
US20090272438A1 (en) | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell | |
US20090272430A1 (en) | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells | |
US20100122764A1 (en) | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells | |
US11063168B1 (en) | Inverted multijunction solar cells with distributed bragg reflector | |
EP2148378B1 (en) | Barrier layers in inverted metamorphic multijunction solar cells | |
US10170656B2 (en) | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |