[go: up one dir, main page]

login
A032742
a(1) = 1; for n > 1, a(n) = largest proper divisor of n (that is, for n>1, maximum divisor d of n in range 1 <= d < n).
249
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 15, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 35, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40
OFFSET
1,4
COMMENTS
It seems that a(n) = Max_{j=n+1..2n-1} gcd(n,j). - Labos Elemer, May 22 2002
This is correct: No integer in the range [n+1, 2n-1] has n as its divisor, but certainly at least one multiple of the largest proper divisor of n will occur there (e.g., if it is n/2, then at n + (n/2)). - Antti Karttunen, Dec 18 2014
The slopes of the visible lines made by the points in the scatter plot are 1/2, 1/3, 1/5, 1/7, ... (reciprocals of primes). - Moosa Nasir, Jun 19 2022
LINKS
Rémi Eismann, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Moosa Nasir, Slopes.
Eric Weisstein's World of Mathematics, Proper Divisor.
FORMULA
a(n) = n / A020639(n).
Other identities and observations:
A054576(n) = a(a(n)); A117358(n) = a(a(a(n))) = a(A054576(n)); a(A008578(n)) = 1, a(A002808(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
a(n) = A130064(n) / A006530(n). - Reinhard Zumkeller, May 05 2007
a(m)*a(n) < a(m*n) for m and n > 1. - Reinhard Zumkeller, Apr 11 2008
a(m*n) = max(m*a(n), n*a(m)). - Robert Israel, Dec 18 2014
From Antti Karttunen, Mar 31 2018: (Start)
a(n) = n - A060681(n).
For n > 1, a(n) = A003961^(r)(A246277(n)), where r = A055396(n)-1 and A003961^(r)(n) stands for shifting the prime factorization of n by r positions towards larger primes.
For all n >= 1, A276085(a(A276086(n))) = A276151(n).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Sum_{k>=1} A005867(k-1)/(prime(k)*A002110(k)) = 0.165049... . - Amiram Eldar, Nov 19 2022
MAPLE
A032742 :=proc(n) option remember; if n = 1 then 1; else numtheory[divisors](n) minus {n} ; max(op(%)) ; end if; end proc: # R. J. Mathar, Jun 13 2011
1, seq(n/min(numtheory:-factorset(n)), n=2..1000); # Robert Israel, Dec 18 2014
MATHEMATICA
f[n_] := If[n == 1, 1, Divisors[n][[-2]]]; Table[f[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)
Join[{1}, Divisors[#][[-2]]&/@Range[2, 80]] (* Harvey P. Dale, Nov 29 2011 *)
a[n_] := n/FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
Table[Which[n==1, 1, PrimeQ[n], 1, True, Divisors[n][[-2]]], {n, 80}] (* Harvey P. Dale, Feb 02 2022 *)
PROG
(PARI) a(n)=if(n==1, 1, n/factor(n)[1, 1]) \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a032742 n = n `div` a020639 n -- Reinhard Zumkeller, Oct 03 2012
(Scheme) (define (A032742 n) (/ n (A020639 n))) ;; Antti Karttunen, Dec 18 2014
(Python)
from sympy import factorint
def a(n): return 1 if n == 1 else n//min(factorint(n))
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 21 2022
CROSSREFS
Maximal GCD of k positive integers with sum n for k = 2..10: this sequence (k=2,n>=2), A355249 (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), A354599 (k=9), A354601 (k=10).
Sequence in context: A325641 A325563 A159353 * A060654 A291329 A291328
KEYWORD
nonn,easy,nice
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
Definition clarified by N. J. A. Sloane, Dec 26 2022
STATUS
approved