[go: up one dir, main page]

login
A249734
Even bisection of A003961: Replace in 2n each prime factor p(k) with prime p(k+1).
7
3, 9, 15, 27, 21, 45, 33, 81, 75, 63, 39, 135, 51, 99, 105, 243, 57, 225, 69, 189, 165, 117, 87, 405, 147, 153, 375, 297, 93, 315, 111, 729, 195, 171, 231, 675, 123, 207, 255, 567, 129, 495, 141, 351, 525, 261, 159, 1215, 363, 441, 285, 459, 177, 1125, 273, 891, 345, 279, 183, 945, 201, 333, 825, 2187, 357, 585, 213, 513, 435, 693, 219, 2025, 237, 369
OFFSET
1,1
LINKS
FORMULA
a(n) = A003961(2*n).
a(n) = 3 * A003961(n).
a(n) = A064989(A249827(n)).
a(n) = A003961(A243501(A064216(n))).
a(n) = A003961(A243502(A048673(n))).
a(n) = A016945(A048673(n)-1). [Permutation of A016945, 6n+3.]
Other identities. For all n >= 1:
a(A000079(n-1)) = A000244(n). [Maps each 2^n to 3^(n+1).]
PROG
(Scheme, two alternative definitions)
(define (A249734 n) (A003961 (+ n n)))
(define (A249734 n) (* 3 (A003961 n)))
CROSSREFS
Row 2 of A246278.
Cf. A249735 (the other bisection of A003961).
Cf. also A000079, A000244.
Sequence in context: A055927 A316261 A354958 * A319316 A087031 A089632
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 23 2014
STATUS
approved