OFFSET
1,4
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
FORMULA
From Antti Karttunen, Mar 12 2019 & Nov 23 2019: (Start)
(End)
MATHEMATICA
Array[2 # - If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 90] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
(Python)
from sympy import divisor_sigma, primepi, factorint
def A323244(n): return (lambda n: (n<<1)-divisor_sigma(n))(sum((1<<primepi(p)-1)<<i for i, p in enumerate(factorint(n, multiple=True)))) if n > 1 else 0 # Chai Wah Wu, Mar 10 2023
CROSSREFS
Cf. A000043, A000396, A033879, A064989, A156552, A297112, A323240, A323243, A323245, A323248, A324115, A324051, A324103, A324396, A324398, A324543, A324713.
Cf. A324201 (positions of zeros, conjectured), A324551 (of negative terms), A324720 (of nonnegative terms), A324721 (of positive terms), A324731, A324732.
Cf. A329644 (Möbius transform).
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 10 2019
STATUS
approved