US5376185A - Single-junction solar cells with the optimum band gap for terrestrial concentrator applications - Google Patents
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications Download PDFInfo
- Publication number
- US5376185A US5376185A US08/061,635 US6163593A US5376185A US 5376185 A US5376185 A US 5376185A US 6163593 A US6163593 A US 6163593A US 5376185 A US5376185 A US 5376185A
- Authority
- US
- United States
- Prior art keywords
- layer
- efficiency
- substrate
- band gap
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 27
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 claims description 19
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 230000007547 defect Effects 0.000 claims description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims 6
- 239000002184 metal Substances 0.000 claims 6
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 9
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000005094 computer simulation Methods 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 59
- 239000010410 layer Substances 0.000 description 43
- 230000008901 benefit Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 210000004692 intercellular junction Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910002059 quaternary alloy Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007728 cost analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- SAOPTAQUONRHEV-UHFFFAOYSA-N gold zinc Chemical compound [Zn].[Au] SAOPTAQUONRHEV-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009290 primary effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/144—Photovoltaic cells having only PN homojunction potential barriers comprising only Group III-V materials, e.g. GaAs,AlGaAs, or InP photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1248—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Definitions
- the present invention relates to solar cells designed for operation under concentrated sunlight, and more particularly to concentrator cells having optimum band gaps.
- the photovoltaic cell commonly known as the solar cell, is an attempt to satisfy these two requirements with the same element.
- a low-cost lens can be utilized to concentrate the sunlight onto a small-area high-efficiency solar cell.
- the lens thus acts as the low-cost solar collector, in combination with a more expensive high-efficiency energy converter.
- Solar cells designed to operate with concentrated sunlight are a special class of solar cells distinctly different in many respects from the more conventional fiat-plate solar cells.
- a concentrator solar cell is a solar cell operated at the focus of a lens or reflector system. As with any solar cell, high performance requires good junction quality and high minority-carrier diffusion lengths. However, a concentrator cell operates at higher light-generated current density than does a flat-plate cell. This higher current density operation allows for higher energy conversion efficiencies, provided the grid series resistance can be kept small. High-quality material is required in order to obtain these results.
- the semiconductor material used must have an acceptably low mid-gap recombination state density. If the solar cell is ideal, its performance is predictable from the semiconductor intrinsic energy gap. For materials with direct band gaps, all the incident light with photon energy above the band gap is absorbed, creating minority-carriers that diffuse to the junction where they are collected. This light-generated current is opposed by a much smaller dark current consisting of majority-carriers diffusing over the junction barrier. This junction barrier is again related primarily to the semiconductor intrinsic energy gap.
- Doubling the light intensity incident on a solar cell in turn doubles the device short-circuit current. This in itself does not change the device energy-conversion efficiency.
- the diode voltage increases. Since the solar cell voltage increases with increasing light levels, the result is that the solar cell energy-conversion efficiency increases when operated with concentrated light.
- the apparatus of this invention may comprise a quaternary alloy composition having a fixed band gap of 1.14 ⁇ 0.02 eV.
- FIG. 1 is a cross-sectional view of the 1.14 ⁇ 0.02 eV GaInAsP concentrator solar cell of the present invention
- FIG. 2 is a plot of the spectral irradiance for the direct spectrum (ASTM E891) superimposed over a graph of the modeled solar cell efficiency data as a function of energy gap (band gap) and concentration ratio (C) for concentrations of 30 suns and 1000 suns at 25° C.;
- FIG. 3 is a plot of the spectral irradiance for the direct spectrum (ASTM E891) superimposed over a graph of the modeled solar cell efficiency data as a function of energy gap (band gap) and temperature for temperatures at 25° C. and 65° C. at a fixed concentration of 1000 suns;
- FIG. 4 is a graph of the current-voltage characteristics of the GaInAsP concentrator cell of the present invention at peak performance
- FIG. 5 is a graph of the quantum efficiency data for the concentrator solar cell of the present invention, which displays a substantial drop in the blue response;
- FIG. 6 is a cross-sectional view of a first embodiment of a GaInAsP concentrator solar cell having a contacting layer interposed between the antireflective coating and the window layer;
- FIG. 7 is a cross-sectional view of a proposed second embodiment of the present invention of a 1.14 ⁇ 0.02 eV GaInAs concentrator solar cell.
- the single-junction solar cell having an optimum band gap 10 for terrestrial concentrator applications according to the present invention is best seen in FIG. 1.
- the single-junction solar cell having an optimum band gap 10 is comprised of a photovoltaic (PV) device or assembly 26 having a fixed band gap value of approximately 1.14 eV or 1.14 ⁇ 0.02 eV.
- PV photovoltaic
- FIGS. 2 and 3 as a basis for the single-junction solar cell having an optimum band gap 10 according to the present invention, computer modeling studies have been performed to determine the optimum band gap for a single-junction solar cell under typical terrestrial concentrator operating conditions.
- the model assumes a direct band gap and unity external quantum efficiency; however, the parameters used to calculate the voltage and fill factor are derived from an empirical formulation that is based on data from existing state-of-the-art solar cells.
- the computer (not shown) is equipped with a math coprocessor and a software package, as will be readily understood by persons skilled in the art of computerized calculation of solar cell performance. An example of this computerized calculation is further described in a technical paper entitled " Advanced High-Efficiency Concentrator Tandem Solar Cells" by Wanlass et al., Twenty-Second IEEE Photovoltaic Specialists Conference, 1, 38-45, (1991). This program essentially allows for the calculation of cell efficiency through the use of the following equation:
- P out is the electrical power output of the cell
- P in is the solar optical power incident on the cell
- V oc represents the open-circuit voltage
- J sc represents the short-circuit current density
- FF represents the fill factor.
- GaAs concentrator cells lead the way in terms of efficiency and therefore the same was used as a baseline for comparison with the modeled efficiency for a cell with the optimum band gap.
- the band gap of GaAs was taken to be 1.43 eV at 25° C. and 1.41 eV at 80° C.
- the modeled solar cell efficiency curves 14 and 16 representing concentration ratios (C) of 1000 suns and 30 suns, respectively, are plotted in FIG. 2 as a function of the energy gap (band gap) and concentration ratio (C) for an operating temperature of 25° C. From these data, it is evident that the optimum band gap 12 holds a significant efficiency advantage over the GaAs band gap 18 over a wide temperature range.
- table 1 contains a summary of computer modeling results for single-junction concentrator solar cells operated under the direct spectrum (ASTM E891) as a function of the concentration ratio, and at two temperatures. These data show that, for high concentration ratios, the optimum band gap is essentially independent of the concentration ratio and operating temperature and has a value of approximately 1.14 eV. Second, these data illustrate that the optimum band gap holds a significant efficiency advantage over GaAs at high concentration ratios and at both temperatures. On the average, the modeled efficiencies for the optimum band gap are about 2 percentage points higher than the modeled values for GaAs devices.
- FIGS. 2 and 3 graphically illustrate that the "pinning" of the optimum band gap 12 and 12', respectively, at approximately 1.14 eV holds a significant efficiency advantage over the GaAs band gap 18 and 18', respectively, at high concentration ratios and over wide temperature ranges.
- the structure in the efficiency curves 14, 16, 20, and 22 can also be traced to the existence of absorption bands in the direct solar spectrum 24 and 24' of FIGS. 2 and 3, respectively.
- the first is the effect of operation under concentration on the open circuit voltage of the device. Operation under concentration affords roughly a 58 mV increase in V oc per decade of concentration. This effect is independent of the band gap. Therefore, the fractional increase in the voltage as a function of the concentration ratio is greater for a lower gap material. Additionally, lower band gaps are able to utilize a greater portion of the indirect spectrum. This is why a 1.14 eV device will out-perform GaAs, which has a band gap of 1.43 eV.
- the second effect that leads to the "pinning" of the optimum band gap of 1.14 eV is the prominent water vapor absorption band in the direct spectrum centered at 1150 nm. Because of this absorption band, when the band gap is lowered from 1.14 eV, there is a drop in the voltage that is unaccompanied by a corresponding rise in the current. This spectral effect is responsible for the fact that the optimum band gap is not a function of the operating temperature or the concentration ratio.
- the single-junction solar cell having an optimum band gap 10 includes the deposition of a multilayer solar cell structure 26 by way of atmospheric-pressure metalorganic vapor-phase epitaxy (APMOVPE) or the like.
- the quaternary alloy Ga x In 1-x As y P 1-y can be epitaxially grown lattice matched to InP over a wide range of compositions and band gaps (0.75-1.35 eV).
- the first layer deposited upon the surface 29 of the p + -InP substrate 32 is an InP buffer layer 34 having a thickness of about 0.5 microns.
- the InP buffer layer 34 also serves as a back-surface minority-carrier confinement layer for the approximately 1.14 eV GaInAsP base layer 36. Active regions of lattice-matched 1.14 ⁇ 0.02 eV GaInAsP may then be grown to form the base and emitter layers 36 and 38, respectively, of the cell junction. Base and emitter layers 36 and 38, respectively, are grown to a thickness of about 3.5 ⁇ m and 45 nm, respectively. Either p + /n or n + /p doping schemes may be used for the emitter/base structure 40. A window layer 42 having a thickness of about 33 nm is then deposited upon the emitter/base structure 40.
- the window layer 42 may be made of InP; however, it may not be the most desirable choice for maximum efficiency due to its relatively low band gap (1.35 eV at room temperature).
- pseudomorphic window layers of sub-critical thickness (i.e., elastically strained) and made of GaInP or AlInAs may be used.
- An antireflection coating 44 having a thickness on the order of 150 nm is finally deposited upon window layer 42, followed by top grid contacts 46 that have been engineered to accommodate Entech prismatic covers (not shown) as a means of achieving high performance under concentration.
- Top grid contacts that are optimally designed for increasing concentration ratios that do not require Entech covers may also be used.
- the antireflection coating comprises a dual-layer of ZnS followed by MgF 2 having a thickness of about 55 nm and 95 nm, respectively. Other optimized antireflection coating systems may also be used.
- a back contact 30 is affixed to the surface 28 of the P + -In substrate 32.
- the back contact 30 may be made of a gold-zinc alloy, for example.
- Efficiency data for the best 1.14 eV ⁇ 0.02 eV GaInAsP cell 26 fabricated to date are shown in FIG. 4. An efficiency of 27.5% at a concentration ratio of 171 under the direct spectrum at 25° C. has been achieved. As shown in FIG. 5, the quantum efficiency data for the approximately 1.14 eV GaInAsP cells show a substantial drop in blue response, which suggests that significant improvements in the cell efficiency are still possible.
- FIG. 6 shows an alternate embodiment 200 having an electrically conductive material or contacting layer 250 interposed between the antireflective coating 44 and the window layer 42.
- Contacting layer 250 could be added to the surface of the window layer 42 to facilitate the formation of a low-resistance grid contact.
- the contacting layer 250 may be made of InP or GaInAs (depending upon the doping type), which could be removed between the grid lines during the cell processing procedure.
- a proposed second embodiment 300 of the present invention is shown in FIG. 7, having a ternary alloy Ga 1-x In x As that has a direct band gap that decreases monotonically with increasing In content added to the binary semiconductor GaAs.
- a single crystal Ge substrate could be substituted for a single crystal GaAs substrate.
- Ge is advantageous in that it is lighter, less expensive, and stronger than GaAs.
- the cell design includes as many as 7 epitaxial layers and is based on a GaAs or Ge substrate 332.
- a GaAs buffer layer 334 is used to initiate the structure, followed by a GaInAs compositionally-graded layer 336, where the In content is increased as the layer thickness increases.
- the graded layer 336 is a very important feature in the structure since it serves to reduce the density of crystalline defects in the active solar cell layers as a result of the lattice mismatch between the cell layers 334-348 and the GaAs substrate 332.
- a back surface confinement layer 338 is grown which may consist of lattice-matched layers of GaInP or AlInAs (i.e., lattice matched to Ga 0 .78 In 0 .22 As).
- the 1.14 ⁇ 0.02 eV GaInAs junction layers 344 comprised of the 1.14 ⁇ 0.02 eV GaInAs base layer 340 and 1.14 ⁇ 0.02 eV GaInAs emitter layer 342, are grown and these could have either a p + /n or an n + /p doping configuration.
- the window layer 346 comprising lattice-matched layers of GaInP, AlInAs, or a pseudomorphic version of these materials as discussed previously is then deposited.
- an optional contacting layer 348 may be deposited upon the window layer 346, if desired.
- Contacting layer 348 may be made of a material such as GaInAs.
- Electrical contacts 330 are affixed to the back surface 331 of the substrate 332, and grid contacts 352 are affixed to the window layer 346.
- the proposed structure 300 is completed by applying a suitable antireflection coating 350 and possibly, an Entech prismatic cover.
- the GaInAs solar cell structure described above may be deposited directly (i.e., without a graded layer) upon bulk ternary materials such as a GaInAs substrate in the event bulk materials become readily available.
- a third embodiment may comprise a ternary alloy InAsP grown on an InP substrate having a graded layer of InAsP disposed between the substrate and the active layers comprising the solar cell junction.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
η=P.sub.out /P.sub.in =V.sub.oc J.sub.sc FF/P.sub.in
______________________________________ Optimum Concentration Band Gap Efficiency for the Efficiency for Ratio (eV) Optimum Band Gap GaAs (%) ______________________________________ T = 25° C. 10 1.15 29.5 28.5 100 1.15 32.0 30.2 1000 1.14 34.5 32.0 T = 80° C. 10 1.34 26.0 25.7 100 1.15 28.4 27.8 1000 1.14 31.3 30.0 ______________________________________
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/061,635 US5376185A (en) | 1993-05-12 | 1993-05-12 | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/061,635 US5376185A (en) | 1993-05-12 | 1993-05-12 | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US5376185A true US5376185A (en) | 1994-12-27 |
Family
ID=22037090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/061,635 Expired - Fee Related US5376185A (en) | 1993-05-12 | 1993-05-12 | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
Country Status (1)
Country | Link |
---|---|
US (1) | US5376185A (en) |
Cited By (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5949120A (en) * | 1996-02-28 | 1999-09-07 | Nippon Telegraph And Telephone Corporation | Semiconductor photodetector |
US6229189B1 (en) * | 1998-12-24 | 2001-05-08 | Hughes Electronics Corporation | Multi-function optoelectronic device structure |
US6300558B1 (en) * | 1999-04-27 | 2001-10-09 | Japan Energy Corporation | Lattice matched solar cell and method for manufacturing the same |
US6380601B1 (en) * | 1999-03-29 | 2002-04-30 | Hughes Electronics Corporation | Multilayer semiconductor structure with phosphide-passivated germanium substrate |
US20060144435A1 (en) * | 2002-05-21 | 2006-07-06 | Wanlass Mark W | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
US20060162768A1 (en) * | 2002-05-21 | 2006-07-27 | Wanlass Mark W | Low bandgap, monolithic, multi-bandgap, optoelectronic devices |
US20080185038A1 (en) * | 2007-02-02 | 2008-08-07 | Emcore Corporation | Inverted metamorphic solar cell with via for backside contacts |
US20080245409A1 (en) * | 2006-12-27 | 2008-10-09 | Emcore Corporation | Inverted Metamorphic Solar Cell Mounted on Flexible Film |
US20090032086A1 (en) * | 2007-07-30 | 2009-02-05 | Emcore Corporation | Terrestrial solar array including a rigid support frame |
US20090032090A1 (en) * | 2007-07-30 | 2009-02-05 | Emcore Corporation | Method for assembling a terrestrial solar array including a rigid support frame |
US20090038679A1 (en) * | 2007-08-09 | 2009-02-12 | Emcore Corporation | Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support |
US20090078309A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090078310A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US20090078311A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090078308A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090223554A1 (en) * | 2008-03-05 | 2009-09-10 | Emcore Corporation | Dual Sided Photovoltaic Package |
US20090229662A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells |
US20090229659A1 (en) * | 2002-05-21 | 2009-09-17 | Midwest Research Institute | Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps |
US20090250099A1 (en) * | 2008-04-07 | 2009-10-08 | Eric Ting-Shan Pan | Solar-To-Electricity Conversion System Using Cascaded Architecture of Photovoltaic and Thermoelectric Devices |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20090272424A1 (en) * | 2002-05-17 | 2009-11-05 | Ugur Ortabasi | Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion |
US20090288703A1 (en) * | 2008-05-20 | 2009-11-26 | Emcore Corporation | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090314348A1 (en) * | 2006-08-07 | 2009-12-24 | Mcglynn Daniel | Terrestrial solar power system using iii-v semiconductor solar cells |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US20100012175A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20100031994A1 (en) * | 2008-08-07 | 2010-02-11 | Emcore Corporation | Wafer Level Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20100037934A1 (en) * | 2008-08-13 | 2010-02-18 | Sunplus Mmedia Inc. | Solar energy sysyem |
US20100041178A1 (en) * | 2008-08-12 | 2010-02-18 | Emcore Solar Power, Inc. | Demounting of Inverted Metamorphic Multijunction Solar Cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20100116318A1 (en) * | 2007-03-08 | 2010-05-13 | Hrl Laboratories, Llc | Pixelated photovoltaic array method and apparatus |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US20100126571A1 (en) * | 2008-10-23 | 2010-05-27 | Kizilyalli Isik C | Photovoltaic device with increased light trapping |
US20100126570A1 (en) * | 2008-10-23 | 2010-05-27 | Kizilyalli Isik C | Thin absorber layer of a photovoltaic device |
US20100132780A1 (en) * | 2008-10-23 | 2010-06-03 | Kizilyalli Isik C | Photovoltaic device |
US20100147366A1 (en) * | 2008-12-17 | 2010-06-17 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector |
US20100186804A1 (en) * | 2009-01-29 | 2010-07-29 | Emcore Solar Power, Inc. | String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US20100206365A1 (en) * | 2009-02-19 | 2010-08-19 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers |
US7785989B2 (en) | 2008-12-17 | 2010-08-31 | Emcore Solar Power, Inc. | Growth substrates for inverted metamorphic multijunction solar cells |
US20100229926A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US20100233839A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | String Interconnection and Fabrication of Inverted Metamorphic Multijunction Solar Cells |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US20100319764A1 (en) * | 2009-06-23 | 2010-12-23 | Solar Junction Corp. | Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells |
US20110030774A1 (en) * | 2009-08-07 | 2011-02-10 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Back Contacts |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
US20110073887A1 (en) * | 2009-09-25 | 2011-03-31 | Alliance For Sustainable Energy, Llc | Optoelectronic devices having a direct-band-gap base and an indirect-band-gap emitter |
US7939428B2 (en) | 2000-11-27 | 2011-05-10 | S.O.I.Tec Silicon On Insulator Technologies | Methods for making substrates and substrates formed therefrom |
US20110108081A1 (en) * | 2006-12-20 | 2011-05-12 | Jds Uniphase Corporation | Photovoltaic Power Converter |
US20110114163A1 (en) * | 2009-11-18 | 2011-05-19 | Solar Junction Corporation | Multijunction solar cells formed on n-doped substrates |
US8187907B1 (en) | 2010-05-07 | 2012-05-29 | Emcore Solar Power, Inc. | Solder structures for fabrication of inverted metamorphic multijunction solar cells |
US8236600B2 (en) | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20120204942A1 (en) | 2008-10-23 | 2012-08-16 | Alta Devices, Inc. | Optoelectronic devices including heterojunction and intermediate layer |
WO2012115838A2 (en) * | 2011-02-25 | 2012-08-30 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US20120305059A1 (en) * | 2011-06-06 | 2012-12-06 | Alta Devices, Inc. | Photon recycling in an optoelectronic device |
US8507837B2 (en) | 2008-10-24 | 2013-08-13 | Suncore Photovoltaics, Inc. | Techniques for monitoring solar array performance and applications thereof |
US8513514B2 (en) | 2008-10-24 | 2013-08-20 | Suncore Photovoltaics, Inc. | Solar tracking for terrestrial solar arrays with variable start and stop positions |
US20130221326A1 (en) * | 2010-10-12 | 2013-08-29 | Alliance for Substainable Energy, LLC | High Bandgap III-V Alloys for High Efficiency Optoelectronics |
US8536445B2 (en) | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US8569097B1 (en) | 2012-07-06 | 2013-10-29 | International Business Machines Corporation | Flexible III-V solar cell structure |
US8575473B2 (en) | 2010-03-29 | 2013-11-05 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US8697481B2 (en) | 2011-11-15 | 2014-04-15 | Solar Junction Corporation | High efficiency multijunction solar cells |
US8759138B2 (en) | 2008-02-11 | 2014-06-24 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US8766087B2 (en) | 2011-05-10 | 2014-07-01 | Solar Junction Corporation | Window structure for solar cell |
US8772628B2 (en) | 2004-12-30 | 2014-07-08 | Alliance For Sustainable Energy, Llc | High performance, high bandgap, lattice-mismatched, GaInP solar cells |
US8778199B2 (en) | 2009-02-09 | 2014-07-15 | Emoore Solar Power, Inc. | Epitaxial lift off in inverted metamorphic multijunction solar cells |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US9012771B1 (en) | 2009-09-03 | 2015-04-21 | Suncore Photovoltaics, Inc. | Solar cell receiver subassembly with a heat shield for use in a concentrating solar system |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US9018519B1 (en) | 2009-03-10 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US9117966B2 (en) | 2007-09-24 | 2015-08-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell |
US9153724B2 (en) | 2012-04-09 | 2015-10-06 | Solar Junction Corporation | Reverse heterojunctions for solar cells |
US9214580B2 (en) | 2010-10-28 | 2015-12-15 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
US9287438B1 (en) * | 2008-07-16 | 2016-03-15 | Solaero Technologies Corp. | Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation |
US9331228B2 (en) | 2008-02-11 | 2016-05-03 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US9502594B2 (en) | 2012-01-19 | 2016-11-22 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US9590131B2 (en) | 2013-03-27 | 2017-03-07 | Alliance For Sustainable Energy, Llc | Systems and methods for advanced ultra-high-performance InP solar cells |
US9634172B1 (en) | 2007-09-24 | 2017-04-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9691929B2 (en) | 2008-11-14 | 2017-06-27 | Solaero Technologies Corp. | Four junction inverted metamorphic multijunction solar cell with two metamorphic layers |
US9691921B2 (en) | 2009-10-14 | 2017-06-27 | Alta Devices, Inc. | Textured metallic back reflector |
US9768329B1 (en) | 2009-10-23 | 2017-09-19 | Alta Devices, Inc. | Multi-junction optoelectronic device |
US9806215B2 (en) | 2009-09-03 | 2017-10-31 | Suncore Photovoltaics, Inc. | Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells |
US9899550B2 (en) | 2015-08-12 | 2018-02-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electric power transfer system using optical power transfer |
US9935209B2 (en) | 2016-01-28 | 2018-04-03 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US9985161B2 (en) | 2016-08-26 | 2018-05-29 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
US10170656B2 (en) | 2009-03-10 | 2019-01-01 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
US10256359B2 (en) | 2015-10-19 | 2019-04-09 | Solaero Technologies Corp. | Lattice matched multijunction solar cell assemblies for space applications |
US10263134B1 (en) | 2016-05-25 | 2019-04-16 | Solaero Technologies Corp. | Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell |
US10270000B2 (en) | 2015-10-19 | 2019-04-23 | Solaero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
CN109708753A (en) * | 2019-02-22 | 2019-05-03 | 苏州馥昶空间技术有限公司 | A kind of four-quadrant GaAs sun sensor component and preparation method thereof |
US10361330B2 (en) | 2015-10-19 | 2019-07-23 | Solaero Technologies Corp. | Multijunction solar cell assemblies for space applications |
US10381501B2 (en) | 2006-06-02 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
US10403778B2 (en) | 2015-10-19 | 2019-09-03 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
US10541349B1 (en) | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
US10615304B2 (en) | 2010-10-13 | 2020-04-07 | Alta Devices, Inc. | Optoelectronic device with dielectric layer and method of manufacture |
US10636926B1 (en) | 2016-12-12 | 2020-04-28 | Solaero Technologies Corp. | Distributed BRAGG reflector structures in multijunction solar cells |
US10916675B2 (en) | 2015-10-19 | 2021-02-09 | Array Photonics, Inc. | High efficiency multijunction photovoltaic cells |
US10930808B2 (en) | 2017-07-06 | 2021-02-23 | Array Photonics, Inc. | Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells |
US10991835B2 (en) | 2018-08-09 | 2021-04-27 | Array Photonics, Inc. | Hydrogen diffusion barrier for hybrid semiconductor growth |
US11038080B2 (en) | 2012-01-19 | 2021-06-15 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
US11211514B2 (en) | 2019-03-11 | 2021-12-28 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
US11233166B2 (en) | 2014-02-05 | 2022-01-25 | Array Photonics, Inc. | Monolithic multijunction power converter |
US11271128B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device |
US11271133B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device with group IV semiconductor as a bottom junction |
US11271122B2 (en) | 2017-09-27 | 2022-03-08 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having a dilute nitride layer |
US11569404B2 (en) | 2017-12-11 | 2023-01-31 | Solaero Technologies Corp. | Multijunction solar cells |
US12249667B2 (en) | 2017-08-18 | 2025-03-11 | Solaero Technologies Corp. | Space vehicles including multijunction metamorphic solar cells |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993506A (en) * | 1975-09-25 | 1976-11-23 | Varian Associates | Photovoltaic cell employing lattice matched quaternary passivating layer |
US4017332A (en) * | 1975-02-27 | 1977-04-12 | Varian Associates | Solar cells employing stacked opposite conductivity layers |
US4388383A (en) * | 1981-05-14 | 1983-06-14 | Bell Telephone Laboratories, Incorporated | Devices having chemically modified p-type InP surfaces |
US4392297A (en) * | 1980-11-20 | 1983-07-12 | Spire Corporation | Process of making thin film high efficiency solar cells |
US4544799A (en) * | 1984-04-30 | 1985-10-01 | University Of Delaware | Window structure for passivating solar cells based on gallium arsenide |
US4591654A (en) * | 1983-07-18 | 1986-05-27 | Nippon Telegraph And Telephone Public Corporation | Solar cells based on indium phosphide |
US4915744A (en) * | 1989-02-03 | 1990-04-10 | Applied Solar Energy Corporation | High efficiency solar cell |
US4935384A (en) * | 1988-12-14 | 1990-06-19 | The United States Of America As Represented By The United States Department Of Energy | Method of passivating semiconductor surfaces |
US4997491A (en) * | 1988-11-16 | 1991-03-05 | Mitsubishi Denki Kabushiki Kaisha | Solar cell and a production method therefor |
US5034068A (en) * | 1990-02-23 | 1991-07-23 | Spectrolab, Inc. | Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell |
US5121183A (en) * | 1988-06-01 | 1992-06-09 | Mitsubishi Denki Kabushiki Kaisha | Light responsive heterojunction semiconductor pn element |
-
1993
- 1993-05-12 US US08/061,635 patent/US5376185A/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017332A (en) * | 1975-02-27 | 1977-04-12 | Varian Associates | Solar cells employing stacked opposite conductivity layers |
US3993506A (en) * | 1975-09-25 | 1976-11-23 | Varian Associates | Photovoltaic cell employing lattice matched quaternary passivating layer |
US4392297A (en) * | 1980-11-20 | 1983-07-12 | Spire Corporation | Process of making thin film high efficiency solar cells |
US4388383A (en) * | 1981-05-14 | 1983-06-14 | Bell Telephone Laboratories, Incorporated | Devices having chemically modified p-type InP surfaces |
US4591654A (en) * | 1983-07-18 | 1986-05-27 | Nippon Telegraph And Telephone Public Corporation | Solar cells based on indium phosphide |
US4544799A (en) * | 1984-04-30 | 1985-10-01 | University Of Delaware | Window structure for passivating solar cells based on gallium arsenide |
US5121183A (en) * | 1988-06-01 | 1992-06-09 | Mitsubishi Denki Kabushiki Kaisha | Light responsive heterojunction semiconductor pn element |
US4997491A (en) * | 1988-11-16 | 1991-03-05 | Mitsubishi Denki Kabushiki Kaisha | Solar cell and a production method therefor |
US4935384A (en) * | 1988-12-14 | 1990-06-19 | The United States Of America As Represented By The United States Department Of Energy | Method of passivating semiconductor surfaces |
US4915744A (en) * | 1989-02-03 | 1990-04-10 | Applied Solar Energy Corporation | High efficiency solar cell |
US5034068A (en) * | 1990-02-23 | 1991-07-23 | Spectrolab, Inc. | Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell |
Non-Patent Citations (14)
Title |
---|
H. D. Law et al, IEEE Electron Device Letters, vol. EDL 2, Feb. 1981, pp. 26 27. * |
H. D. Law et al, IEEE Electron Device Letters, vol. EDL-2, Feb. 1981, pp. 26-27. |
H. F. MacMillan et al, Conference Record, 20th IEEE Photovoltaic Specialists Conf., Sep. 1988, pp. 462 468. * |
H. F. MacMillan et al, Conference Record, 20th IEEE Photovoltaic Specialists Conf., Sep. 1988, pp. 462-468. |
M. L. Ristow et al, Conference Record, 21 st IEEE Photovoltaic Specialists Conf., May 1990, pp. 115 118. * |
M. L. Ristow et al, Conference Record, 21st IEEE Photovoltaic Specialists Conf., May 1990, pp. 115-118. |
M. W. Wanlass, et al., "Advanced High-Efficiency Concentrator Tandem Solar Cells," Twenty Second IEEE Photovoltaic Specialists Conference, pp. 38-45, (1991). |
M. W. Wanlass, et al., Advanced High Efficiency Concentrator Tandem Solar Cells, Twenty Second IEEE Photovoltaic Specialists Conference, pp. 38 45, (1991). * |
R. Yonezawa et al, Solar Energy Materials, vol. 23, Dec. 1991, pp. 363 370. * |
R. Yonezawa et al, Solar Energy Materials, vol. 23, Dec. 1991, pp. 363-370. |
S. L. Rhoads et al, Conference Record, 20 th IEEE Photovoltaic Specialists Conf., Sep. 1988, pp. 649 653. * |
S. L. Rhoads et al, Conference Record, 20th IEEE Photovoltaic Specialists Conf., Sep. 1988, pp. 649-653. |
S. M. Vernon et al, Conference Record, 19 th IEEE Photovoltaic Specialists Conf., May 1987, pp. 108 112. * |
S. M. Vernon et al, Conference Record, 19th IEEE Photovoltaic Specialists Conf., May 1987, pp. 108-112. |
Cited By (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5949120A (en) * | 1996-02-28 | 1999-09-07 | Nippon Telegraph And Telephone Corporation | Semiconductor photodetector |
US6229189B1 (en) * | 1998-12-24 | 2001-05-08 | Hughes Electronics Corporation | Multi-function optoelectronic device structure |
US6380601B1 (en) * | 1999-03-29 | 2002-04-30 | Hughes Electronics Corporation | Multilayer semiconductor structure with phosphide-passivated germanium substrate |
US6300558B1 (en) * | 1999-04-27 | 2001-10-09 | Japan Energy Corporation | Lattice matched solar cell and method for manufacturing the same |
US7939428B2 (en) | 2000-11-27 | 2011-05-10 | S.O.I.Tec Silicon On Insulator Technologies | Methods for making substrates and substrates formed therefrom |
US7619159B1 (en) * | 2002-05-17 | 2009-11-17 | Ugur Ortabasi | Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion |
US20090272424A1 (en) * | 2002-05-17 | 2009-11-05 | Ugur Ortabasi | Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion |
US9293615B2 (en) | 2002-05-21 | 2016-03-22 | Alliance For Sustainable Energy, Llc | Low-bandgap, monolithic, multi-bandgap, optoelectronic devices |
US20090229659A1 (en) * | 2002-05-21 | 2009-09-17 | Midwest Research Institute | Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps |
US20060144435A1 (en) * | 2002-05-21 | 2006-07-06 | Wanlass Mark W | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
US20060162768A1 (en) * | 2002-05-21 | 2006-07-27 | Wanlass Mark W | Low bandgap, monolithic, multi-bandgap, optoelectronic devices |
US8067687B2 (en) | 2002-05-21 | 2011-11-29 | Alliance For Sustainable Energy, Llc | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
US8772623B2 (en) | 2002-05-21 | 2014-07-08 | Alliance For Sustainable Energy, Llc | Low-bandgap, monolithic, multi-bandgap, optoelectronic devices |
US9231135B2 (en) | 2002-05-21 | 2016-01-05 | Alliance For Sustainable Energy, Llc | Low-bandgap, monolithic, multi-bandgap, optoelectronic devices |
US8735202B2 (en) | 2002-05-21 | 2014-05-27 | Alliance For Sustainable Energy, Llc | High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters |
US8173891B2 (en) | 2002-05-21 | 2012-05-08 | Alliance For Sustainable Energy, Llc | Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps |
US9484480B2 (en) | 2004-12-30 | 2016-11-01 | Alliance For Sustainable Energy, Llc | High performance, high bandgap, lattice-mismatched, GaInP solar cells |
US8772628B2 (en) | 2004-12-30 | 2014-07-08 | Alliance For Sustainable Energy, Llc | High performance, high bandgap, lattice-mismatched, GaInP solar cells |
US10553740B2 (en) | 2006-06-02 | 2020-02-04 | Solaero Technologies Corp. | Metamorphic layers in multijunction solar cells |
US10381501B2 (en) | 2006-06-02 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US10026860B2 (en) | 2006-06-02 | 2018-07-17 | Solaero Technologies Corp. | Metamorphic layers in multijunction solar cells |
US8536445B2 (en) | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20090314348A1 (en) * | 2006-08-07 | 2009-12-24 | Mcglynn Daniel | Terrestrial solar power system using iii-v semiconductor solar cells |
US8513518B2 (en) | 2006-08-07 | 2013-08-20 | Emcore Solar Power, Inc. | Terrestrial solar power system using III-V semiconductor solar cells |
US20110108081A1 (en) * | 2006-12-20 | 2011-05-12 | Jds Uniphase Corporation | Photovoltaic Power Converter |
US20080245409A1 (en) * | 2006-12-27 | 2008-10-09 | Emcore Corporation | Inverted Metamorphic Solar Cell Mounted on Flexible Film |
US20080185038A1 (en) * | 2007-02-02 | 2008-08-07 | Emcore Corporation | Inverted metamorphic solar cell with via for backside contacts |
US20100116318A1 (en) * | 2007-03-08 | 2010-05-13 | Hrl Laboratories, Llc | Pixelated photovoltaic array method and apparatus |
US20090032086A1 (en) * | 2007-07-30 | 2009-02-05 | Emcore Corporation | Terrestrial solar array including a rigid support frame |
US20090032090A1 (en) * | 2007-07-30 | 2009-02-05 | Emcore Corporation | Method for assembling a terrestrial solar array including a rigid support frame |
US20090038679A1 (en) * | 2007-08-09 | 2009-02-12 | Emcore Corporation | Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support |
US10374112B2 (en) | 2007-09-24 | 2019-08-06 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell including a metamorphic layer |
US20090078311A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US9634172B1 (en) | 2007-09-24 | 2017-04-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9356176B2 (en) | 2007-09-24 | 2016-05-31 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with metamorphic layers |
US9231147B2 (en) | 2007-09-24 | 2016-01-05 | Solaero Technologies Corp. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US9117966B2 (en) | 2007-09-24 | 2015-08-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
US20090078309A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090078310A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US20090078308A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support |
US20090155951A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US7727795B2 (en) | 2007-12-13 | 2010-06-01 | Encore Solar Power, Inc. | Exponentially doped layers in inverted metamorphic multijunction solar cells |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US8946608B2 (en) | 2008-02-01 | 2015-02-03 | Suncore Photovoltaics, Inc. | Solar tracking system |
US9923112B2 (en) | 2008-02-11 | 2018-03-20 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US8759138B2 (en) | 2008-02-11 | 2014-06-24 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US9331228B2 (en) | 2008-02-11 | 2016-05-03 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US20090223554A1 (en) * | 2008-03-05 | 2009-09-10 | Emcore Corporation | Dual Sided Photovoltaic Package |
US20090229662A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells |
US20090250099A1 (en) * | 2008-04-07 | 2009-10-08 | Eric Ting-Shan Pan | Solar-To-Electricity Conversion System Using Cascaded Architecture of Photovoltaic and Thermoelectric Devices |
US20090250098A1 (en) * | 2008-04-07 | 2009-10-08 | Eric Ting-Shan Pan | Method for Solar-To-Electricity Conversion |
US20090250096A1 (en) * | 2008-04-07 | 2009-10-08 | Eric Ting-Shan Pan | Solar-To-Electricity Conversion Sub-Module |
US20090250097A1 (en) * | 2008-04-07 | 2009-10-08 | Eric Ting-Shan Pan | Solar-To-Electricity Conversion System |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20090288703A1 (en) * | 2008-05-20 | 2009-11-26 | Emcore Corporation | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells |
US9287438B1 (en) * | 2008-07-16 | 2016-03-15 | Solaero Technologies Corp. | Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation |
US9601652B2 (en) | 2008-07-16 | 2017-03-21 | Solaero Technologies Corp. | Ohmic N-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US8753918B2 (en) | 2008-07-16 | 2014-06-17 | Emcore Solar Power, Inc. | Gallium arsenide solar cell with germanium/palladium contact |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US20100012175A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US8987042B2 (en) | 2008-07-16 | 2015-03-24 | Solaero Technologies Corp. | Ohmic N-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20100031994A1 (en) * | 2008-08-07 | 2010-02-11 | Emcore Corporation | Wafer Level Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US8263853B2 (en) | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US8586859B2 (en) | 2008-08-07 | 2013-11-19 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US8039291B2 (en) | 2008-08-12 | 2011-10-18 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US7741146B2 (en) | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US20100041178A1 (en) * | 2008-08-12 | 2010-02-18 | Emcore Solar Power, Inc. | Demounting of Inverted Metamorphic Multijunction Solar Cells |
US8097803B2 (en) | 2008-08-13 | 2012-01-17 | Sunplus Mmedia Inc. | Solar energy system |
US20100037934A1 (en) * | 2008-08-13 | 2010-02-18 | Sunplus Mmedia Inc. | Solar energy sysyem |
US8674214B2 (en) | 2008-10-23 | 2014-03-18 | Alta Devices, Inc. | Thin absorber layer of a photovoltaic device |
US10505058B2 (en) | 2008-10-23 | 2019-12-10 | Alta Devices, Inc. | Photovoltaic device |
US8937244B2 (en) | 2008-10-23 | 2015-01-20 | Alta Devices, Inc. | Photovoltaic device |
US8912432B2 (en) | 2008-10-23 | 2014-12-16 | Alta Devices, Inc. | Photovoltaic device including an intermediate layer |
US20100126571A1 (en) * | 2008-10-23 | 2010-05-27 | Kizilyalli Isik C | Photovoltaic device with increased light trapping |
US20100126570A1 (en) * | 2008-10-23 | 2010-05-27 | Kizilyalli Isik C | Thin absorber layer of a photovoltaic device |
US8895847B2 (en) | 2008-10-23 | 2014-11-25 | Alta Devices, Inc. | Photovoltaic device with increased light trapping |
US20110056546A1 (en) * | 2008-10-23 | 2011-03-10 | Alta Devices, Inc. | Thin absorber layer of a photovoltaic device |
US20110056553A1 (en) * | 2008-10-23 | 2011-03-10 | Alta Devices, Inc. | Photovoltaic device |
US20110048532A1 (en) * | 2008-10-23 | 2011-03-03 | Alta Devices, Inc. | Photovoltaic device |
US20110048519A1 (en) * | 2008-10-23 | 2011-03-03 | Alta Devices, Inc. | Photovoltaic device with increased light trapping |
US20110041904A1 (en) * | 2008-10-23 | 2011-02-24 | Alta Devices, Inc. | Thin absorber layer of a photovoltaic device |
US8669467B2 (en) | 2008-10-23 | 2014-03-11 | Alta Devices, Inc. | Thin absorber layer of a photovoltaic device |
US10326033B2 (en) | 2008-10-23 | 2019-06-18 | Alta Devices, Inc. | Photovoltaic device |
US8895845B2 (en) * | 2008-10-23 | 2014-11-25 | Alta Devices, Inc. | Photovoltaic device |
US8686284B2 (en) | 2008-10-23 | 2014-04-01 | Alta Devices, Inc. | Photovoltaic device with increased light trapping |
US8895846B2 (en) * | 2008-10-23 | 2014-11-25 | Alta Devices, Inc. | Photovoltaic device |
US20120204942A1 (en) | 2008-10-23 | 2012-08-16 | Alta Devices, Inc. | Optoelectronic devices including heterojunction and intermediate layer |
US9136418B2 (en) | 2008-10-23 | 2015-09-15 | Alta Devices, Inc. | Optoelectronic devices including heterojunction and intermediate layer |
US9178099B2 (en) | 2008-10-23 | 2015-11-03 | Alta Devices, Inc. | Methods for forming optoelectronic devices including heterojunction |
US20100132780A1 (en) * | 2008-10-23 | 2010-06-03 | Kizilyalli Isik C | Photovoltaic device |
US8513514B2 (en) | 2008-10-24 | 2013-08-20 | Suncore Photovoltaics, Inc. | Solar tracking for terrestrial solar arrays with variable start and stop positions |
US8890044B2 (en) | 2008-10-24 | 2014-11-18 | Suncore Photovoltaics, Incorporated | Solar cell system |
US8507837B2 (en) | 2008-10-24 | 2013-08-13 | Suncore Photovoltaics, Inc. | Techniques for monitoring solar array performance and applications thereof |
US8236600B2 (en) | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US9691929B2 (en) | 2008-11-14 | 2017-06-27 | Solaero Technologies Corp. | Four junction inverted metamorphic multijunction solar cell with two metamorphic layers |
US10541349B1 (en) | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
US20100147366A1 (en) * | 2008-12-17 | 2010-06-17 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector |
US7785989B2 (en) | 2008-12-17 | 2010-08-31 | Emcore Solar Power, Inc. | Growth substrates for inverted metamorphic multijunction solar cells |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US7960201B2 (en) | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US20100233839A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | String Interconnection and Fabrication of Inverted Metamorphic Multijunction Solar Cells |
US20100186804A1 (en) * | 2009-01-29 | 2010-07-29 | Emcore Solar Power, Inc. | String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US8778199B2 (en) | 2009-02-09 | 2014-07-15 | Emoore Solar Power, Inc. | Epitaxial lift off in inverted metamorphic multijunction solar cells |
US20100206365A1 (en) * | 2009-02-19 | 2010-08-19 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers |
US20100229926A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US11961931B2 (en) | 2009-03-10 | 2024-04-16 | Solaero Technologies Corp | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US9018519B1 (en) | 2009-03-10 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US8969712B2 (en) | 2009-03-10 | 2015-03-03 | Solaero Technologies Corp. | Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer |
US10170656B2 (en) | 2009-03-10 | 2019-01-01 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
US10008623B2 (en) | 2009-03-10 | 2018-06-26 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US20100319764A1 (en) * | 2009-06-23 | 2010-12-23 | Solar Junction Corp. | Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells |
US8263856B2 (en) | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
US20110030774A1 (en) * | 2009-08-07 | 2011-02-10 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Back Contacts |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
US9012771B1 (en) | 2009-09-03 | 2015-04-21 | Suncore Photovoltaics, Inc. | Solar cell receiver subassembly with a heat shield for use in a concentrating solar system |
US9806215B2 (en) | 2009-09-03 | 2017-10-31 | Suncore Photovoltaics, Inc. | Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells |
US20110073887A1 (en) * | 2009-09-25 | 2011-03-31 | Alliance For Sustainable Energy, Llc | Optoelectronic devices having a direct-band-gap base and an indirect-band-gap emitter |
US9691921B2 (en) | 2009-10-14 | 2017-06-27 | Alta Devices, Inc. | Textured metallic back reflector |
US11271128B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device |
US9768329B1 (en) | 2009-10-23 | 2017-09-19 | Alta Devices, Inc. | Multi-junction optoelectronic device |
US11271133B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device with group IV semiconductor as a bottom junction |
US20110114163A1 (en) * | 2009-11-18 | 2011-05-19 | Solar Junction Corporation | Multijunction solar cells formed on n-doped substrates |
US8575473B2 (en) | 2010-03-29 | 2013-11-05 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US9252315B2 (en) | 2010-03-29 | 2016-02-02 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US9985152B2 (en) | 2010-03-29 | 2018-05-29 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US8912433B2 (en) | 2010-03-29 | 2014-12-16 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US9018522B2 (en) | 2010-03-29 | 2015-04-28 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US8187907B1 (en) | 2010-05-07 | 2012-05-29 | Emcore Solar Power, Inc. | Solder structures for fabrication of inverted metamorphic multijunction solar cells |
US20130221326A1 (en) * | 2010-10-12 | 2013-08-29 | Alliance for Substainable Energy, LLC | High Bandgap III-V Alloys for High Efficiency Optoelectronics |
US9543468B2 (en) * | 2010-10-12 | 2017-01-10 | Alliance For Sustainable Energy, Llc | High bandgap III-V alloys for high efficiency optoelectronics |
US10615304B2 (en) | 2010-10-13 | 2020-04-07 | Alta Devices, Inc. | Optoelectronic device with dielectric layer and method of manufacture |
US10355159B2 (en) | 2010-10-28 | 2019-07-16 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
US9214580B2 (en) | 2010-10-28 | 2015-12-15 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
WO2012115838A3 (en) * | 2011-02-25 | 2012-10-18 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
WO2012115838A2 (en) * | 2011-02-25 | 2012-08-30 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US8962991B2 (en) | 2011-02-25 | 2015-02-24 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US8766087B2 (en) | 2011-05-10 | 2014-07-01 | Solar Junction Corporation | Window structure for solar cell |
US20120305059A1 (en) * | 2011-06-06 | 2012-12-06 | Alta Devices, Inc. | Photon recycling in an optoelectronic device |
US8697481B2 (en) | 2011-11-15 | 2014-04-15 | Solar Junction Corporation | High efficiency multijunction solar cells |
US8962993B2 (en) | 2011-11-15 | 2015-02-24 | Solar Junction Corporation | High efficiency multijunction solar cells |
US11038080B2 (en) | 2012-01-19 | 2021-06-15 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
US10008628B2 (en) | 2012-01-19 | 2018-06-26 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US9502594B2 (en) | 2012-01-19 | 2016-11-22 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US11942566B2 (en) | 2012-01-19 | 2024-03-26 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
US9153724B2 (en) | 2012-04-09 | 2015-10-06 | Solar Junction Corporation | Reverse heterojunctions for solar cells |
US8569097B1 (en) | 2012-07-06 | 2013-10-29 | International Business Machines Corporation | Flexible III-V solar cell structure |
US8853529B2 (en) | 2012-07-06 | 2014-10-07 | International Business Machines Corporation | Flexible III-V solar cell structure |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
US9590131B2 (en) | 2013-03-27 | 2017-03-07 | Alliance For Sustainable Energy, Llc | Systems and methods for advanced ultra-high-performance InP solar cells |
US10026856B2 (en) * | 2013-03-27 | 2018-07-17 | Alliance For Sustainable Energy, Llc | Systems and methods for advanced ultra-high-performance InP solar cells |
US11233166B2 (en) | 2014-02-05 | 2022-01-25 | Array Photonics, Inc. | Monolithic multijunction power converter |
US9899550B2 (en) | 2015-08-12 | 2018-02-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electric power transfer system using optical power transfer |
US10381497B2 (en) | 2015-08-12 | 2019-08-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electric power transfer system using optical power transfer |
US10256359B2 (en) | 2015-10-19 | 2019-04-09 | Solaero Technologies Corp. | Lattice matched multijunction solar cell assemblies for space applications |
US10361330B2 (en) | 2015-10-19 | 2019-07-23 | Solaero Technologies Corp. | Multijunction solar cell assemblies for space applications |
US10818812B2 (en) * | 2015-10-19 | 2020-10-27 | Solaero Technologies Corp. | Method of fabricating multijunction solar cell assembly for space applications |
US10916675B2 (en) | 2015-10-19 | 2021-02-09 | Array Photonics, Inc. | High efficiency multijunction photovoltaic cells |
US11387377B2 (en) * | 2015-10-19 | 2022-07-12 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
US10403778B2 (en) | 2015-10-19 | 2019-09-03 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
US10270000B2 (en) | 2015-10-19 | 2019-04-23 | Solaero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
US9935209B2 (en) | 2016-01-28 | 2018-04-03 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10263134B1 (en) | 2016-05-25 | 2019-04-16 | Solaero Technologies Corp. | Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell |
US9985161B2 (en) | 2016-08-26 | 2018-05-29 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10636926B1 (en) | 2016-12-12 | 2020-04-28 | Solaero Technologies Corp. | Distributed BRAGG reflector structures in multijunction solar cells |
US10930808B2 (en) | 2017-07-06 | 2021-02-23 | Array Photonics, Inc. | Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells |
US12249667B2 (en) | 2017-08-18 | 2025-03-11 | Solaero Technologies Corp. | Space vehicles including multijunction metamorphic solar cells |
US11271122B2 (en) | 2017-09-27 | 2022-03-08 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having a dilute nitride layer |
US11569404B2 (en) | 2017-12-11 | 2023-01-31 | Solaero Technologies Corp. | Multijunction solar cells |
US10991835B2 (en) | 2018-08-09 | 2021-04-27 | Array Photonics, Inc. | Hydrogen diffusion barrier for hybrid semiconductor growth |
CN109708753A (en) * | 2019-02-22 | 2019-05-03 | 苏州馥昶空间技术有限公司 | A kind of four-quadrant GaAs sun sensor component and preparation method thereof |
US11211514B2 (en) | 2019-03-11 | 2021-12-28 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5376185A (en) | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications | |
US5223043A (en) | Current-matched high-efficiency, multijunction monolithic solar cells | |
CA2340997C (en) | Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material | |
Razykov et al. | Solar photovoltaic electricity: Current status and future prospects | |
Bertness et al. | 29.5%‐efficient GaInP/GaAs tandem solar cells | |
TWI600173B (en) | Multi-junction solar cell with low energy gap absorption layer in intermediate battery and manufacturing method thereof | |
US4667059A (en) | Current and lattice matched tandem solar cell | |
Dimroth et al. | Metamorphic GayIn1− yP/Ga1− xInxAs tandem solar cells for space and for terrestrial concentrator applications at C> 1000 suns | |
EP2083452A1 (en) | High concentration terrestrial solar cell arrangement with III-V compound semiconductor cell | |
Yamaguchi | High-Efficiency GaAs-Based Solar | |
US20140102506A1 (en) | High efficiency photovoltaic cell for solar energy harvesting | |
Andreev | GaAs and high-efficiency space cells | |
Andreev | An overview of TPV cell technologies | |
Green et al. | Solar cell efficiency tables (version 7) | |
Sabri et al. | improvement Efficiency of Solar Cells Using III-V Dual Junction: InGap/GaAs | |
Bertness et al. | High-efficiency GaInP/GaAs tandem solar cells for space and terrestrial applications | |
Ward et al. | GaInAsP solar cells with the ideal band gap for terrestrial concentrator applications | |
Schwartz | Photovoltaic power generation | |
Atouani et al. | Numerical Simulation of InGaP/GaAS/SiGe Tandem Solar Cell Using AMPS-1D | |
Licht | High Efficiency Solar Cells (What are the highest solar energy conversion efficiencies?) | |
Bhattacharya et al. | Effects of Gallium-Phosphide and Indium-Gallium-Antimonide semiconductor materials on photon absorption of multijunction solar cells | |
Smith et al. | Solar cells for NASA RAINBOW concentrator | |
Wanlass et al. | Development of high-performance GaInAsP solar cells for tandem solar cell applications | |
Bertness et al. | High-efficiency GaInP/GaAs tandem solar cells | |
Andreev | Solar cells for TPV converters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MIDWEST RESEARCH INSTITUTE, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANLASS, MARK W.;REEL/FRAME:006510/0336 Effective date: 19930510 |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MIDWEST RESEARCH INSTITUTE;REEL/FRAME:008863/0198 Effective date: 19940330 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20061227 |