OFFSET
0,6
COMMENTS
a(n) = A240021(n,0). - Alois P. Heinz, Apr 02 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = [x^n y^0] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1). - Alois P. Heinz, Apr 03 2014
EXAMPLE
a(9) = 4 counts these partitions: 81, 72, 63, 54.
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(t=0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 15 2014
MATHEMATICA
z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] < Count[#, _?EvenQ] &]], {n, 0, z}] (* A239239 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] <= Count[#, _?EvenQ] &]], {n, 0, z}] (* A239240 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] == Count[#, _?EvenQ] &]], {n, 0, z}] (* A239241 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] > Count[#, _?EvenQ] &]], {n, 0, z}] (* A239242 *)
Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] >= Count[#, _?EvenQ] &]], {n, 0, z}] (* A239243 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2, 0, If[n==0, If[t==0, 1, 0], b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t + If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 27 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 13 2014
STATUS
approved