[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a297845 -id:a297845
Displaying 1-10 of 23 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A003961 Completely multiplicative with a(prime(k)) = prime(k+1). +10
805
1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)
REFERENCES
Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022
EXAMPLE
a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
MAPLE
a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..80); # Alois P. Heinz, Sep 13 2017
MATHEMATICA
a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
PROG
(PARI) a(n)=local(f); if(n<1, 0, f=factor(n); prod(k=1, matsize(f)[1], nextprime(1+f[k, 1])^f[k, 2]))
(PARI) a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
(Haskell)
a003961 1 = 1
a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
-- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
(MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
(require 'factor)
(define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
;; Antti Karttunen, May 20 2014
(Perl) use ntheory ":all"; sub a003961 { vecprod(map { next_prime($_) } factor(shift)); } # Dana Jacobsen, Mar 06 2016
(Python)
from sympy import factorint, prime, primepi, prod
def a(n):
f=factorint(n)
return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
[a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017
CROSSREFS
See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A045966.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.
KEYWORD
nonn,mult,nice
AUTHOR
STATUS
approved
A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k). +10
241
0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024
LINKS
FORMULA
a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
EXAMPLE
From Gus Wiseman, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
30: {1,2,3}
40: {1,1,1,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
128: {1,1,1,1,1,1,1}
(End)
MAPLE
nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
A048675 := proc(n) local s, d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
# simpler alternative
f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
map(f, [$1..100]); # Robert Israel, Oct 10 2016
MATHEMATICA
a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
PROG
(Scheme, with memoization-macro definec, two alternatives)
(definec (A048675 n) (cond ((= 1 n) (- n 1)) (else (+ (A000079 (- (A055396 n) 1)) (A048675 (A032742 n))))))
(definec (A048675 n) (cond ((= 1 n) (- n 1)) (else (+ (* (A067029 n) (A000079 (- (A055396 n) 1))) (A048675 (A028234 n))))))
;; Antti Karttunen, Jul 29 2015
(definec (A048675 n) (cond ((= 1 n) 0) ((even? n) (+ 1 (A048675 (/ n 2)))) (else (* 2 (A048675 (A064989 n)))))) ;; Third one, using the new recurrence. - Antti Karttunen, Oct 11 2016
(PARI) a(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
(PARI)
\\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
v048675sigs = readvec("a048675.txt");
A048675(n) = if(n<=2, n-1, my(prsig=v048675sigs[n], ps=prsig[1], es=prsig[2]); prod(i=1, #ps, ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
(Python)
from sympy import factorint, primepi
def a(n):
if n==1: return 0
f=factorint(n)
return sum([f[i]*2**(primepi(i) - 1) for i in f])
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017
CROSSREFS
Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 14 1999
EXTENSIONS
Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017
STATUS
approved
A066208 All primes that divide n are of the form prime(2k-1), where prime(k) is k-th prime. +10
105
1, 2, 4, 5, 8, 10, 11, 16, 17, 20, 22, 23, 25, 31, 32, 34, 40, 41, 44, 46, 47, 50, 55, 59, 62, 64, 67, 68, 73, 80, 82, 83, 85, 88, 92, 94, 97, 100, 103, 109, 110, 115, 118, 121, 124, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 164, 166, 167, 170, 176, 179, 184 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The partitions into odd parts, encoded by their Heinz numbers. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: 50 ( = 2*5*5) is in the sequence because it is the Heinz number of the partition [1, 3, 3]. - Emeric Deutsch, May 19 2015
From Peter Munn, Aug 11 2022: (Start)
Closed under multiplication.
Encodings, as defined in A206284, of even polynomials with nonnegative integer coefficients; so closed under application of A297845(.,.), which represents the multiplication of polynomials encoded this way.
(End)
For every positive integer m there exists a unique ordered pair of positive integers (j,k) such that m = a(j)*A066207(k). - Christopher Scussel, Aug 08 2023
LINKS
EXAMPLE
20 is included because 20 = 2^2 * 5 = p(1)^2 * p(3) and 1 and 3 are both odd.
PROG
(PARI) { n=0; for (m=2, 10^9, f=factor(m); b=1; for(i=1, matsize(f)[1], if (primepi(f[i, 1])%2 == 0, b=0; break)); if (b, write("b066208.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 06 2010
CROSSREFS
Cf. A066207.
See comments for the relationship to A206284, A215366, A297845.
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 16 2001
EXTENSIONS
Offset changed from 0 to 1 by Harry J. Smith, Feb 06 2010
a(61) and a(62) from Harry J. Smith, Feb 06 2010
1 prepended by Peter Munn, Aug 11 2022
STATUS
approved
A348717 a(n) is the least k such that A003961^i(k) = n for some i >= 0 (where A003961^i denotes the i-th iterate of A003961). +10
69
1, 2, 2, 4, 2, 6, 2, 8, 4, 10, 2, 12, 2, 14, 6, 16, 2, 18, 2, 20, 10, 22, 2, 24, 4, 26, 8, 28, 2, 30, 2, 32, 14, 34, 6, 36, 2, 38, 22, 40, 2, 42, 2, 44, 12, 46, 2, 48, 4, 50, 26, 52, 2, 54, 10, 56, 34, 58, 2, 60, 2, 62, 20, 64, 14, 66, 2, 68, 38, 70, 2, 72, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
All terms except a(1) = 1 are even.
To compute a(n) for n > 1:
- if n = Product_{j = 1..o} prime(p_j)^e_j (where prime(i) denotes the i-th prime number, p_1 < ... < p_o and e_1 > 0)
- then a(n) = Product_{j = 1..o} prime(p_j + 1 - p_1)^e_j.
This sequence has similarities with A304776: here we shift down prime indexes, there prime exponents.
Smallest number generated by uniformly decrementing the indices of the prime factors of n. Thus, for n > 1, the smallest m > 1 such that the first differences of the indices of the ordered prime factors (including repetitions) are the same for m and n. As a function, a(.) preserves properties such as prime signature. - Peter Munn, May 12 2022
LINKS
FORMULA
a(n) = n iff n belongs to A004277.
A003961^(A055396(n)-1)(a(n)) = n for any n > 1.
a(n) = 2 iff n belongs to A000040 (prime numbers).
a(n) = 4 iff n belongs to A001248 (squares of prime numbers).
a(n) = 6 iff n belongs to A006094 (products of two successive prime numbers).
a(n) = 8 iff n belongs to A030078 (cubes of prime numbers).
a(n) = 10 iff n belongs to A090076.
a(n) = 12 iff n belongs to A251720.
a(n) = 14 iff n belongs to A090090.
a(n) = 16 iff n belongs to A030514.
a(n) = 30 iff n belongs to A046301.
a(n) = 32 iff n belongs to A050997.
a(n) = 36 iff n belongs to A166329.
a(1) = 1, for n > 1, a(n) = 2*A246277(n). - Antti Karttunen, Feb 23 2022
a(n) = A122111(A243074(A122111(n))). - Peter Munn, Feb 23 2022
From Peter Munn and Antti Karttunen, May 12 2022: (Start)
a(1) = 1; a(2n) = 2n; a(A003961(n)) = a(n). [complete definition]
a(n) = A005940(1+A322993(n)) = A005940(1+A000265(A156552(n))).
Equivalently, A156552(a(n)) = A000265(A156552(n)).
A297845(a(n), A020639(n)) = n.
A046523(a(n)) = A046523(n).
A071364(a(n)) = A071364(n).
a(n) >= A071364(n).
A243055(a(n)) = A243055(n).
(End)
MATHEMATICA
a[1] = 1; a[n_] := Module[{f = FactorInteger[n], d}, d = PrimePi[f[[1, 1]]] - 1; Times @@ ((Prime[PrimePi[#[[1]]] - d]^#[[2]]) & /@ f)]; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
PROG
(PARI) a(n) = { my (f=factor(n)); if (#f~>0, my (pi1=primepi(f[1, 1])); for (k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f) }
CROSSREFS
Positions of particular values (see formula section): A000040, A001248, A006094, A030078, A030514, A046301, A050997, A090076, A090090, A166329, A251720.
Also see formula section for the relationship to: A000265, A003961, A004277, A005940, A020639, A046523, A055396, A071364, A122111, A156552, A243055, A243074, A297845, A322993.
Sequences with comparable definitions: A304776, A316437.
Cf. A246277 (terms halved), A305897 (restricted growth sequence transform), A354185 (Möbius transform), A354186 (Dirichlet inverse), A354187 (sum with it).
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Oct 31 2021
STATUS
approved
A325698 Numbers with as many even as odd prime indices, counted with multiplicity. +10
64
1, 6, 14, 15, 26, 33, 35, 36, 38, 51, 58, 65, 69, 74, 77, 84, 86, 90, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 156, 158, 161, 177, 178, 185, 196, 198, 201, 202, 209, 210, 214, 215, 216, 217, 219, 221, 225, 226, 228, 249, 262, 265, 278, 287, 291, 299 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
These are Heinz numbers of the integer partitions counted by A045931.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The integers in the multiplicative subgroup of positive rational numbers generated by the products of two consecutive primes (A006094). The sequence is closed under multiplication, prime shift (A003961), and - where the result is an integer - under division. Using these closures, all the terms can be derived from the presence of 6. For example, A003961(6) = 15, A003961(15) = 35, 6 * 35 = 210, 210/15 = 14. Closed also under A297845, since A297845 can be defined using squaring, prime shift and multiplication. - Peter Munn, Oct 05 2020
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
6: {1,2}
14: {1,4}
15: {2,3}
26: {1,6}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
51: {2,7}
58: {1,10}
65: {3,6}
69: {2,9}
74: {1,12}
77: {4,5}
84: {1,1,2,4}
86: {1,14}
90: {1,2,2,3}
93: {2,11}
95: {3,8}
MATHEMATICA
Select[Range[100], Total[Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k*(-1)^PrimePi[p]]]==0&]
PROG
(PARI) is(n) = {my(v = vector(2), f = factor(n)); for(i = 1, #f~, v[1 + primepi(f[i, 1])%2]+=f[i, 2]); v[1] == v[2]} \\ David A. Corneth, Oct 06 2020
(Python)
from sympy import factorint, primepi
def ok(n):
v = [0, 0]
for p, e in factorint(n).items(): v[primepi(p)%2] += e
return v[0] == v[1]
print([k for k in range(300) if ok(k)]) # Michael S. Branicky, Apr 16 2022 after David A. Corneth
CROSSREFS
Positions of 0's in A195017.
A257992(n) = A257991(n).
Closed under: A003961, A003991, A297845.
Subsequence of A028260, A332820.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2019
STATUS
approved
A046337 Odd numbers with an even number of prime factors (counted with multiplicity). +10
35
1, 9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 81, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 129, 133, 135, 141, 143, 145, 155, 159, 161, 169, 177, 183, 185, 187, 189, 201, 203, 205, 209, 213, 215, 217, 219, 221, 225, 235, 237, 247, 249, 253, 259 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
{k | A000035(k) > 0 and A008836(k) > 0}. - Antti Karttunen, Jan 13 2023
MATHEMATICA
Select[Range[1, 301, 2], EvenQ[PrimeOmega[#]]&] (* Harvey P. Dale, Jul 25 2011 *)
PROG
(PARI) lista(nn) = {forstep(n=1, nn, 2, if (bigomega(n) % 2 == 0, print1(n, ", "))); } \\ Michel Marcus, Jul 04 2015
CROSSREFS
Intersection of A005408 and A028260.
Setwise difference A005408 \ A067019.
Setwise difference A028260 \ A063745.
Union of A359161 and A359163.
Union of A327862 and A360110.
Subsequence of A345452, of A356312 and of A359371.
Positions of positive terms in A166698, positions of even terms in A327858 and A356299.
Subsequences: A002557, A046315 (odd semiprimes), A056913, A359596, A359607, A359608 (without its term 2).
Cf. A000035, A008836, A046338, A046470, A353557 (characteristic function), A358777.
Cf. also A036349, A297845.
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved
A248663 Binary encoding of the prime factors of the squarefree part of n. +10
35
0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 2, 32, 9, 6, 0, 64, 1, 128, 4, 10, 17, 256, 3, 0, 33, 2, 8, 512, 7, 1024, 1, 18, 65, 12, 0, 2048, 129, 34, 5, 4096, 11, 8192, 16, 4, 257, 16384, 2, 0, 1, 66, 32, 32768, 3, 20, 9, 130, 513, 65536, 6, 131072, 1025, 8, 0, 36, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The binary digits of a(n) encode the prime factorization of A007913(n), where the i-th digit from the right is 1 if and only if prime(i) divides A007913(n), otherwise 0. - Robert Israel, Jan 12 2015
Old name: a(1) = 0; a(A000040(n)) = 2^(n-1), and a(n*m) = a(n) XOR a(m).
XOR is the bitwise exclusive or operation (A003987).
a(k^2) = 0 for a natural number k.
Equivalently, the i-th binary digit from the right is 1 iff prime(i) divides n an odd number of times, otherwise zero. - Ethan Beihl, Oct 15 2016
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443, with scheme explained in A206284), then A048675(n) gives the evaluation of that polynomial at x=2. This sequence is otherwise similar, except the polynomial is evaluated over the field GF(2), which implies also that all its coefficients are essentially reduced modulo 2. - Antti Karttunen, Dec 11 2015
Squarefree numbers (A005117) give the positions k where a(k) = A048675(k). - Antti Karttunen, Oct 29 2016
From Peter Munn, Jun 07 2021: (Start)
When we encode polynomials with nonnegative integer coefficients as described by Antti Karttunen above, polynomial addition is represented by integer multiplication, multiplication is represented by A297845(.,.), and this sequence represents a surjective semiring homomorphism to polynomials in GF(2)[x] (encoded as described in A048720). The mapping of addition operations by this homomorphism is part of the sequence definition: "a(n*m) = a(n) XOR a(m)". The mapping of multiplication is given by a(A297845(n, k)) = A048720(a(n), a(k)).
In a related way, A329329 defines a representation of a different set of polynomials as positive integers, namely polynomials in GF(2)[x,y].
Let P_n(x,y) denote the polynomial represented, as in A329329, by n >= 1. If 0 is substituted for y in P_n(x,y), we get a polynomial P'_n(x,y) (in which y does not appear, of course) that is equivalent to a polynomial P'_n(x) in GF(2)[x]. a(n) is the integer encoding of P'_n(x) (described in A048720).
Viewed as above, this sequence represents another surjective homomorphism, a homomorphism between polynomial rings, with A329329(.,.)/A059897(.,.) and A048720(.,.)/A003987(.,.) as the respective ring operations.
a(n) can be composed as a(n) = A048675(A007913(n)) and the effect of the A007913(.) component corresponds to different operations on the respective polynomial domains of the two homomorphisms described above. In the first homomorphism, coefficients are reduced modulo 2; in the second, 0 is substituted for y. This is illustrated in the examples.
(End)
LINKS
Eric Weisstein's World of Mathematics, Squarefree Part
Wikipedia, Polynomial ring
FORMULA
a(1) = 0; for n > 1, if n is a prime, a(n) = 2^(A000720(n)-1), otherwise a(A020639(n)) XOR a(A032742(n)). [After the definition.] - Antti Karttunen, Dec 11 2015
For n > 1, this simplifies to: a(n) = 2^(A055396(n)-1) XOR a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n. Cf. a similar formula for A048675.]
Other identities and observations. For all n >= 0:
a(n) = A048672(A100112(A007913(n))). - Peter Kagey, Dec 10 2015
From Antti Karttunen, Dec 11 2015, Sep 19 & Oct 27 2016, Feb 15 2021: (Start)
a(n) = a(A007913(n)). [The result depends only on the squarefree part of n.]
a(n) = A048675(A007913(n)).
a(A206296(n)) = A168081(n).
a(A260443(n)) = A264977(n).
a(A265408(n)) = A265407(n).
a(A275734(n)) = A275808(n).
a(A276076(n)) = A276074(n).
a(A283477(n)) = A006068(n).
(End)
From Peter Munn, Jan 09 2021 and Apr 20 2021: (Start)
a(n) = A007814(A225546(n)).
a(A019565(n)) = n; A019565(a(n)) = A007913(n).
a(A003961(n)) = 2 * a(n).
a(A297845(n, k)) = A048720(a(n), a(k)).
a(A329329(n, k)) = A048720(a(n), a(k)).
a(A059897(n, k)) = A003987(a(n), a(k)).
a(A331590(n, k)) = a(n) + a(k).
a(A334747(n)) = a(n) + 1.
(End)
EXAMPLE
a(3500) = a(2^2 * 5^3 * 7) = a(2) XOR a(2) XOR a(5) XOR a(5) XOR a(5) XOR a(7) = 1 XOR 1 XOR 4 XOR 4 XOR 4 XOR 8 = 0b0100 XOR 0b1000 = 0b1100 = 12.
From Peter Munn, Jun 07 2021: (Start)
The examples in the table below illustrate the homomorphisms (between polynomial structures) represented by this sequence.
The staggering of the rows is to show how the mapping n -> A007913(n) -> A048675(A007913(n)) = a(n) relates to the encoded polynomials, as not all encodings are relevant at each stage.
For an explanation of each polynomial encoding, see the sequence referenced in the relevant column heading. (Note also that A007913 generates squarefree numbers, and with these encodings, all squarefree numbers represent equivalent polynomials in N[x] and GF(2)[x,y].)
|<----- encoded polynomials ----->|
n A007913(n) a(n) | N[x] GF(2)[x,y] GF(2)[x]|
--------------------------------------------------------------
24 x+3 x+y+1
6 x+1 x+1
3 x+1
--------------------------------------------------------------
36 2x+2 xy+y
1 0 0
0 0
--------------------------------------------------------------
60 x^2+x+2 x^2+x+y
15 x^2+x x^2+x
6 x^2+x
--------------------------------------------------------------
90 x^2+2x+1 x^2+xy+1
10 x^2+1 x^2+1
5 x^2+1
--------------------------------------------------------------
This sequence is a left inverse of A019565. A019565(.) maps a(n) to A007913(n) for all n, effectively reversing the second stage of the mapping from n to a(n) shown above. So, with the encodings used here, A019565(.) represents each of two injective homomorphisms that map polynomials in GF(2)[x] to equivalent polynomials in N[x] and GF(2)[x,y] respectively.
(End)
MAPLE
f:= proc(n)
local F, f;
F:= select(t -> t[2]::odd, ifactors(n)[2]);
add(2^(numtheory:-pi(f[1])-1), f = F)
end proc:
seq(f(i), i=1..100); # Robert Israel, Jan 12 2015
MATHEMATICA
a[1] = 0; a[n_] := a[n] = If[PrimeQ@ n, 2^(PrimePi@ n - 1), BitXor[a[#], a[n/#]] &@ FactorInteger[n][[1, 1]]]; Array[a, 66] (* Michael De Vlieger, Sep 16 2016 *)
PROG
(Ruby)
require 'prime'
def f(n)
a = 0
reverse_primes = Prime.each(n).to_a.reverse
reverse_primes.each do |prime|
a <<= 1
while n % prime == 0
n /= prime
a ^= 1
end
end
a
end
(Scheme, with memoizing-macro definec)
(definec (A248663 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (A000079 (- (A000720 n) 1))) (else (A003987bi (A248663 (A020639 n)) (A248663 (A032742 n)))))) ;; Where A003987bi computes bitwise-XOR as in A003987.
;; Alternatively:
(definec (A248663 n) (cond ((= 1 n) 0) (else (A003987bi (A000079 (- (A055396 n) 1)) (A248663 (A032742 n))))))
;; Antti Karttunen, Dec 11 2015
(PARI) A248663(n) = vecsum(apply(p -> 2^(primepi(p)-1), factor(core(n))[, 1])); \\ Antti Karttunen, Feb 15 2021
(Haskell)
import Data.Bits (xor)
a248663 = foldr (xor) 0 . map (\i -> 2^(i - 1)) . a112798_row
-- Peter Kagey, Sep 16 2016
(Python)
from sympy import factorint, primepi
from sympy.ntheory.factor_ import core
def a048675(n):
f=factorint(n)
return 0 if n==1 else sum([f[i]*2**(primepi(i) - 1) for i in f])
def a(n): return a048675(core(n)) print [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 21 2017
CROSSREFS
A048675 composed with A007913. A007814 composed with A225546.
A left inverse of A019565.
Other sequences used to express relationship between terms of this sequence: A003961, A007913, A331590, A334747.
Cf. also A099884, A277330.
A087207 is the analogous sequence with OR.
A277417 gives the positions where coincides with A277333.
A000290 gives the positions of zeros.
KEYWORD
nonn,base
AUTHOR
Peter Kagey, Jan 11 2015
EXTENSIONS
New name from Peter Munn, Nov 01 2023
STATUS
approved
A206284 Numbers that match irreducible polynomials over the nonnegative integers. +10
28
3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 28, 30, 36, 40, 42, 44, 46, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 76, 80, 81, 88, 92, 96, 98, 100, 102, 104, 108, 112, 114, 116, 118, 120, 124, 126, 130, 132, 136, 140, 144, 148, 150, 152, 154, 160, 162, 164, 168, 170 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Starting with 1, which encodes 0-polynomial, each integer m encodes (or "matches") a polynomial p(m,x) with nonnegative integer coefficients determined by the prime factorization of m. Write m = prime(1)^e(1) * prime(2)^e(2) * ... * prime(k)^e(k); then p(m,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k.
Identities:
p(m*n,x) = p(m,x) + p(n,x),
p(m*n,x) = p(gcd(m,n),x) + p(lcm(m,n),x),
p(m+n,x) = p(gcd(m,n),x) + p((m+n)/gcd(m,n),x), so that if A003057 is read as a square matrix, then
p(A003057,x) = p(A003989,x) + p(A106448,x).
Apart from powers of 3, all terms are even. - Charles R Greathouse IV, Feb 11 2012
Contains 2*p^m and p*2^m if p is an odd prime and m is in A052485. - Robert Israel, Oct 09 2016
LINKS
EXAMPLE
Polynomials having nonnegative integer coefficients are matched to the positive integers as follows:
m p(m,x) irreducible
---------------------------
1 0 no
2 1 no
3 x yes
4 2 no
5 x^2 no
6 1+x yes
7 x^3 no
8 3 no
9 2x yes
10 1+x^2 yes
MAPLE
P:= n -> add(f[2]*x^(numtheory:-pi(f[1])-1), f = ifactors(n)[2]):
select(irreduc @ P, [$1..200]); # Robert Israel, Oct 09 2016
MATHEMATICA
b[n_] := Table[x^k, {k, 0, n}];
f[n_] := f[n] = FactorInteger[n]; z = 400;
t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
== Prime[k], f[n][[m, 2]], 0];
u = Table[Apply[Plus,
Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
Length[f[n]]}]], {n, 1, z}];
p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
Table[p[n, x], {n, 1, z/4}]
v = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
AppendTo[v, n]], {n, z/2}]; v (* A206284 *)
Complement[Range[200], v] (* A206285 *)
PROG
(PARI) is(n)=my(f=factor(n)); polisirreducible(sum(i=1, #f[, 1], f[i, 2]*'x^primepi(f[i, 1]-1))) \\ Charles R Greathouse IV, Feb 12 2012
CROSSREFS
Cf. A052485, A206285 (complement), A206296.
Positions of ones in A277322.
Terms of A277318 form a proper subset of this sequence. Cf. also A277316.
Other sequences about factorization in the same polynomial ring: A206442, A284010.
Polynomial multiplication using the same encoding: A297845.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 05 2012
EXTENSIONS
Introductory comments edited by Antti Karttunen, Oct 09 2016 and Peter Munn, Aug 13 2022
STATUS
approved
A332823 A 3-way classification indicator generated by the products of two consecutive primes and the cubes of primes. a(n) is -1, 0, or 1 such that a(n) == A048675(n) (mod 3). +10
25
0, 1, -1, -1, 1, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 0, 0, 1, -1, 1, 1, -1, 0, -1, 0, 0, -1, 0, 1, 1, 1, -1, -1, 0, -1, -1, 1, 0, 1, 0, 0, 1, -1, 1, -1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 0, 1, 1, 0, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, -1, -1, -1, 1, 0, -1, 0, 1, 1, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Completely additive modulo 3.
The equivalent sequence modulo 2 is A096268 (with offset 1), which produces the {A003159, A036554} classification.
Let H be the multiplicative subgroup of the positive rational numbers generated by the products of two consecutive primes and the cubes of primes. a(n) indicates the coset of H containing n. a(n) = 0 if n is in H. a(n) = 1 if n is in 2H. a(n) = -1 if n is in (1/2)H.
The properties of this classification can usefully be compared to two well-studied classifications. With the {A026424, A028260} classes, multiplying a member of one class by a prime gives a member of the other class. With the {A000028, A000379} classes, adding a factor to the Fermi-Dirac factorization of a member of one class gives a member of the other class. So, if 4 is not a Fermi-Dirac factor of k, k and 4k will be in different classes of the {A000028, A000379} set; but k and 4k will be in the same class of the {A026424, A028260} set. For two numbers to necessarily be in different classes when they differ in either of the 2 ways described above, 3 classes are needed.
With the classes defined by this sequence, no two of k, 2k and 4k are in the same class. This is a consequence of the following stronger property: if k is any positive integer and m is a member of A050376 (often called Fermi-Dirac primes), then no two of k, k * m, k * m^2 are in the same class. Also, if p and q are consecutive primes, then k * p and k * q are in different classes.
Further properties are given in the sequences that list the classes: A332820, A332821, A332822.
The scaled imaginary part of the Eisenstein integer-valued function, f, defined in A353445. - Peter Munn, Apr 27 2022
LINKS
FORMULA
a(n) = A102283(A048675(n)) = -1 + (1 + A048675(n)) mod 3.
a(1) = 0; for n > 1, a(n) = A102283[(A067029(n) * (2-(A000035(A055396(n))))) + a(A028234(n))].
For all n >= 1, k >= 1: (Start)
a(n * k) == a(n) + a(k) (mod 3).
a(A331590(n,k)) == a(n) + a(k) (mod 3).
a(n^2) = -a(n).
a(A003961(n)) = -a(n).
a(A297845(n,k)) = a(n) * a(k).
(End)
For all n >= 1: (Start)
a(A000040(n)) = (-1)^(n-1).
a(A225546(n)) = a(n).
a(A097248(n)) = a(n).
a(A332461(n)) = a(A332462(n)) = A332814(n).
(End)
a(n) = A332814(A332462(n)). [Compare to the formula above. For a proof, see A353350.] - Antti Karttunen, Apr 16 2022
PROG
(PARI) A332823(n) = { my(f = factor(n), u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u, -1, u); };
CROSSREFS
Cf. A332813 (0,1,2 version of this sequence), A353350.
Cf. A353354 (inverse Möbius transform, gives another 3-way classification indicator function).
Cf. A332820, A332821, A332822 for positions of 0's, 1's and -1's in this sequence; also A003159, A036554 for the modulo 2 equivalents.
Comparable functions: A008836, A064179, A096268, A332814.
A000035, A003961, A028234, A055396, A067029, A097248, A225546, A297845, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A000040, A332461, A332462.
KEYWORD
sign
AUTHOR
Antti Karttunen and Peter Munn, Feb 25 2020
STATUS
approved
A329332 Table of powers of squarefree numbers, powers of A019565(n) in increasing order in row n. Square array A(n,k) n >= 0, k >= 0 read by descending antidiagonals. +10
24
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 6, 1, 1, 16, 27, 36, 5, 1, 1, 32, 81, 216, 25, 10, 1, 1, 64, 243, 1296, 125, 100, 15, 1, 1, 128, 729, 7776, 625, 1000, 225, 30, 1, 1, 256, 2187, 46656, 3125, 10000, 3375, 900, 7, 1, 1, 512, 6561, 279936, 15625, 100000, 50625, 27000, 49, 14 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
The A019565 row order gives the table neat relationships with A003961, A003987, A059897, A225546, A319075 and A329050. See the formula section.
Transposition of this table, that is reflection about its main diagonal, has subtle symmetries. For example, consider the unique factorization of a number into powers of distinct primes. This can be restated as factorization into numbers from rows 2^n (n >= 0) with no more than one from each row. Reflecting about the main diagonal, this factorization becomes factorization (of a related number) into numbers from columns 2^k (k >= 0) with no more than one from each column. This is also unique and is factorization into powers of squarefree numbers with distinct exponents that are powers of two. See the example section.
LINKS
FORMULA
A(n,k) = A019565(n)^k.
A(k,n) = A225546(A(n,k)).
A(n,2k) = A000290(A(n,k)) = A(n,k)^2.
A(2n,k) = A003961(A(n,k)).
A(n,2k+1) = A(n,2k) * A(n,1).
A(2n+1,k) = A(2n,k) * A(1,k).
A(A003987(n,m), k) = A059897(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A059897(A(n,m), A(n,k)).
A(2^n,k) = A319075(k,n+1).
A(2^n, 2^k) = A329050(n,k).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)), = A329329(A(n,1), A(1,k)).
Sum_{n>=0} 1/A(n,k) = zeta(k)/zeta(2*k), for k >= 2. - Amiram Eldar, Dec 03 2022
EXAMPLE
Square array A(n,k) begins:
n\k | 0 1 2 3 4 5 6 7
----+------------------------------------------------------------------
0| 1 1 1 1 1 1 1 1
1| 1 2 4 8 16 32 64 128
2| 1 3 9 27 81 243 729 2187
3| 1 6 36 216 1296 7776 46656 279936
4| 1 5 25 125 625 3125 15625 78125
5| 1 10 100 1000 10000 100000 1000000 10000000
6| 1 15 225 3375 50625 759375 11390625 170859375
7| 1 30 900 27000 810000 24300000 729000000 21870000000
8| 1 7 49 343 2401 16807 117649 823543
9| 1 14 196 2744 38416 537824 7529536 105413504
10| 1 21 441 9261 194481 4084101 85766121 1801088541
11| 1 42 1764 74088 3111696 130691232 5489031744 230539333248
12| 1 35 1225 42875 1500625 52521875 1838265625 64339296875
Reflection of factorization about the main diagonal: (Start)
The canonical (prime power) factorization of 864 is 2^5 * 3^3 = 32 * 27. Reflecting the factors about the main diagonal of the table gives us 10 * 36 = 10^1 * 6^2 = 360. This is the unique factorization of 360 into powers of squarefree numbers with distinct exponents that are powers of two.
Reflection about the main diagonal is given by the self-inverse function A225546(.). Clearly, all positive integers are in the domain of A225546, whether or not they appear in the table. It is valid to start from 360, observe that A225546(360) = 864, then use 864 to derive 360's factorization into appropriate powers of squarefree numbers as above.
(End)
CROSSREFS
The range of values is A072774.
Rows (abbreviated list): A000079(1), A000244(2), A000400(3), A000351(4), A011557(5), A001024(6), A009974(7), A000420(8), A001023(9), A009965(10), A001020(16), A001022(32), A001026(64).
A019565 is column 1, A334110 is column 2, and columns that are sorted in increasing order (some without the 1) are: A005117(1), A062503(2), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7).
Other subtables: A182944, A319075, A329050.
Re-ordered subtable of A297845, A306697, A329329.
A000290, A003961, A003987, A059897 and A225546 are used to express relationships between terms of this sequence.
Cf. A285322.
KEYWORD
nonn,tabl
AUTHOR
Peter Munn, Nov 10 2019
STATUS
approved
page 1 2 3

Search completed in 0.025 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 11:15 EDT 2024. Contains 375512 sequences. (Running on oeis4.)