CN101636842B - 由太阳能电池制造太阳能子电池的方法 - Google Patents
由太阳能电池制造太阳能子电池的方法 Download PDFInfo
- Publication number
- CN101636842B CN101636842B CN2007800469347A CN200780046934A CN101636842B CN 101636842 B CN101636842 B CN 101636842B CN 2007800469347 A CN2007800469347 A CN 2007800469347A CN 200780046934 A CN200780046934 A CN 200780046934A CN 101636842 B CN101636842 B CN 101636842B
- Authority
- CN
- China
- Prior art keywords
- electrode
- layer
- compound
- electrode layer
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/90—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
- H10F19/902—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
- H10F19/35—Structures for the connecting of adjacent photovoltaic cells, e.g. interconnections or insulating spacers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/70—Surface textures, e.g. pyramid structures
- H10F77/707—Surface textures, e.g. pyramid structures of the substrates or of layers on substrates, e.g. textured ITO layer on a glass substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种制造太阳能电池组件的方法,该太阳能电池组件包括串联连接的多个太阳能电池,该方法包括以下步骤:a)在一个系统上形成第一中断槽和第二互连槽,所述系统包括基板,该基板上覆盖着第一电极层,该第一电极层上覆盖着活性层,所述第一中断槽在前电极和活性层中提供中断,所述第二互连槽贯穿活性层,所述第一和第二槽定位为相互靠近;b)在所述中断槽中插入绝缘化合物;c)在所述活性层上邻近所述互连槽的位置处,在所述互连槽的与所述绝缘槽相反的一侧,施加剥离化合物;d)施加所述第二电极;以及e)去除所述剥离化合物以及在该位置处覆盖的第二电极,从而在所述第二电极中形成槽。
Description
技术领域
本发明涉及由太阳能电池制造太阳能子电池(solar sub-cell)的方法。
背景技术
对于制造(薄膜型)太阳能电池组件来说,必需将电池划分成多个子电池并将这些子电池串联连接,从而形成组件。电流的路径和电流密度是受限制的,以使由电阻引起的损失降低。组件电压被升高,以使其更好地适应于可能的应用。在采用薄膜技术的情况下,所述组件主要由很多带状的电池组成。这些电池相互单片式(monolithically)连接。在两个相邻的电池之间,前电极和背电极(back electrode)被中断。在两个中断之间,前电极和背电极被电连接。
薄膜型太阳能电池的主要层是透明导电氧化物层(前电极,位于太阳能电池的接收入射光的一侧)、活性层(例如,硅)和金属层(背电极,位于太阳能电池的另一侧)。另外,承载所述电池的基板也是重要的。
为了获得串联连接的薄膜型太阳能电池,通常需要进行以下工艺步骤:
●沉积在(玻璃)基板上的透明导电氧化物层(TCO)被构图(pattern)而具有平行的槽。这些槽形成了前电极中的中断。
●在该TCO层之上沉积的活性(例如,硅)层也被构图而具有平行的槽。这些槽形成了前电极和以后形成的背电极之间的连接。
●沉积在该活性层之上的背电极被构图而具有槽,这些槽形成中断。
为了避免过多的死区(dead zone),这三个层中的图形必须尽可能地相互靠近,并且各个层中的槽必须尽可能地窄。非常精确地重新定位是很重要的。
这种已知的工艺很费时间,因为它涉及三个独立的工艺步骤,而且,由于精度的要求,该工艺复杂。尤其是,对于在柔性基板上的薄膜型太阳能电池,伴随着多个步骤的构图处理,由于各个层的沉积导致的横向尺度的变化非常复杂。
因此,需要有一种制造太阳能电池组件的简便方法,能够在单个的连续执行的工艺中执行该方法。
P.Pernet等人曾经提出过一种单步骤工艺(Proc.2nd WorldConference PV,Wien,July 1998)。根据该工艺,在基板上沉积了所有需要的层(金属背电极、NIP层和ITO或ZnO前电极)之后,在一个工艺步骤中,利用选择性激光划片(selective laser scribing)形成三个深度不同的槽,然后用绝缘化合物填充最深的向下到达基板的槽,并且用导电膏体填充第二深的向下到达金属背电极的槽,该导电膏体覆盖位于最深的槽中的绝缘膏体,从而在背电极和前电极之间形成电连接。向下到达活性NIP层的最浅的槽是前电极中的中断。对于商业产品来说,这个方法似乎是不实用的,因为在执行激光划片步骤时,不能够总是避免在所开的槽中形成分支(shunting)。
WO 2005/015638描述了一种在基于临时的基板的太阳能电池薄片(solar cell foil)中提供串联连接的方法,其中,部分的基板保留在太阳能电池薄片上的互连位置处,以在互连上形成由保护材料构成的帽。
发明内容
本发明的一个目的是提供一种能够可靠地在商业上应用的单步骤方法。
为此,发展了一种方法,其允许在一个工艺步骤中执行所有需要的构图。由于不需要进行重新定位,因此该方法能够迅速并相对简单地执行。当电极和活性层之一已沉积在基板上时,进行构图。
本发明涉及一种制造太阳能电池组件的方法,所述太阳能电池组件包括串联连接的多个太阳能电池,其包括第一电极、活性层和第二电极,其中所述第一电极和第二电极中的至少一个是透明导电氧化物层,所述方法包括以下步骤:
a)在包括至少基板的系统中,形成第一中断槽和第二互连槽的至少一个对,其中所述基板被第一电极层覆盖,所述第一电极层被活性层覆盖,所述第一中断槽在前电极和活性层中提供中断,所述第二互连槽贯穿所述活性层,所述第一槽和第二槽定位为相互靠近;
b)在所述中断槽中填入绝缘化合物;
c)在步骤b)之前,或与步骤b)同时,或在步骤b)之后,在所述活性层上邻近所述互连槽的位置处,在所述互连槽的与所述绝缘槽相反的一侧,施加剥离(lift-off)化合物;
d)在所述活性层、所述绝缘化合物和所述剥离化合物之上施加第二电极;以及
e)去除所述剥离化合物以及在该位置处覆盖的第二电极,从而在所述第二电极中形成槽。
在根据本发明的方法的步骤a)中,设置第一中断槽,该第一中断槽在前电极中提供了中断。在该槽的第一实施例中,当第一电极是透明导电氧化物层和当第一电极是金属背电极这两种情况下,都可以通过形成贯穿活性层和第一电极层的槽来提供中断。在本发明的另一实施例中,仅当第一电极是透明导电氧化物层时,可以通过以这样的方式形成贯穿活性层的槽来提供中断,以便在绝缘槽的位置处透明导电氧化物层被玻璃化(vitrify)以在所述电极层中形成绝缘部分,即中断。在该后一种实施例中,利用了这样的事实,即,用作电极材料的一些材料在接受了足够的能量时显示出玻璃化的特性。玻璃化的材料不是导电的,而是绝缘的。当这种类型的材料被用作电极时,通过提供贯穿活性层的第一绝缘槽,同时提供足够的能量以使电极层在绝缘槽的位置处被玻璃化,可以获得在两个太阳能电池之间的绝缘。在一种实施例中,使用具有适当波长的激光,以使在活性层中槽的设置与下伏的(underlying)透明导电氧化物层的玻璃化组合。对合适的玻璃化方法的选择在本领域技术人员的知识范围内。用于该实施例的适当的电极材料包括铟锡氧化物(indium tin oxide)、氧化锌、掺杂有铝、氟、镓或硼的氧化锌、氧化镉、氧化锡、金属锡酸盐(例如,锡酸锌或锡酸镉),以及掺F的SnO2、掺Sb的SnO2、掺p的TCO,例如,铜酸盐(例如Sr基铜酸盐)。
如上所述,第一电极和第二电极中的至少一个是透明导电氧化物层。如果第一电极和第二电极都是透明导电氧化物层,就得到了一种半透明太阳能电池系统。然而,优选第一电极和第二电极中的一个为透明导电氧化物层,而第一电极和第二电极中的另一个为背电极,即,不透明金属层。因为背电极帮助将光线反射回太阳能电池,这样配置的电池总体上显示出更高的效率。
在本发明的一个实施例中,第一电极为沉积在永久基板(例如,玻璃基板)或耐高温透明聚合物基板上的透明导电氧化物层。在本说明书的行文中,永久性基板是在太阳能电池可以被使用之前不被去除的基板。在另一实施例中,第一电极是沉积在临时基板上的透明导电氧化物层。在本说明书的行文中,临时基板是在太阳能电池可以被使用之前要从TCO去除的基板。使用临时基板的方法在本领域是已知的,并且在例如WO 98/13882或WO99/49483中描述了这些方法。在再一实施例中,第一电极是沉积在永久性或临时基板上的背电极。
总之,对于根据本发明的方法中使用的基板,无论是永久性的还是临时基板,都优选为薄片(foil)的形式,以使该方法可以作为卷至卷(roll-to-roll)方法来执行。
这样的实施例是本发明的有吸引力的实施例,其中,第一电极是沉积在临时基板上的透明导电氧化物层,该临时基板是金属薄片。
这样的实施例也是本发明的有吸引力的实施例,其中,第一电极是沉积在永久性的玻璃或聚合物基板上的透明导电氧化物层。
这样的实施例也是本发明的有吸引力的实施例,其中,第一电极是沉积在永久性的玻璃或聚合物基板上的背电极层。
如以上所指出的,在将要形成的两个相邻的电池之间,两个槽设置为彼此靠近,第一槽在第一电极中提供中断,而第二槽仅贯穿活性层。该第二槽用于在前电极与背电极之间的将来的连接。这些槽定位为靠近在一起,以使死区最小化。
接下来,用绝缘化合物填充该第一绝缘槽,该绝缘化合物例如是避免在该位置处短路的惰性和绝缘的膏体。典型的绝缘化合物是本领域公知的有机单组分或多组分绝缘成分,例如环氧树脂(该环氧树脂基于双酚A或F或基于其他多元醇(例如脂族二醇))、酚醛树脂以及具有脂环族主链的环氧化物,以及反应性稀释剂,例如,丁基缩水甘油醚、甲酚缩水甘油醚、2-乙基己基缩水甘油醚等。通过利用普通固化剂在用于形成交联反应类型的适当的固化条件下(加热,UV光引发固化等)进行固化处理(或加聚作用),这些树脂可以被转化成具有期望的机械特性和电绝缘特性的热固性化合物,所述固化剂例如是,多元酸和酸酐、单胺和多胺、氨基树脂、聚酰胺、聚脲、多硫醇、聚硫醇(polymercaptane)、Lewis酸等。考虑到处理的速度,通过UV光固化的交联是优选的。合适的酸酐是邻苯二甲酸酐、(甲基)四氢邻苯二甲酸酐、偏苯三甲酸酐、(甲基)六氢邻苯二甲酸酐、甲基纳迪克酸酐(nadic methyl anhydride)、十二烷基琥珀酸酐等。聚酰胺的例子有Cognis公司的Versamid以及Air Products公司的Ancamide。合适的胺有二乙氨基丙胺、二亚乙基三胺、二乙基甲苯二胺、三亚乙基四胺、四亚乙基五胺、多亚乙基多胺、1,2-环己烷二胺、氨乙基哌嗪、间苯二胺、双氰胺、二氨基二苯砜。通过加入醇、酚、酸、叔胺以及含硫化合物,可以对所述固化反应进行催化。合适的硫醇有脂族和芳族(多)硫醇,如1,2-乙二硫醇、1,3-丙二硫醇、1,4-丁二硫醇、季戊四醇四巯基乙酸酯、1,2-乙二醇二巯基乙酸、1,4-苯二甲醇二巯基乙酸、1,3-苯二甲醇二巯基乙酸、1,2-苯二甲醇二巯基乙酸、1,4-苯二甲硫醇、1,3-苯二甲硫醇、1,2-苯二甲硫醇等。另一类的树脂包括(多)羟基官能化树脂((poly)hydroxy-functional resin),如羟基封端聚酯、聚醚二醇、聚醇,例如,用多异氰酸酯或多异氰脲酸酯交联的Desmophen,例如,Desmodur。在两种情况中,可选择地用来将所述绝缘化合物施加到所述槽的溶剂应该在进行固化之前挥发掉。也可以使用其他的绝缘化合物,例如,丙烯酸化单体和丙烯酸化(预)聚物或丙烯酸化(共)聚物或马来酰亚胺(共)聚物的混合物。在随后在升高的温度下进行PV薄片层压的情况下,优选通过加热或UV使这些化合物交联,因为热塑性塑料(没有交联的聚合物)在层压的条件下倾向于流动。考虑到为了承受串联连接的PV膜的机械负载所需要的对槽壁的粘着性,有必要适当地选择所述绝缘化合物。
最后,与第二连接槽相邻地在与第一绝缘槽相反的一侧施加第二化合物。该膏体用作剥离化合物,该剥离化合物准备在第二电极上形成中断。典型的剥离化合物为纤维素衍生物,例如,羟乙基纤维素、羟丙基纤维素、聚乙二醇、聚丙二醇、聚环氧乙烷、聚环氧丙烷、聚乙烯醇及其混合物。可以使用这些聚合物中的两种或多种的混合物,例如,聚乙二醇和聚丙二醇的混合物。这些聚合物通常与填料颗粒混合,该填料颗粒例如是滑石、盐(例如硫酸钡)、硅石(silica)、粘土(例如蒙脱土)等。优选的硅石材料是诸如Akzo Nobel公司的Kromasil等硅石。所述填料颗粒也可以是可膨胀的颗粒,例如Expancel类型的可热膨胀的颗粒。也可以使用水溶性颗粒,只要所述溶剂不是水。
优选同时施加所述剥离化合物和所述绝缘化合物,以使得在所述方法中同时应用两种化合物。
也可以在形成槽之前首先沉积剥离化合物线。在这个阶段就已经形成了所有所需要的图形。
然后,沉积第二电极。通过本体工艺(bulk process),仅在剥离膏体线的位置处去除第二电极而不需要重新定位。在显影(develop)剥离线之后,实现了与所述图形相反的太阳能电池的各个部分之间的串联连接。
附图说明
通过图1示例本发明。图1示出了本发明的各个工艺步骤。本发明不应被理解为仅限于所述图所示出的内容,或被该图示出的内容限制。
具体实施方式
i)表示这样的太阳能电池,其包括基板1、电极层2和活性层3。该基板可以是要被提供构图层的任何材料。因此,该基板可以由例如玻璃、聚合物或金属的单一的片构成,但它也可以由多层结构构成。该基板可以是临时基板或永久性基板。
ii)在活性层和电极层中形成一对槽4、5。第一槽被形成为穿过电极层和活性层,而第二槽形成为只穿过活性层。可以以几种方式形成该槽,例如,通过刻划,通过化学蚀刻,或通过激光蚀刻。优选采用后一种方法。如上所述,在第一电极是透明导电氧化物层的情况中,也可以通过在确保透明导电氧化物层的玻璃化的同时设置穿过活性层的槽,在所述透明导电氧化物层中设置中断。
这两个槽的宽度通常<0.25mm,优选<0.1mm,更优选为<0.5mm。这些槽的最小宽度通常为2微米。这一对槽中的第一槽和第二槽之间的距离通常为<1mm,优选为<0.5mm,更优选为<0.25mm。其最小距离通常为至少5微米。
iii)用绝缘化合物6填充第一槽,并且在准备在第二电极中形成中断的位置处在活性层上设置剥离化合物7。合适的化合物是如上所述的膏体,其可以以本领域中公知的几种方式被施加,例如,丝网印刷、使用墨水喷头(ink-jet)、或使用分配器(dispenser)。
在一个实施例中,使用了这样的剥离化合物,该剥离化合物是在聚合物和溶剂的溶液中平均颗粒尺寸大于2微米的填料颗粒的分散体(dispersion)。在设置有所述剥离化合物的材料上施加一层厚度小于2微米的背电极材料。
在该实施例中,使用了在聚合物溶液中填料颗粒的分散体。采用这种分散体有利地确保在其中该分散体被施加到基板上的位置处有特定的粗糙度,从而在随后施加的背电极层不会在基板的这些位置处均匀地沉积。而在这种图形处非均匀地沉积的层又使得聚合物能够被容易地去除,从而在该层中设置期望的槽。考虑到所不期望的图形线增宽,在该实施例的剥离化合物中使用的聚合物应优选在溶剂中的聚合物的浓度相对较低以使该聚合物溶解的条件下显示出高粘性。本领域技术人员将理解,溶液中的聚合物的量与分散的填料颗粒的量之比必须被优化,以获得图形线的适当的一致性以及图形(该图形通常的形式是线条)对其下面的光伏层的适当的粘着性,并且还使得随后对该图形的去除容易。合适的聚合物是纤维素衍生物,例如,羟乙基纤维素、羟丙基纤维素、聚乙二醇、聚丙二醇、聚环氧乙烷、聚环氧丙烷、聚乙烯醇以及它们的混合物。可以使用这些聚合物中的两种或多种的混合物,例如,聚乙二醇和聚丙二醇的混合物。所使用的溶剂可以是适合于溶解所述聚合物的任何溶剂。优选所述溶剂为水、醇(例如,甲醇、乙醇、丙醇),或它们的混合物。
在该实施例中用来提供分散体的填料颗粒具有大于2微米的平均颗粒尺寸,并应该优选为这样的惰性颗粒,其平均颗粒尺寸为2至20微米,更优选平均颗粒尺寸为5至15微米。太粗的颗粒会导致较低的图形分辨率和/或较宽的图形线。例如,所述填料颗粒可以是滑石、盐(例如硫酸钡)、硅石、粘土(例如蒙脱土)等。优选的硅石材料有诸如Akzo Nobel公司的Kromasil等硅石。所述填料颗粒也可以是可膨胀的颗粒,例如Expancel类型的可热膨胀的颗粒。也可以使用水溶性颗粒,只要所述溶剂不是水。在聚合物溶液中填料颗粒的分散体优选包含至少10重量%的填料颗粒,优选在10-50重量%范围内。
聚合物在溶液中的浓度以及分散的填料颗粒的量必须被优化以获得图形的适当的一致性以及该图形对基板的适当的粘着性,并且同时应该产生以后可以被容易地去除的图形。这种优化是本领域技术人员能够处理的。举例来说,当100克的7重量%的在乙醇和水的混合物中的羟丙基纤维素被提供有10克的填料颗粒(例如Kromasil),则聚合物与填料的比为7比10。
例如,通过分配器将分散体施加到光伏层上以形成期望的图形。在所施加的分散体的溶剂蒸发后,留下了干且粗糙的通常为线形式的图形。该图形线的粗糙程度受到分散体中的填料颗粒的量、平均颗粒尺寸以及颗粒尺寸分布的影响。
在该实施例中,所施加的背电极层厚度小于2微米,优选厚度为0.01至2微米,更优选为0.04至1微米。
可以在一次移动(movement)中施加所述槽和膏体线。为此,将多个工具固定在一个块体中,并且这些工具相对于彼此精确定位。在这种情况下,施加所述槽和膏体线的速度必须相同。可以将多个这样的块体一个挨一个地安装在一起,从而可以在一次移动中形成很多个槽-线对。这种配置尤其适用于卷至卷工艺。
将绝缘的膏体线施加在深槽4上。从所述槽延伸出来的部分处的宽度不是很重要,它可以是例如0.1mm至0.3mm之间。固化之后的高度不是很重要,其可以是例如<0.05mm,优选为<0.02mm,更优选为<0.01mm。
从连接槽到剥离线的中心的距离不是很重要,该距离一般为<0.5mm,优选为<0.25mm,其对应于第一槽的中心与剥离化合物的中心之间的距离,这不是很重要,并且通常<1.6mm,优选<0.6mm。剥离线的宽度通常在0.05至0.5mm之间,特别地在0.05至0.25mm之间,更特别地在0.05至0.15mm之间。
iv)沉积第二电极8。
v)通过本体工艺,仅在剥离膏体线的位置处去除第二电极而不进行重新定位。在对剥离线显影(develop)之后,实现了与所述图形相反的太阳能电池的各个部分之间的串联连接。对剥离化合物的去除可以通过以下方式来执行,使该系统与合适的溶剂接触足够长时间,以在施加了分散体的位置处使通常为聚合物的剥离化合物膨胀和/或溶解,然后去除该化合物,可选择地,与不再(完全)粘着的填料颗粒一起去除该化合物。当在上述工艺期间在被构图的位置处的所述层没有被完全去除时,可以在随后的诸如进一步的溶解或施加机械力的步骤(例如,通过清洗、擦拭和/或(轻轻地)刷)中去除剩余物。在使用包含填料的分散体的实施例中,在存在聚合物和填料颗粒的位置处层的非均匀沉积使得该层被容易地去除。
与溶剂进行接触的处理可以在低于该溶剂沸点的任何温度下进行,但通常在环境温度,例如15℃至50℃下进行。
典型地,用于进行萃取的溶剂是例如水、醇(例如甲醇、乙醇或丙醇)、或其混合物。如果剥离化合物包含溶剂,则用于进行萃取的溶剂可以是与用于形成聚合物分散体的溶剂相同的溶剂。
以上已描述了用于本发明的合适的透明导电氧化物。
所述活性层是光伏层,其可以包括本领域技术人员已知的任何合适的系统,例如,非晶硅(a-Si:H)、微晶硅、多晶硅、单晶硅、非晶碳化硅(a-SiC)和a-SiC:H、非晶硅-锗(a-SiGe)和a-SiGe:H、a-SiSn:H。而且,可以使用CIS(二硒化铜铟:CuInSe2)、碲化镉、Cu(In,Ga)Se、Cu(In,Ga,或其他)S、ZnSe/CIS、ZnO/CIS、和Mo/CIS/CdS/ZnO。优选使用非晶或微晶硅的薄膜型太阳能电池。
根据本发明的薄膜型太阳能电池片中的背电极优选既用作反射器又用作电极。通常,背电极具有约50至500nm的厚度,其可以包含任何具有光反射特性的合适的导电材料,优选为金属,特别地是铝、银,或这两种材料层的组合,并且该导电材料与半导体层形成良好的欧姆接触。优选地,可以通过例如电沉积、(在真空中)物理气相沉积或溅射,在相对低的温度(例如低于250℃)下,施加所述金属层。在使用银的情况下,优选首先施加粘着促进剂层。TiO2、TiN、ZnO和氧化铬是用于粘着促进剂层的合适的材料的例子,其优点是,当将这些材料施加到合适的厚度(例如20至200nm,特别地50至100nm)时,其还具有反射特性。
本领域技术人员公知施加各个层的方法,这里不需要进一步的说明。唯一值得注意的是,应注意第二电极是在这样的条件下施加的,以便在施加第二电极期间剥离化合物不被损坏或去除。显然,对于所有的层都应注意,如此选择沉积条件,以便在其上进行沉积的层不受所述沉积条件的影响。
如果需要,该太阳能电池可包括另外的已知组件,例如,密封材料或保护层,用于保护该设备不受环境影响。
Claims (9)
1.一种制造太阳能电池组件的方法,所述太阳能电池组件包括串联连接的多个太阳能电池,所述组件包括第一电极层、活性层和第二电极层,其中所述第一电极层和第二电极层中的至少一个是透明导电氧化物层,该方法包括以下步骤:
a)在包括至少基板的系统中,形成中断和互连槽的至少一个对,其中所述基板被第一电极层覆盖,所述第一电极层被活性层覆盖,所述互连槽贯穿所述活性层,所述中断和所述互连槽定位为相互靠近,所述中断为位于所述第一电极层和所述活性层中的中断槽或者是通过以如下方式形成贯穿所述活性层的槽而形成的:在该槽的位置处所述透明导电氧化物层被玻璃化;
b)在所述中断为中断槽的情况下,提供填充所述中断的绝缘化合物;
c)在所述活性层上邻近所述互连槽的位置处,在所述互连槽的与所述中断相反的一侧,施加剥离化合物;
d)在所述活性层、所述中断、所述互连槽和所述剥离化合物之上施加所述第二电极层;以及
e)去除所述剥离化合物以及在该位置处覆盖的第二电极层,从而在所述第二电极层中形成槽,
其中在一次移动中以固定的相对距离施加所述中断、所述互连槽、所述绝缘化合物和所述剥离化合物。
2.根据权利要求1的方法,其中,同时施加所述绝缘化合物和所述剥离化合物。
3.根据权利要求1或2的方法,其中,制造多对所述中断和所述互连槽,以获得用于太阳能子电池的一个或多个串联连接的图形。
4.根据权利要求1或2所述的方法,其中,以卷至卷工艺执行各个步骤。
5.根据权利要求1或2所述的方法,其中,通过激光划片来形成所述中断和所述互连槽。
6.根据权利要求1或2所述的方法,其中所述剥离化合物是在聚合物和溶剂的溶液中的具有大于2微米的平均颗粒尺寸的填料颗粒的分散体。
7.根据权利要求1或2所述的方法,其中所述第一电极层是透明导电氧化物层,而所述第二电极层是背电极。
8.根据权利要求7所述的方法,其中,所述透明导电氧化物层被沉积在透明永久基板上或临时基板上。
9.根据权利要求1或2所述的方法,其中,所述第一电极层是背电极,而所述第二电极层是透明导电氧化物层。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06126871.0 | 2006-12-21 | ||
EP06126871 | 2006-12-21 | ||
PCT/EP2007/064416 WO2008074879A2 (en) | 2006-12-21 | 2007-12-21 | Method for making solar sub-cells from a solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101636842A CN101636842A (zh) | 2010-01-27 |
CN101636842B true CN101636842B (zh) | 2013-05-01 |
Family
ID=38171314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800469347A Active CN101636842B (zh) | 2006-12-21 | 2007-12-21 | 由太阳能电池制造太阳能子电池的方法 |
Country Status (12)
Country | Link |
---|---|
US (1) | US8105868B2 (zh) |
EP (1) | EP2122684B1 (zh) |
JP (2) | JP2010514184A (zh) |
KR (1) | KR101450355B1 (zh) |
CN (1) | CN101636842B (zh) |
CA (1) | CA2670504A1 (zh) |
ES (1) | ES2624054T3 (zh) |
MX (1) | MX2009006725A (zh) |
MY (1) | MY151444A (zh) |
TW (1) | TW200849621A (zh) |
WO (1) | WO2008074879A2 (zh) |
ZA (1) | ZA200903699B (zh) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1647057A1 (en) * | 2003-07-22 | 2006-04-19 | Akzo Nobel N.V. | Process for manufacturing a solar cell foil using a temporary substrate |
US8017860B2 (en) | 2006-05-15 | 2011-09-13 | Stion Corporation | Method and structure for thin film photovoltaic materials using bulk semiconductor materials |
US8071179B2 (en) | 2007-06-29 | 2011-12-06 | Stion Corporation | Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials |
US8287942B1 (en) | 2007-09-28 | 2012-10-16 | Stion Corporation | Method for manufacture of semiconductor bearing thin film material |
US8759671B2 (en) | 2007-09-28 | 2014-06-24 | Stion Corporation | Thin film metal oxide bearing semiconductor material for single junction solar cell devices |
US7998762B1 (en) | 2007-11-14 | 2011-08-16 | Stion Corporation | Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration |
DE102007062620A1 (de) * | 2007-12-22 | 2009-07-09 | Schott Solar Gmbh | Verfahren und Vorrichtung zur Herstellung eines semitransparenten photovoltaischen Moduls |
DE112009001438B4 (de) * | 2008-06-09 | 2013-08-08 | Mitsubishi Electric Corp. | Fotoelektrischer Dünnfilm-Wandler und Verfahren zu dessen Herstellung |
US8642138B2 (en) | 2008-06-11 | 2014-02-04 | Stion Corporation | Processing method for cleaning sulfur entities of contact regions |
US8003432B2 (en) | 2008-06-25 | 2011-08-23 | Stion Corporation | Consumable adhesive layer for thin film photovoltaic material |
US9087943B2 (en) * | 2008-06-25 | 2015-07-21 | Stion Corporation | High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material |
DE102008036853A1 (de) * | 2008-08-07 | 2010-03-04 | Schott Solar Ag | Verfahren zur Herstellung eines photovoltaischen Moduls |
US7855089B2 (en) * | 2008-09-10 | 2010-12-21 | Stion Corporation | Application specific solar cell and method for manufacture using thin film photovoltaic materials |
US8008111B1 (en) * | 2008-09-29 | 2011-08-30 | Stion Corporation | Bulk copper species treatment of thin film photovoltaic cell and manufacturing method |
US8501521B1 (en) | 2008-09-29 | 2013-08-06 | Stion Corporation | Copper species surface treatment of thin film photovoltaic cell and manufacturing method |
US8026122B1 (en) | 2008-09-29 | 2011-09-27 | Stion Corporation | Metal species surface treatment of thin film photovoltaic cell and manufacturing method |
US8008110B1 (en) * | 2008-09-29 | 2011-08-30 | Stion Corporation | Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method |
US8236597B1 (en) | 2008-09-29 | 2012-08-07 | Stion Corporation | Bulk metal species treatment of thin film photovoltaic cell and manufacturing method |
US8008112B1 (en) | 2008-09-29 | 2011-08-30 | Stion Corporation | Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method |
US8394662B1 (en) | 2008-09-29 | 2013-03-12 | Stion Corporation | Chloride species surface treatment of thin film photovoltaic cell and manufacturing method |
US8476104B1 (en) | 2008-09-29 | 2013-07-02 | Stion Corporation | Sodium species surface treatment of thin film photovoltaic cell and manufacturing method |
US7910399B1 (en) | 2008-09-30 | 2011-03-22 | Stion Corporation | Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates |
US8383450B2 (en) * | 2008-09-30 | 2013-02-26 | Stion Corporation | Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials |
US7863074B2 (en) * | 2008-09-30 | 2011-01-04 | Stion Corporation | Patterning electrode materials free from berm structures for thin film photovoltaic cells |
US8425739B1 (en) | 2008-09-30 | 2013-04-23 | Stion Corporation | In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials |
US7947524B2 (en) * | 2008-09-30 | 2011-05-24 | Stion Corporation | Humidity control and method for thin film photovoltaic materials |
US8741689B2 (en) * | 2008-10-01 | 2014-06-03 | Stion Corporation | Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials |
US20110018103A1 (en) * | 2008-10-02 | 2011-01-27 | Stion Corporation | System and method for transferring substrates in large scale processing of cigs and/or cis devices |
US8435826B1 (en) | 2008-10-06 | 2013-05-07 | Stion Corporation | Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method |
US8003430B1 (en) * | 2008-10-06 | 2011-08-23 | Stion Corporation | Sulfide species treatment of thin film photovoltaic cell and manufacturing method |
US8168463B2 (en) | 2008-10-17 | 2012-05-01 | Stion Corporation | Zinc oxide film method and structure for CIGS cell |
US8344243B2 (en) * | 2008-11-20 | 2013-01-01 | Stion Corporation | Method and structure for thin film photovoltaic cell using similar material junction |
FR2939239B1 (fr) | 2008-12-03 | 2010-12-31 | Ecole Polytech | Module photovoltaique comprenant une electrode transparente conductrice d'epaisseur variable et procedes de fabrication d'un tel module |
KR20100088471A (ko) | 2009-01-30 | 2010-08-09 | 엘지디스플레이 주식회사 | 박막 태양전지의 제조방법 |
US20100279458A1 (en) * | 2009-04-29 | 2010-11-04 | Du Pont Apollo Ltd. | Process for making partially transparent photovoltaic modules |
US8241943B1 (en) | 2009-05-08 | 2012-08-14 | Stion Corporation | Sodium doping method and system for shaped CIGS/CIS based thin film solar cells |
DE102009020482A1 (de) * | 2009-05-08 | 2010-11-11 | Forschungszentrum Jülich GmbH | Verfahren zur Herstellung und Serienverschaltung von photovoltaischen Elementen zu einem Solarmodul und Solarmodul |
US8372684B1 (en) | 2009-05-14 | 2013-02-12 | Stion Corporation | Method and system for selenization in fabricating CIGS/CIS solar cells |
US8507786B1 (en) | 2009-06-27 | 2013-08-13 | Stion Corporation | Manufacturing method for patterning CIGS/CIS solar cells |
US8398772B1 (en) | 2009-08-18 | 2013-03-19 | Stion Corporation | Method and structure for processing thin film PV cells with improved temperature uniformity |
DE102009041905B4 (de) * | 2009-09-20 | 2013-08-22 | Solarion Ag Photovoltaik | Verfahren zur seriellen Verschaltung von Dünnschichtsolarzellen |
US8809096B1 (en) | 2009-10-22 | 2014-08-19 | Stion Corporation | Bell jar extraction tool method and apparatus for thin film photovoltaic materials |
US8859880B2 (en) * | 2010-01-22 | 2014-10-14 | Stion Corporation | Method and structure for tiling industrial thin-film solar devices |
US8263494B2 (en) | 2010-01-25 | 2012-09-11 | Stion Corporation | Method for improved patterning accuracy for thin film photovoltaic panels |
WO2011098544A1 (en) * | 2010-02-10 | 2011-08-18 | Tata Steel Nederland Technology Bv | Layered system for producing a solar cell on a metal substrate, method for producing said layered system |
US8142521B2 (en) * | 2010-03-29 | 2012-03-27 | Stion Corporation | Large scale MOCVD system for thin film photovoltaic devices |
US9096930B2 (en) | 2010-03-29 | 2015-08-04 | Stion Corporation | Apparatus for manufacturing thin film photovoltaic devices |
US20110290308A1 (en) * | 2010-05-28 | 2011-12-01 | General Electric Company | Monolithically integrated solar modules and methods of manufacture |
US20110303272A1 (en) * | 2010-06-09 | 2011-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric Conversion Device and Manufacturing Method Thereof |
US8461061B2 (en) | 2010-07-23 | 2013-06-11 | Stion Corporation | Quartz boat method and apparatus for thin film thermal treatment |
US8628997B2 (en) | 2010-10-01 | 2014-01-14 | Stion Corporation | Method and device for cadmium-free solar cells |
US8998606B2 (en) | 2011-01-14 | 2015-04-07 | Stion Corporation | Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices |
US8728200B1 (en) | 2011-01-14 | 2014-05-20 | Stion Corporation | Method and system for recycling processing gas for selenization of thin film photovoltaic materials |
US8436445B2 (en) | 2011-08-15 | 2013-05-07 | Stion Corporation | Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices |
US20130092218A1 (en) * | 2011-10-17 | 2013-04-18 | International Business Machines Corporation | Back-surface field structures for multi-junction iii-v photovoltaic devices |
KR101826912B1 (ko) | 2011-11-07 | 2018-02-08 | 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 | 광전변환소자 및 그 제조 방법 |
DE102012205378A1 (de) * | 2012-04-02 | 2013-10-02 | Robert Bosch Gmbh | Verfahren zur Herstellung von Dünnschichtsolarmodulen sowie nach diesem Verfahren erhältliche Dünnschichtsolarmodule |
KR101301003B1 (ko) * | 2012-04-30 | 2013-08-28 | 에스엔유 프리시젼 주식회사 | 박막 태양전지 제조방법 및 이를 이용하는 박막 태양전지 |
EP2711971B1 (de) * | 2012-09-21 | 2016-11-16 | JUMO GmbH & Co. KG | Verfahren zur Herstellung einer strukturierten Dünnschicht |
US9537031B2 (en) * | 2013-06-28 | 2017-01-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Nozzle assembly and method for fabricating a solar cell |
US20150020863A1 (en) | 2013-07-22 | 2015-01-22 | International Business Machines Corporation | Segmented thin film solar cells |
US10553738B2 (en) * | 2013-08-21 | 2020-02-04 | Sunpower Corporation | Interconnection of solar cells in a solar cell module |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1407634A (zh) * | 2001-08-31 | 2003-04-02 | 松下电器产业株式会社 | 太阳电池及其制造方法以及太阳电池的制造装置 |
CN1826693A (zh) * | 2003-07-22 | 2006-08-30 | 阿克佐诺贝尔股份有限公司 | 利用临时衬底制造太阳能电池薄片的方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745078A (en) * | 1986-01-30 | 1988-05-17 | Siemens Aktiengesellschaft | Method for integrated series connection of thin film solar cells |
DE3712589A1 (de) * | 1987-04-14 | 1988-11-03 | Nukem Gmbh | Verfahren zur herstellung von in reihe verschalteten duennschicht-solarzellen |
EP0334111A1 (de) * | 1988-03-24 | 1989-09-27 | Siemens Aktiengesellschaft | Verfahren zur integrierten Serienverschaltung von Dickschichtsolarzellen sowie Verwendung dieses Verfahrens bei der Herstellung einer Tandem-Solarzelle |
JPH069291B2 (ja) * | 1988-04-15 | 1994-02-02 | 日本板硝子株式会社 | リフトオフ用インク |
JP3035565B2 (ja) * | 1991-12-27 | 2000-04-24 | 株式会社半導体エネルギー研究所 | 薄膜太陽電池の作製方法 |
JPH0758351A (ja) * | 1993-08-10 | 1995-03-03 | Fuji Electric Co Ltd | 薄膜太陽電池の製造方法 |
JPH07336023A (ja) * | 1994-06-15 | 1995-12-22 | Yazaki Corp | プリント回路体の製造方法 |
ES2227677T3 (es) | 1996-09-26 | 2005-04-01 | Akzo Nobel N.V. | Hoja fina fotovoltaica y metodo para fabricarla. |
JPH11274525A (ja) * | 1998-03-23 | 1999-10-08 | Matsushita Battery Industrial Co Ltd | 太陽電池とその製造方法 |
EP0948004A1 (en) | 1998-03-26 | 1999-10-06 | Akzo Nobel N.V. | Method for making a photovoltaic cell containing a dye |
JP3685964B2 (ja) * | 1999-09-27 | 2005-08-24 | 株式会社半導体エネルギー研究所 | 光電変換装置 |
JP2003249673A (ja) | 2001-08-31 | 2003-09-05 | Matsushita Electric Ind Co Ltd | 太陽電池およびその製造方法ならびに太陽電池の製造装置 |
JP2003258274A (ja) * | 2002-02-27 | 2003-09-12 | Nissha Printing Co Ltd | 薄膜太陽電池用下部電極の製造方法 |
JP2004335981A (ja) * | 2003-05-12 | 2004-11-25 | Matsushita Electric Ind Co Ltd | 集積型太陽電池およびその製造方法 |
-
2007
- 2007-12-21 WO PCT/EP2007/064416 patent/WO2008074879A2/en active Application Filing
- 2007-12-21 CA CA002670504A patent/CA2670504A1/en not_active Abandoned
- 2007-12-21 TW TW096149555A patent/TW200849621A/zh unknown
- 2007-12-21 MY MYPI20092276 patent/MY151444A/en unknown
- 2007-12-21 KR KR1020097011647A patent/KR101450355B1/ko active Active
- 2007-12-21 MX MX2009006725A patent/MX2009006725A/es active IP Right Grant
- 2007-12-21 US US12/312,672 patent/US8105868B2/en active Active
- 2007-12-21 CN CN2007800469347A patent/CN101636842B/zh active Active
- 2007-12-21 ES ES07858032.1T patent/ES2624054T3/es active Active
- 2007-12-21 EP EP07858032.1A patent/EP2122684B1/en active Active
- 2007-12-21 JP JP2009542085A patent/JP2010514184A/ja active Pending
-
2009
- 2009-05-27 ZA ZA200903699A patent/ZA200903699B/xx unknown
-
2010
- 2010-11-29 JP JP2010265288A patent/JP2011071538A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1407634A (zh) * | 2001-08-31 | 2003-04-02 | 松下电器产业株式会社 | 太阳电池及其制造方法以及太阳电池的制造装置 |
CN1826693A (zh) * | 2003-07-22 | 2006-08-30 | 阿克佐诺贝尔股份有限公司 | 利用临时衬底制造太阳能电池薄片的方法 |
Non-Patent Citations (1)
Title |
---|
JP昭62-190882A 1987.08.21 |
Also Published As
Publication number | Publication date |
---|---|
TW200849621A (en) | 2008-12-16 |
KR20090117695A (ko) | 2009-11-12 |
CA2670504A1 (en) | 2008-06-26 |
EP2122684A2 (en) | 2009-11-25 |
ES2624054T3 (es) | 2017-07-12 |
CN101636842A (zh) | 2010-01-27 |
MX2009006725A (es) | 2009-06-30 |
US8105868B2 (en) | 2012-01-31 |
KR101450355B1 (ko) | 2014-10-15 |
ZA200903699B (en) | 2010-07-28 |
WO2008074879A3 (en) | 2008-09-25 |
EP2122684B1 (en) | 2017-02-08 |
US20100087026A1 (en) | 2010-04-08 |
MY151444A (en) | 2014-05-30 |
JP2010514184A (ja) | 2010-04-30 |
JP2011071538A (ja) | 2011-04-07 |
WO2008074879A2 (en) | 2008-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101636842B (zh) | 由太阳能电池制造太阳能子电池的方法 | |
KR101098065B1 (ko) | 임시기판을 사용하여 태양전지 호일을 제조하는 프로세스 | |
US20180175234A1 (en) | Array Of Monolithically Integrated Thin Film Photovoltaic Cells And Associated Methods | |
US8148626B2 (en) | Integrated thin-film solar cell and method of manufacturing the same | |
US20010037823A1 (en) | Process for manufacturing a thin film solar cell sheet with solar cells connected in series | |
US20130233374A1 (en) | Monolithically integrated solar modules and methods of manufacture | |
US7994418B2 (en) | Monolithically connected photovoltaic devices on flexible substrates | |
WO2003001602A2 (en) | Manufacturing a solar cell foil connected in series via a temporary substrate | |
EP1481427B1 (en) | Process for manufacturing a solar cell unit using a temporary substrate | |
EP1866974B1 (en) | Process for manufacturing pieces of a foil having an inorganic coating of e. g. tco | |
CN101952965A (zh) | 提供太阳能电池系统中串联连接的方法 | |
EP3403283B1 (en) | Method for interconnecting solar cells | |
KR102396820B1 (ko) | 태양 전지 모듈 및 그 제조 방법 | |
CN118829245A (zh) | 钙钛矿太阳能电池及其制作方法以及光伏组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |