[go: up one dir, main page]

login
A324654
a(n) = A033879(A276086(n)).
6
1, 1, 2, 0, 5, -3, 4, 2, 6, -12, 12, -54, 19, 7, 26, -72, 47, -309, 94, 32, 126, -372, 222, -1584, 469, 157, 626, -1872, 1097, -7959, 6, 4, 10, -12, 22, -60, 22, -4, 18, -156, 6, -612, 102, -44, 58, -876, -74, -3372, 502, -244, 258, -4476, -474, -17172, 2502, -1244, 1258, -22476, -2474, -86172, 41, 25, 66, -96, 141, -459, 148, -46, 102
OFFSET
0,3
COMMENTS
Interestingly, this kind of sampling of deficiency (A033879; recall that the range of A276086 does not cover the whole N) biases it strongly towards negative values: of the first 2310 terms, 1565 are negative (~ 68%) and of the first 30030 terms, 22507 are negative (~ 75%). Compare also to A323174, which covers whole N.
FORMULA
a(n) = A033879(A276086(n)).
a(n) = 2*A276086(n) - A324653(n).
PROG
(PARI)
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
A033879(n) = (2*n-sigma(n));
CROSSREFS
Cf. also A323174, A324055.
Sequence in context: A216982 A184854 A021491 * A121705 A071782 A328495
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 10 2019
STATUS
approved