[go: up one dir, main page]

login
A300841
Fermi-Dirac factorization prime shift towards larger terms: a(n) = A052330(2*A052331(n)).
12
1, 3, 4, 5, 7, 12, 9, 15, 11, 21, 13, 20, 16, 27, 28, 17, 19, 33, 23, 35, 36, 39, 25, 60, 29, 48, 44, 45, 31, 84, 37, 51, 52, 57, 63, 55, 41, 69, 64, 105, 43, 108, 47, 65, 77, 75, 49, 68, 53, 87, 76, 80, 59, 132, 91, 135, 92, 93, 61, 140, 67, 111, 99, 85, 112, 156, 71, 95, 100, 189, 73, 165, 79, 123, 116, 115, 117, 192, 81
OFFSET
1,2
COMMENTS
With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = A050376(1+i) * A050376(1+j) * ... * A050376(1+k).
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018
LINKS
FORMULA
a(n) = A052330(2*A052331(n)).
For all n >= 1, a(A050376(n)) = A050376(1+n).
For all n >= 1, A300840(a(n)) = n.
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 23 2019
EXAMPLE
For n = 6 = A050376(1)*A050376(2), a(6) = A050376(2)*A050376(3) = 3*4 = 12.
For n = 12 = A050376(2)*A050376(3), a(12) = A050376(3)*A050376(4) = 4*5 = 20.
MATHEMATICA
fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)];
nextFDPrime[n_] := Module[{k = n + 1}, While[! fdPrimeQ[k], k++]; k];
fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]];
a[n_] := Times @@ nextFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
PROG
(PARI)
up_to_e = 8192;
v050376 = vector(up_to_e);
A050376(n) = v050376[n];
ispow2(n) = (n && !bitand(n, n-1));
i = 0; for(n=1, oo, if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e, break));
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300841(n) = A052330(2*A052331(n));
CROSSREFS
Cf. A050376, A052330, A052331, A059897, A300840 (a left inverse).
Cf. also A003961.
Range of values is A003159.
Sequence in context: A285224 A322991 A120635 * A023713 A032890 A092859
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Apr 12 2018
STATUS
approved