OFFSET
1,1
COMMENTS
Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021
REFERENCES
Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Xavier Gourdon and Pascal Sebah, Some Constants from Number theory.
Eric Weisstein's World of Mathematics, Prime Power.
Wikipedia, p-group, Classification.
FORMULA
n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)
EXAMPLE
a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
MATHEMATICA
Array[Prime[ # ]^3&, 5! ] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
PROG
(Sage)
[p**3 for p in prime_range(100)] # Zerinvary Lajos, May 15 2007
(Haskell)
a030078 = a000578 . a000040
a030078_list = map a000578 a000040_list -- Reinhard Zumkeller, May 26 2012
(PARI) a(n)=prime(n)^3 \\ Charles R Greathouse IV, Mar 20 2013
(Magma) [p^3: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014
(Python)
from sympy import prime, primerange
def aupton(terms): return [p**3 for p in primerange(1, prime(terms)+1)]
print(aupton(35)) # Michael S. Branicky, Aug 27 2021
CROSSREFS
Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved