[go: up one dir, main page]

login
A324713
a(n) = 2*A156552(n) XOR A323243(n).
7
0, 3, 7, 2, 15, 12, 31, 6, 0, 31, 63, 26, 127, 48, 6, 6, 255, 20, 511, 50, 3, 114, 1023, 54, 4, 214, 4, 118, 2047, 10, 4095, 30, 114, 434, 2, 30, 8191, 768, 20, 118, 16383, 108, 32767, 194, 8, 1826, 65535, 110, 12, 45, 504, 386, 131071, 36, 19, 198, 20, 3348, 262143, 122, 524287, 6834, 112, 22, 246, 234, 1048575, 822, 1794, 120
OFFSET
1,2
COMMENTS
a(n) is also the cumulative XOR of (2*A297106(d) XOR A324712(d)) over the divisors d of n.
It is conjectured that a(n) may obtain value zero only when n is a power of prime, and especially for n > 1, it must be a prime power present in A324201.
FORMULA
a(n) = 2*A156552(n) XOR A323243(n).
a(n) = XORsum_{d|n} (2*A297106(d) XOR A324712(d)).
PROG
(PARI) A324713(n) = { my(x=0, s=0); fordiv(n, d, x = bitxor(x, A324712(d)); s = bitxor(s, A297106(d))); bitxor(x, 2*s); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 13 2019
STATUS
approved