[go: up one dir, main page]

login
A354599
Maximal GCD of nine positive integers with sum n.
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 5, 2, 1, 4, 1, 5, 3, 4, 1, 6, 5, 4, 3, 2, 1, 6, 1, 2, 7, 4, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 9, 2, 1, 7, 5, 2, 3, 8, 1, 10, 7, 4, 3, 2, 5, 8, 1, 7, 11, 10
OFFSET
9,10
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, signum(t),
`if`(min(i, t)<1, 1, max(b(n, i-1, t),
igcd(b(n-i, min(n-i, i), t-1), i))))
end:
a:= n-> `if`(n<9, 0, b(n$2, 9)):
seq(a(n), n=9..200); # Alois P. Heinz, Jul 13 2022
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[Min[i, t] < 1, 1, Max[b[n, i - 1, t], GCD[b[n - i, Min[n - i, i], t - 1], i]]]];
a[n_] := If[n < 9, 0, b[n, n, 9]];
Table[a[n], {n, 9, 100}] (* Jean-François Alcover, Sep 21 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A009714.
Maximal GCD of k positive integers with sum n for k = 2..10: A032742 (k=2,n>=2), A355249 (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), this sequence (k=9), A354601 (k=10).
Sequence in context: A167969 A245192 A235431 * A303536 A259656 A096370
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 08 2022
STATUS
approved