OFFSET
1,3
COMMENTS
Records for the sequence of the absolute values are in A075728 and the indices of these records in A074918. - R. J. Mathar, Mar 02 2007
a(n) = 1 iff n is a power of 2. a(n) = n - 1 iff n is prime. - Omar E. Pol, Jan 30 2014
If a(n) = 1 then n is called a least deficient number or an almost perfect number. All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2. See A000079. - Jianing Song, Oct 13 2019
It is not known whether there are any -1's in this sequence. See comment in A033880. - Antti Karttunen, Feb 02 2020
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..25000 [First 2000 terms from T. D. Noe, terms up to 16384 from Antti Karttunen]
Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493.
Jose A. B. Dris, Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1610.01868 [math.NT], 2016.
Jose Arnaldo B. Dris, Analysis of the Ratio D(n)/n, arXiv:1703.09077 [math.NT], 2017.
Jose Arnaldo Bebita Dris, On a curious biconditional involving the divisors of odd perfect numbers, Notes on Number Theory and Discrete Mathematics, 23(4) (2017), 1-13.
Jose Arnaldo Bebita Dris and Immanuel Tobias San Diego, Some Modular Considerations Regarding Odd Perfect Numbers, arXiv:2002.12139 [math.NT], 2020.
Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, Conditions equivalent to the Descartes-Frenicle-Sorli Conjecture on odd perfect numbers - Part II, Notes on Number Theory and Discrete Mathematics (2018) Vol. 24, No. 3, 62-67.
Jose Arnaldo Bebita Dris and Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205.
FORMULA
a(n) = -A033880(n).
a(n) = n - A001065(n). - Omar E. Pol, Dec 27 2013
G.f.: 2*x/(1 - x)^2 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 24 2017
From Antti Karttunen, Dec 29 2017: (Start)
a(n) = Sum_{d|n} A083254(d).
(End)
From Antti Karttunen, Jun 03 2019: (Start)
Sequence can be represented in arbitrarily many ways as a difference of the form (n - f(n)) - (g(n) - n), where f and g are any two sequences whose sum f(n)+g(n) = sigma(n). Here are few examples:
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - Pi^2/12 = 0.177532... . - Amiram Eldar, Dec 07 2023
EXAMPLE
For n = 10 the divisors of 10 are 1, 2, 5, 10, so the deficiency of 10 is 10 minus the sum of its proper divisors or simply 10 - 5 - 2 - 1 = 2. - Omar E. Pol, Dec 27 2013
MATHEMATICA
Table[2n-DivisorSigma[1, n], {n, 80}] (* Harvey P. Dale, Oct 24 2011 *)
PROG
(PARI) a(n)=2*n-sigma(n) \\ Charles R Greathouse IV, Oct 13 2016
(Python)
from sympy import divisor_sigma
def A033879(n): return (n<<1)-divisor_sigma(n) # Chai Wah Wu, Apr 13 2024
CROSSREFS
Cf. A083254 (Möbius transform), A228058, A296074, A296075, A323910, A325636, A325826, A325970, A325976.
Cf. A141545 (positions of a(n) = -12).
KEYWORD
sign,nice,easy
AUTHOR
EXTENSIONS
Definition corrected Jul 04 2005
STATUS
approved