[go: up one dir, main page]

login
A033879
Deficiency of n, or 2n - (sum of divisors of n).
158
1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 10, 8, 22, -12, 19, 10, 14, 0, 28, -12, 30, 1, 18, 14, 22, -19, 36, 16, 22, -10, 40, -12, 42, 4, 12, 20, 46, -28, 41, 7, 30, 6, 52, -12, 38, -8, 34, 26, 58, -48, 60, 28, 22, 1, 46, -12, 66, 10, 42, -4, 70, -51
OFFSET
1,3
COMMENTS
Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..25000 [First 2000 terms from T. D. Noe, terms up to 16384 from Antti Karttunen]
Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493.
Jose A. B. Dris, Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1610.01868 [math.NT], 2016.
Jose Arnaldo B. Dris, Analysis of the Ratio D(n)/n, arXiv:1703.09077 [math.NT], 2017.
Jose Arnaldo Bebita Dris, On a curious biconditional involving the divisors of odd perfect numbers, Notes on Number Theory and Discrete Mathematics, 23(4) (2017), 1-13.
Jose Arnaldo Bebita Dris and Immanuel Tobias San Diego, Some Modular Considerations Regarding Odd Perfect Numbers, arXiv:2002.12139 [math.NT], 2020.
Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, Conditions equivalent to the Descartes-Frenicle-Sorli Conjecture on odd perfect numbers - Part II, Notes on Number Theory and Discrete Mathematics (2018) Vol. 24, No. 3, 62-67.
Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205.
FORMULA
a(n) = -A033880(n).
a(n) = A005843(n) - A000203(n). - Omar E. Pol, Dec 14 2008
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
a(n) = A286385(n) - A252748(n). - Antti Karttunen, May 13 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
a(n) = Sum_{d|n} A008683(n/d)*A296075(d).
a(n) = A065620(A295881(n)) = A117966(A295882(n)).
a(n) = A294898(n) + A000120(n).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
a(n) = A325314(n) - A325313(n) = A325814(n) - A034460(n) = A325978(n) - A325977(n).
a(n) = A325976(n) - A325826(n) = A325959(n) - A325969(n) = A003958(n) - A324044(n).
a(n) = A326049(n) - A326050(n) = A326055(n) - A326054(n) = A326044(n) - A326045(n).
a(n) = A326058(n) - A326059(n) = A326068(n) - A326067(n).
a(n) = A326128(n) - A326127(n) = A066503(n) - A326143(n).
a(n) = A318878(n) - A318879(n).
a(A228058(n)) = A325379(n). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023
EXAMPLE
For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - Omar E. Pol, Dec 27 2013
MAPLE
with(numtheory): A033879:=n->2*n-sigma(n): seq(A033879(n), n=1..100);
MATHEMATICA
Table[2n-DivisorSigma[1, n], {n, 80}] (* Harvey P. Dale, Oct 24 2011 *)
PROG
(PARI) a(n)=2*n-sigma(n) \\ Charles R Greathouse IV, Oct 13 2016
(Python)
from sympy import divisor_sigma
def A033879(n): return (n<<1)-divisor_sigma(n) # Chai Wah Wu, Apr 13 2024
CROSSREFS
Cf. A000396 (positions of zeros), A005100 (of positive terms), A005101 (of negative terms).
Cf. A141545 (positions of a(n) = -12).
For this sequence applied to various permutations of natural numbers and some other sequences, see A323174, A323244, A324055, A324185, A324546, A324574, A324575, A324654, A325379.
Sequence in context: A103977 A109883 A033880 * A324546 A033883 A106316
KEYWORD
sign,nice,easy
EXTENSIONS
Definition corrected Jul 04 2005
STATUS
approved