OFFSET
1,1
COMMENTS
Fraenkel (2010) called these the "dopey" numbers.
Indices of even numbers in A033485. - Philippe Deléham, Mar 16 2004
a(n) is an odious number (see A000069) for n odd; a(n) is an evil number (see A001969) for n even. - Philippe Deléham, Mar 16 2004
This sequence consists of the increasing values of n such that A097357(n) is even. - Creighton Dement, Aug 14 2004
Numbers with an odd number of 2's in their prime factorization (e.g., 8 = 2*2*2). - Mark Dow, Sep 04 2007
Represents the set of CCW n-th moves in the standard Tower of Hanoi game; and terms in even rows of a [1, 3, 5, 7, 9, ...] * [1, 2, 4, 8, 16, ...] multiplication table. Refer to the example. - Gary W. Adamson, Mar 20 2010
If the upper s-Wythoff sequence of s is s, then s=A036554. (See A184117 for the definition of lower and upper s-Wythoff sequences.) Starting with any nondecreasing sequence s of positive integers, A036554 is the limit when the upper s-Wythoff operation is iterated. For example, starting with s=(1,4,9,16,...) = (n^2), we obtain lower and upper s-Wythoff sequences
a=(1,3,4,5,6,8,9,10,11,12,14,...) = A184427;
b=(2,7,12,21,31,44,58,74,...) = A184428.
Then putting s=a and repeating the operation gives
b'=(2,6,8,10,13,17,20,...), which has the same first four terms as A036554. - Clark Kimberling, Jan 14 2011
Or numbers having infinitary divisor 2, or the same, having factor 2 in Fermi-Dirac representation as a product of distinct terms of A050376. - Vladimir Shevelev, Mar 18 2013
Thus, numbers not in A300841 or in A302792. Equally, sequence 2*A300841(n) sorted into ascending order. - Antti Karttunen, Apr 23 2018
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Representations for a special sequence, Fib. Quart., 10 (1972), 499-518, 550 (see d(n) on page 501).
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
A. S. Fraenkel, Home Page
Aviezri S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Math. 312 (2012), no. 1, 42-46.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Eric Sopena, i-Mark: A new subtraction division game, arXiv:1509.04199 [cs.DM], 2015.
M. Stoll, Chabauty without the Mordell-Weil group, arXiv preprint arXiv:1506.04286 [math.NT], 2015.
FORMULA
Values of k such that A091297(k) = 2. - Philippe Deléham, Feb 25 2004
a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012
a(n) = 2*A003159(n). - Clark Kimberling, Sep 30 2014
{a(n)} = A052330({A005408(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Aug 26 2019
EXAMPLE
From Gary W. Adamson, Mar 20 2010: (Start)
Equals terms in even numbered rows in the following multiplication table:
(rows are labeled 1,2,3,... as with the Towers of Hanoi disks)
1, 3, 5, 7, 9, 11, ...
2, 6, 10, 14, 18, 22, ...
4, 12, 20, 28, 36, 44, ...
8, 24, 40, 56, 72, 88, ...
...
As shown, 2, 6, 8, 10, 14, ...; are in even numbered rows, given the row with (1, 3, 5, 7, ...) = row 1.
The term "5" is in an odd row, so the 5th Towers of Hanoi move is CW, moving disc #1 (in the first row).
a(3) = 8 in row 4, indicating that the 8th Tower of Hanoi move is CCW, moving disc #4.
A036554 bisects the positive nonzero natural numbers into those in the A036554 set comprising 1/3 of the total numbers, given sufficiently large n.
This corresponds to 1/3 of the TOH moves being CCW and 2/3 CW. Row 1 of the multiplication table = 1/2 of the natural numbers, row 2 = 1/4, row 3 = 1/8 and so on, or 1 = (1/2 + 1/4 + 1/8 + 1/16 + ...). Taking the odd-indexed terms of this series given offset 1, we obtain 2/3 = 1/2 + 1/8 + 1/32 + ..., while sum of the even-indexed terms is 1/3. (End)
MATHEMATICA
Select[Range[200], OddQ[IntegerExponent[#, 2]]&] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(Haskell)
a036554 = (+ 1) . a079523 -- Reinhard Zumkeller, Mar 01 2012
(PARI) is(n)=valuation(n, 2)%2 \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [2*m:m in [1..100] | Valuation(m, 2) mod 2 eq 0]; // Marius A. Burtea, Aug 29 2019
(Python)
def ok(n):
c = 0
while n%2 == 0: n //= 2; c += 1
return c%2 == 1
print([m for m in range(1, 175) if ok(m)]) # Michael S. Branicky, Feb 06 2021
(Python)
from itertools import count, islice
def A036554_gen(startvalue=1): return filter(lambda n:(~n & n-1).bit_length()&1, count(max(startvalue, 1))) # generator of terms >= startvalue
CROSSREFS
KEYWORD
nonn,base,easy,nice
AUTHOR
EXTENSIONS
Incorrect equation removed from formula by Peter Munn, Dec 04 2020
STATUS
approved