[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a008776 -id:a008776
Displaying 11-20 of 207 results found. page 1 2 3 4 5 6 7 8 9 10 ... 21
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000420 Powers of 7: a(n) = 7^n.
(Formerly M4431 N1874)
+10
143
1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 40353607, 282475249, 1977326743, 13841287201, 96889010407, 678223072849, 4747561509943, 33232930569601, 232630513987207, 1628413597910449, 11398895185373143, 79792266297612001, 558545864083284007 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 7), L(1, 7), P(1, 7), T(1, 7). Essentially same as Pisot sequences E(7, 49), L(7, 49), P(7, 49), T(7, 49). See A008776 for definitions of Pisot sequences.
Sum of coefficients of expansion of (1+x+x^2+x^3+x^4+x^5+x^6)^n.
a(n) is number of compositions of natural numbers into n parts < 7.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 7-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(7n) = 7n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
Number of ways to assign truth values to n ternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 49, since for the proposition '(a v b v c) & (d v e v f)' there are 49 assignments that make the proposition true. - Ori Milstein, Dec 31 2022
Equivalently, the number of length-n words over an alphabet with seven letters. - Joerg Arndt, Jan 01 2023
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n) = 7^n.
a(0) = 1; a(n) = 7*a(n-1).
G.f.: 1/(1-7*x).
E.g.f.: exp(7*x).
4/7 - 5/7^2 + 4/7^3 - 5/7^4 + ... = 23/48. [Jolley, Summation of Series, Dover, 1961]
EXAMPLE
a(2)=49 there are 49 compositions of natural numbers into 2 parts < 7.
MAPLE
A000420:=-1/(-1+7*z); # Simon Plouffe in his 1992 dissertation. [This is actually the generating function, so convert(series(...), list) would yield the actual sequence. - M. F. Hasler, Apr 19 2015]
A000420 := n -> 7^n; # M. F. Hasler, Apr 19 2015
MATHEMATICA
Table[7^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
PROG
(Maxima) makelist(7^n, n, 0, 20); /* Martin Ettl, Dec 27 2012 */
(Haskell)
a000420 = (7 ^)
a000420_list = iterate (* 7) 1 -- Reinhard Zumkeller, Apr 29 2015
(PARI) a(n)=7^n \\ Charles R Greathouse IV, Jul 28 2015
(Magma) [7^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
CROSSREFS
Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A001018 Powers of 8: a(n) = 8^n.
(Formerly M4555 N1937)
+10
126
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007
This is the auto-convolution (convolution square) of A059304. - R. J. Mathar, May 25 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014
a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022
REFERENCES
K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
Caroline Nunn, A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory, Rose-Hulman Undergraduate Mathematics Journal: Vol. 22, Iss. 2, Article 3 (2021). See table at p. 9.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Eric Weisstein's World of Mathematics, Sierpiński Carpet
FORMULA
a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008
a(n) = A157176(A008588(n)); a(n+1) = A157176(A016969(n)). - Reinhard Zumkeller, Feb 24 2009
From Stefano Spezia, Dec 28 2021: (Start)
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)
EXAMPLE
For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
MAPLE
seq(8^n, n=0..23); # Nathaniel Johnston, Jun 26 2011
A001018 := n -> 8^n; # M. F. Hasler, Apr 19 2015
MATHEMATICA
Table[8^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
PROG
(Maxima) makelist(8^n, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
(PARI) a(n)=8^n \\ Charles R Greathouse IV, May 10 2014
(Haskell)
a001018 = (8 ^)
a001018_list = iterate (* 8) 1 -- Reinhard Zumkeller, Apr 29 2015
(Magma) [8^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
(Python)
print([8**n for n in range(25)]) # Michael S. Branicky, Dec 29 2021
CROSSREFS
Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A032766 (floor(3*n/2)).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A004171 a(n) = 2^(2n+1). +10
123
2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832, 140737488355328, 562949953421312 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Same as Pisot sequences E(2, 8), L(2, 8), P(2, 8), T(2, 8). See A008776 for definitions of Pisot sequences.
In the Chebyshev polynomial of degree 2n, a(n) is the coefficient of x^2n. - Benoit Cloitre, Mar 13 2002
1/2 - 1/8 + 1/32 - 1/128 + ... = 2/5. - Gary W. Adamson, Mar 03 2009
From Adi Dani, May 15 2011: (Start)
Number of ways of placing an even number of indistinguishable objects in n + 1 distinguishable boxes with at most 3 objects in box.
Number of compositions of even natural numbers into n + 1 parts less than or equal to 3 (0 is counted as part). (End)
Also the number of maximal cliques in the (n+1)-Sierpinski tetrahedron graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Assuming the Collatz conjecture is true, any starting number eventually leads to a power of 2. A number in this sequence can never be the first power of 2 in a Collatz sequence except of course for the Collatz sequence starting with that number. For example, except for 8, 4, 2, 1, any Collatz sequence that includes 8 must also include 16 (e.g., 5, 16, 8, 4, 2, 1). - Alonso del Arte, Oct 01 2019
First differences of A020988, and thus the "wavelengths" of the local maxima in A020986. See the Brillhart and Morton link, pp. 855-856. - John Keith, Mar 04 2021
REFERENCES
Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
LINKS
J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
Ling Gao, Graph assembly for spider and tadpole graphs, Master's Thesis, Cal. State Poly. Univ. (2023).
Tanya Khovanova, Recursive Sequences.
Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.
Eric Weisstein's World of Mathematics, Maximal Clique.
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
FORMULA
a(n) = 2*4^n.
a(n) = 4*a(n-1).
1 = 1/2 + Sum_{n >= 1} 3/a(n) = 3/6 + 3/8 + 3/32 + 3/128 + 3/512 + 3/2048 + ...; with partial sums: 1/2, 31/32, 127/128, 511/512, 2047/2048, ... - Gary W. Adamson, Jun 16 2003
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 2*A000302(n).
G.f.: 2/(1-4*x). (End)
a(n) = A081294(n+1) = A028403(n+1) - A000079(n+1) for n >= 1. a(n-1) = A028403(n) - A000079(n). - Jaroslav Krizek, Jul 27 2009
E.g.f.: 2*exp(4*x). - Ilya Gutkovskiy, Nov 01 2016
a(n) = A002063(n)/3 - A000302(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = Sum_{k = 0..2*n} (-1)^(k+n)*binomial(4*n + 2, 2*k + 1); a(2*n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A013776(n). - Peter Bala, Nov 25 2016
Product_{n>=0} (1 - 1/a(n)) = A132020. - Amiram Eldar, May 08 2023
EXAMPLE
G.f. = 2 + 8*x + 32*x^2 + 128*x^3 + 512*x^4 + 2048*x^5 + 8192*x^6 + 32768*x^7 + ...
From Adi Dani, May 15 2011: (Start)
a(1) = 8 because all compositions of even natural numbers into 2 parts less than or equal to 3 are:
for 0: (0, 0)
for 2: (0, 2), (2, 0), (1, 1)
for 4: (1, 3), (3, 1), (2, 2)
for 6: (3, 3).
a(2) = 32 because all compositions of even natural numbers into 3 parts less than or equal to 3 are:
for 0: (0, 0, 0)
for 2: (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1) , (1, 1, 0)
for 4: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1)
for 6: (0, 3, 3), (3, 0, 3), (3, 3, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2)
for 8: (2, 3, 3), (3, 2, 3), (3, 3, 2).
(End)
MAPLE
seq(2^(2*n+1), n=0..24); # Nathaniel Johnston, Jun 25 2011
MATHEMATICA
Table[2^(2 n + 1), {n, 0, 24}]
2^(2 Range[20] - 1) (* Eric W. Weisstein, Dec 01 2017 *)
LinearRecurrence[{4}, {2}, 20] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[2/(1 - 4 x), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(Magma) [2^(2*n+1): n in [0..30]]; // Vincenzo Librandi, May 16 2011
(PARI) a(n)=2<<(2*n) \\ Charles R Greathouse IV, Apr 07 2012
(PARI) a(n) = 2^(2*n+1) \\ Michel Marcus, Aug 12 2014
(Haskell)
a004171 = (* 2) . a000302
a004171_list = iterate (* 4) 2 -- Reinhard Zumkeller, Jan 09 2013
(GAP) List([0..30], n->2^(2*n+1)); # Muniru A Asiru, Mar 12 2019
(Scala) ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).map(2 * _) // Alonso del Arte, Sep 12 2019
CROSSREFS
Absolute value of A009117. Essentially the same as A081294.
Cf. A132020, A164632. Equals A000980(n) + 2*A181765(n). Cf. A013776.
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
A001019 Powers of 9: a(n) = 9^n.
(Formerly M4653 N1992)
+10
109
1, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401, 31381059609, 282429536481, 2541865828329, 22876792454961, 205891132094649, 1853020188851841, 16677181699666569, 150094635296999121, 1350851717672992089, 12157665459056928801 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 9), L(1, 9), P(1, 9), T(1, 9). Essentially same as Pisot sequences E(9, 81), L(9, 81), P(9, 81), T(9, 81). See A008776 for definitions of Pisot sequences.
Except for 1, the largest n-th power with n digits. - Amarnath Murthy, Feb 09 2002
The 2002 comment by Amarnath Murthy should say more precisely "n-th power with *at most* n digits": a(22) has only 21 digits etc., a(44) has only 42 digits etc. - Hagen von Eitzen, May 17 2009
1/1 + 1/9 + 1/81 + ... = 9/8. - Gary W. Adamson, Aug 29 2008
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 9-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
To be still more precise than Murthy and von Eitzen: the subsequence of the largest n-th power with n digits is a finite sequence, bounded by 9 and 109418989131512359209. It is guaranteed that 10^n has n + 1 digits in base 10, and clearly 9^n < 10^n. With a(22), the number n - log_10 a(n) crosses the 1.0 threshold, and obviously the gulf widens further after that, meaning that for n > 21, m^n can have fewer than n digits or more than n digits but not exactly n digits. - Alonso del Arte, Dec 12 2012
For n > 0, a(n) is also the number of n-digit zeroless numbers (A052382). - Stefano Spezia, Jul 07 2022
Erasing the last digit of the sum a(n) + a(n+1) brings back a(n). - Eric Angelini, Feb 05 2024
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Integers. London: Penguin Books (1997): p. 196, entry for 109,418,989,131,512,359,209.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 4.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n) = 9^n.
a(0) = 1, a(n) = 9*a(n - 1) for n > 0.
G.f.: 1/(1 - 9*x).
E.g.f.: exp(9*x).
A000005(a(n)) = A005408(n + 1). - Reinhard Zumkeller, Mar 04 2007
a(n) = 4*A211866(n)+5. - Reinhard Zumkeller, Feb 12 2013
a(n) = det(|v(i+2,j)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices. - Mircea Merca, Apr 04 2013
MAPLE
A001019:=n->9^n: seq(A001019(n), n=0..25); # Wesley Ivan Hurt, Sep 27 2016
MATHEMATICA
Table[9^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
NestList[9#&, 1, 20] (* Harvey P. Dale, Jul 04 2014 *)
PROG
(Maxima) A001019(n):=9^n$
makelist(A001019(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Haskell)
a001019 = (9 ^)
a001019_list = iterate (* 9) 1
-- Reinhard Zumkeller, Feb 12 2013
(PARI) a(n)=9^n \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [9^n : n in [0..25]]; // Wesley Ivan Hurt, Sep 27 2016
CROSSREFS
Cf. A052382.
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
A038754 a(2n) = 3^n, a(2n+1) = 2*3^n. +10
95
1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In general, for the recurrence a(n) = a(n-1)*a(n-2)/a(n-3), all terms are integers iff a(0) divides a(2) and first three terms are positive integers, since a(2n+k) = a(k)*(a(2)/a(0))^n for all nonnegative integers n and k.
Equals eigensequence of triangle A070909; (1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909. - Gary W. Adamson, May 15 2010
The a(n) represent all paths of length (n+1), n >= 0, starting at the initial node on the path graph P_5, see the second Maple program. - Johannes W. Meijer, May 29 2010
a(n) is the difference between numbers of multiple of 3 evil (A001969) and odious (A000069) numbers in interval [0, 2^(n+1)). - Vladimir Shevelev, May 16 2012
A "half-geometric progression": to obtain a term (beginning with the third one) we multiply the before previous one by 3. - Vladimir Shevelev, May 21 2012
Pisano periods: 1, 2, 1, 4, 8, 2, 12, 4, 1, 8, 10, 4, 6, 12, 8, 8, 32, 2, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Numbers k such that the k-th cyclotomic polynomial has a root mod 3. - Eric M. Schmidt, Jul 31 2013
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, Jun 05 2014
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..1500 (first 401 terms from T. D. Noe)
S. V. Ault and C. Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Vol. 332 (2014), pp. 45-54.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Nachum Dershowitz, Between Broadway and the Hudson, arXiv:2006.06516 [math.CO], 2020.
Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., 36 (1998), 98-109. See pages 106-7.
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
FORMULA
a(n) = a(n-1)*a(n-2)/a(n-3) with a(0)=1, a(1)=2, a(2)=3.
a(2*n) = (3/2)*a(2*n-1) = 3^n, a(2*n+1) = 2*a(2*n) = 2*3^n.
From Benoit Cloitre, Apr 27 2003: (Start)
a(1)=1, a(n)= 2*a(n-1) if a(n-1) is odd, or a(n)= (3/2)*a(n-1) if a(n-1) is even.
a(n) = (1/6)*(5-(-1)^n)*3^floor(n/2).
a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3).
a(2*n+1) = a(2*n) + a(2*n-1). (End)
G.f.: (1+2*x)/(1-3*x^2). - Paul Barry, Aug 25 2003
From Reinhard Zumkeller, Sep 11 2003: (Start)
a(n) = (1 + n mod 2) * 3^floor(n/2).
a(n) = A087503(n) - A087503(n-1). (End)
a(n) = sqrt(3)*(2+sqrt(3))*(sqrt(3))^n/6 - sqrt(3)*(2-sqrt(3))*(-sqrt(3))^n/6. - Paul Barry, Sep 16 2003
From Reinhard Zumkeller, May 26 2008: (Start)
a(n) = A140740(n+2,2).
a(n+1) = a(n) + a(n - n mod 2). (End)
If p(i) = Fibonacci(i-3) and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1), (i<=j), A(i,j)=-1, (i=j+1), and A(i,j)=0 otherwise. Then, for n>=1, a(n-1) = (-1)^n det A. - Milan Janjic, May 08 2010
a(n) = A182751(n) for n >= 2. - Jaroslav Krizek, Nov 27 2010
a(n) = Sum_{i=0..2^(n+1), i==0 (mod 3)} (-1)^A000120(i). - Vladimir Shevelev, May 16 2012
a(0)=1, a(1)=2, for n>=3, a(n)=3*a(n-2). - Vladimir Shevelev, May 21 2012
Sum_(n>=0) 1/a(n) = 9/4. - Alexander R. Povolotsky, Aug 24 2012
a(n) = sqrt(3*a(n-1)^2 + (-3)^(n-1)). - Richard R. Forberg, Sep 04 2013
a(n) = 2^((1-(-1)^n)/2)*3^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Aug 11 2014
From Reinhard Zumkeller, Oct 19 2015: (Start)
a(2*n) = A000244(n), a(2*n+1) = A008776(n).
For n > 0: a(n+1) = a(n) + if a(n) odd then min{a(n), a(n-1)} else max{a(n), a(n-1)}, see also A128588. (End)
E.g.f.: (7*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x) - 4)/3. - Stefano Spezia, Feb 17 2022
Sum_{n>=0} (-1)^n/a(n) = 3/4. - Amiram Eldar, Dec 02 2022
EXAMPLE
In the interval [0,2^5) we have 11 multiples of 3 numbers, from which 10 are evil and only one (21) is odious. Thus a(4) = 10 - 1 = 9. - Vladimir Shevelev, May 16 2012
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-2]+2 od: seq(a[n]+1, n=0..34); # Zerinvary Lajos, Mar 20 2008
with(GraphTheory): P:=5: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=35; for n from 1 to nmax do B(n):=A^n; a(n):=add(B(n)[1, k], k=1..P) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, May 29 2010
MATHEMATICA
LinearRecurrence[{0, 3}, {1, 2}, 40] (* Harvey P. Dale, Jan 26 2014 *)
CoefficientList[Series[(1+2x)/(1-3x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *)
Module[{nn=20, c}, c=3^Range[0, nn]; Riffle[c, 2c]] (* Harvey P. Dale, Aug 21 2021 *)
PROG
(PARI) a(n)=(1/6)*(5-(-1)^n)*3^floor(n/2)
(PARI) a(n)=3^(n>>1)<<bittest(n, 0)
(Haskell)
import Data.List (transpose)
a038754 n = a038754_list !! n
a038754_list = concat $ transpose [a000244_list, a008776_list]
-- Reinhard Zumkeller, Oct 19 2015
(Magma) [n le 2 select n else 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 18 2016
(SageMath) [2^(n%2)*3^((n-(n%2))/2) for n in range(61)] # G. C. Greubel, Oct 10 2022
CROSSREFS
Fifth row of the array A094718.
KEYWORD
easy,nice,nonn
AUTHOR
Henry Bottomley, May 03 2000
STATUS
approved
A001020 Powers of 11: a(n) = 11^n.
(Formerly M4807 N2054)
+10
87
1, 11, 121, 1331, 14641, 161051, 1771561, 19487171, 214358881, 2357947691, 25937424601, 285311670611, 3138428376721, 34522712143931, 379749833583241, 4177248169415651, 45949729863572161, 505447028499293771, 5559917313492231481, 61159090448414546291 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 11), L(1, 11), P(1, 11), T(1, 11). Essentially same as Pisot sequences E(11, 121), L(11, 121), P(11, 121), T(11, 121). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 11-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n), for n <= 4, gives the n-th row of Pascal's triangle (A007318); a(n), n >= 5 "sort of" gives the n-th row of Pascal's triangle, but now the binomial coefficients with more than one digit overlap. - Daniel Forgues, Aug 12 2012
Numbers n such that sigma(11*n) = 11*n + sigma(n). - Jahangeer Kholdi, Nov 13 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: 1/(1-11*x).
E.g.f.: exp(11*x).
a(n) = 11*a(n-1), n > 0; a(0)=1. - Philippe Deléham, Nov 23 2008
MAPLE
A001020:=-1/(-1+11*z); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[11^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
PROG
(Magma) [11^n: n in [0..100]]; // Vincenzo Librandi, Apr 24 2011
(Maxima) makelist(11*n, n, 0, 20); /* Martin Ettl, Dec 17 2012 */
(PARI) a(n)=n^11 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A025192 a(0)=1; a(n) = 2*3^(n-1) for n >= 1. +10
82
1, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Warning: there is considerable overlap between this entry and the essentially identical A008776.
Shifts one place left when plus-convolved (PLUSCONV) with itself. a(n) = 2*Sum_{i=0..n-1} a(i). - Antti Karttunen, May 15 2001
Let M = { 0, 1, ..., 2^n-1 } be the set of all n-bit numbers. Consider two operations on this set: "sum modulo 2^n" (+) and "bitwise exclusive or" (XOR). The results of these operations are correlated.
To give a numerical measure, consider the equations over M: u = x + y, v = x XOR y and ask for how many pairs (u,v) is there a solution? The answer is exactly a(n) = 2*3^(n-1) for n >= 1. The fraction a(n)/4^n of such pairs vanishes as n goes to infinity. - Max Alekseyev, Feb 26 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+2, s(0) = 3, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
Number of compositions of n into parts of two kinds. For a string of n objects, before the first, choose first kind or second kind; before each subsequent object, choose continue, first kind, or second kind. For example, compositions of 3 are 3; 2,1; 1,2; and 1,1,1. Using parts of two kinds, these produce respectively 2, 4, 4 and 8 compositions, 2+4+4+8 = 18. - Franklin T. Adams-Watters, Aug 18 2006
In the compositions the kinds of parts are ordered inside a run of identical parts, see example. Replacing "ordered" by "unordered" gives A052945. - Joerg Arndt, Apr 28 2013
Number of permutations of {1, 2, ..., n+1} such that no term is more than 2 larger than its predecessor. For example, a(3) = 18 because all permutations of {1, 2, 3, 4} are valid except 1423, 1432, 2143, 3142, 2314, 3214, in which 1 is followed by 4. Proof: removing (n + 1) gives a still-valid sequence. For n >= 2, can insert (n + 1) either at the beginning or immediately following n or immediately following (n - 1), but nowhere else. Thus the number of such permutations triples when we increase the sequence length by 1. - Joel B. Lewis, Nov 14 2006
Antidiagonal sums of square array A081277. - Philippe Deléham, Dec 04 2006
Equals row sums of triangle A160760. - Gary W. Adamson, May 25 2009
Let M = a triangle with (1, 2, 4, 8, ...) as the left border and all other columns = (0, 1, 2, 4, 8, ...). A025192 = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n with no 3-element antichain. ("Uniform" used in the sense of Retakh, Serconek and Wilson. By "graded" we mean that all maximal chains have the same length n.) - David Nacin, Feb 13 2012
Equals partial sums of A003946 prefaced with a 1: (1, 1, 4, 12, 36, 108, ...). - Gary W. Adamson, Feb 15 2012
Number of vertices (or sides) of the (n-1)-th iteration of a Gosper island. - Arkadiusz Wesolowski, Feb 07 2013
Row sums of triangle in A035002. - Jon Perry, May 30 2013
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop, 1-loop, 2-loop, 2-loop, 3-loop, 3-loop, ...). - David Neil McGrath, Jan 01 2015
From Tom Copeland, Dec 03 2015: (Start)
For n > 0, a(n) are the traces of the even powers of the adjacency matrix M of the simple Lie algebra B_3, tr(M^(2n)) where M = Matrix(row 1; row 2; row 3) = Matrix[0,1,0; 1,0,2; 0,1,0], same as the traces of Matrix[0,2,0; 1,0,1; 0,1,0] (cf. Damianou). The traces of the odd powers vanish.
The characteristic polynomial of M equals determinant(x*I - M) = x^3 - 3x = A127672(3,x), so 1 - 3*x^2 = det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n), implying Sum_{n>=1} a(n+1) x^(2n) / (2n) = -log(1 - 3*x^2), giving a logarithmic generating function for the aerated sequence, excluding a(0) and a(1).
a(n+1) = tr(M^(2n)), where tr(M^n) = 3^(n/2) + (-1)^n * 3^(n/2) = 2^n*(cos(Pi/6)^n + cos(5*Pi/6)^n) = n-th power sum of the eigenvalues of M = n-th power sum of the zeros of the characteristic polynomial.
The relation det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n) = Sum_{n>=0} P_n(-tr(M), -tr(M^2), ..., -tr(M^n)) x^n/n! = exp(P.(-tr(M), -tr(M^2), ...)x), where P_n(x(1), ..., x(n)) are the partition polynomials of A036039 implies that with x(2n) = -tr(M^(2n)) = -a(n+1) for n > 0 and x(n) = 0 otherwise, the partition polynomials evaluate to zero except for P_2(x(1), x(2)) = P_2(0,-6) = -6.
Because of the inverse relation between the partition polynomials of A036039 and the Faber polynomials F_k(b1,b2,...,bk) of A263916, F_k(0,-3,0,0,...) = tr(M^k) gives aerated a(n), excluding n=0,1. E.g., F_2(0,-3) = -2(-3) = 6, F_4(0,-3,0,0) = 2 (-3)^2 = 18, and F_6(0,-3,0,0,0,0) = -2(-3)^3 = 54. (Cf. A265185.)
(End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is the largest. - Sergey Kitaev, Dec 08 2020
For n > 0, a(n) is the number of 3-colorings of the grid graph P_2 X P_(n-1). More generally, for q > 1, the number of q-colorings of the grid graph P_2 X P_n is given by q*(q - 1)*((q - 1)*(q - 2) + 1)^(n - 1). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the largest solution to the equation phi(x) = a(n-1). - M. Farrokhi D. G., Oct 25 2023
Number of dotted compositions of degree n. - Diego Arcis, Feb 01 2024
REFERENCES
Richard P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
LINKS
George E. Andrews and Greg Simay, Parity palindrome compositions, Integers 21, Paper No A85, (2021), 13 pp.
Diego Arcis, Camilo González, and Sebastián Márquez On the Hopf algebra of noncommutative symmetric functions in superspace, arXiv:2205.11813 [math.CO], 2022.
D. Bevan, D. Levin, P. Nugent, J. Pantone and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510.08036 [math.CO], 2015.
Fan Chung and R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194.
Pantelis A. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 13.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
V. Retakh, S. Serconek, and R. Wilson,  Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
Vincent Vatter, Counting parity palindrome compositions, arXiv:2109.13155 [math.CO], 2021.
FORMULA
G.f.: (1-x)/(1-3*x).
E.g.f.: (2*exp(3*x) + exp(0))/3. - Paul Barry, Apr 20 2003
a(n) = phi(3^n) = A000010(A000244(n)). - Labos Elemer, Apr 14 2003
a(0) = 1, a(n) = Sum_{k=0..n-1} (a(k) + a(n-k-1)). - Benoit Cloitre, Jun 24 2003
a(n) = A002326((3^n-1)/2). - Vladimir Shevelev, May 26 2008
a(1) = 2, a(n) = 3*a(n-1). - Vincenzo Librandi, Jan 01 2011
a(n) = lcm(a(n-1), Sum_{k=1..n-1} a(k)) for n >= 3. - David W. Wilson, Sep 27 2011
a(n) = ((2*n-1)*a(n-1) + (3*n-6)*a(n-2))/(n-1); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 16 2012
From Sergei N. Gladkovskii, Jul 17 2012: (Start)
For the e.g.f. E(x) = (2/3)*exp(3*x) + exp(0)/3 we have
E(x) = 2*G(0)/3 where G(k) = 1 + k!/(3*(9*x)^k - 3*(9*x)^(2*k+1)/((9*x)^(k+1) + (k+1)!/G(k+1))); (continued fraction, 3rd kind, 3-step).
E(x) = 1+2*x/(G(0)-3*x) where G(k) = 3*x + 1 + k - 3*x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). (End)
a(n) = A114283(0,0). - Reinhard Zumkeller, Nov 27 2012
G.f.: 1 + ((1/2)/G(0) - 1)/x where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: 1 + x*W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: 1 / (1 - 2*x / (1 - x)). - Michael Somos, Apr 03 2014
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(2,2,2,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
G.f.: 1 + 2*x/(1 + 2*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 8*x/(1 + 8*x)*( 1 + 11*x/(1 + 11*x)*( 1 + .... - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 7/4. - Bernard Schott, Oct 02 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 5/8.
Product_{n>=1} (1 - 1/a(n)) = A132019. (End)
EXAMPLE
There are a(3)=18 compositions of 3 into 2 kinds of parts. Here p:s stands for "part p of sort s":
01: [ 1:0 1:0 1:0 ]
02: [ 1:0 1:0 1:1 ]
03: [ 1:0 1:1 1:0 ]
04: [ 1:0 1:1 1:1 ]
05: [ 1:0 2:0 ]
06: [ 1:0 2:1 ]
07: [ 1:1 1:0 1:0 ]
08: [ 1:1 1:0 1:1 ]
09: [ 1:1 1:1 1:0 ]
10: [ 1:1 1:1 1:1 ]
11: [ 1:1 2:0 ]
12: [ 1:1 2:1 ]
13: [ 2:0 1:0 ]
14: [ 2:0 1:1 ]
15: [ 2:1 1:0 ]
16: [ 2:1 1:1 ]
17: [ 3:0 ]
18: [ 3:1 ]
- Joerg Arndt, Apr 28 2013
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 54*x^4 + 162*x^5 + 486*x^6 + 1458*x^7 + ...
MAPLE
A025192 := proc(n): if n=0 then 1 else 2*3^(n-1) fi: end: seq(A025192(n), n=0..26);
MATHEMATICA
Join[{1}, 2*3^(Range[30]-1)] (* Harvey P. Dale, Mar 22 2011 *)
PROG
(PARI) a(n)=max(1, 2*3^(n-1)) \\ Charles R Greathouse IV, Jul 25 2011
(PARI) Vec((1-x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 05 2015
(Python) [1]+[2*3**(n-1) for n in range(1, 30)] # David Nacin, Mar 04 2012
(Haskell)
a025192 0 = 1
a025192 n = 2 * 3 ^ (n -1)
a025192_list = 1 : iterate (* 3) 2 -- Reinhard Zumkeller, Nov 27 2012
CROSSREFS
First differences of 3^n (A000244). Other self-convolved sequences: A000108, A007460, A007461, A007462, A007463, A007464, A061922.
Apart from initial term, same as A008776.
KEYWORD
nonn,nice,easy,eigen
AUTHOR
EXTENSIONS
Additional comments from Barry E. Williams, May 27 2000
a(22) corrected by T. D. Noe, Feb 08 2008
Maple programs simplified by Johannes W. Meijer, Jun 02 2011
STATUS
approved
A020714 a(n) = 5 * 2^n. +10
71
5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Same as Pisot sequences E(5,10), L(5,10), P(5,10), T(5,10). See A008776 for definitions of Pisot sequences.
The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005
5 times powers of 2. - Omar E. Pol, Dec 16 2008
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
With the addition of "2, 3," at the beginning, this sequence gives terms (n + 3) through the first term greater than 2^n, for n odd, of the negabinary Keith sequence for 2^n, thus proving that with the exception of 2 itself, no odd-indexed power of 2 is a negabinary Keith number (see A188381). - Alonso del Arte, Feb 02 2012
Let b(0) = 5 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n+2) = a(n) for n > 0. - Derek Orr, Jan 15 2015
LINKS
Tanya Khovanova, Recursive Sequences.
Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016. See Table 1.
FORMULA
a(n) = 5*2^n. a(n) = 2*a(n-1).
G.f.: 5/(1-2*x).
If m is a term greater than 5 of this sequence then m = 5*phi(phi(m)). - Farideh Firoozbakht, Aug 16 2005
a(n) = A118416(n+1,3) for n>2. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n)*5. - Omar E. Pol, Dec 16 2008
a(n) = A173786(n+2,n) for n > 1. - Reinhard Zumkeller, Feb 28 2010
a(n) = A001045(n+4) - A001045(n). - Paul Curtz, Nov 08 2012
Sum_{n>=1} 1/a(n) = 2/5. - Amiram Eldar, Oct 28 2020
E.g.f.: 5*exp(2*x). - Stefano Spezia, May 15 2021
MATHEMATICA
Table[5*2^n, {n, 0, 31}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
NestList[2#&, 5, 40] (* Harvey P. Dale, Mar 13 2022 *)
PROG
(Magma) [5*2^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=5<<n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Row sums of (4, 1)-Pascal triangle A093561.
Row sums of (9, 1)-Pascal triangle A093644.
Row sums of (1, 4)-Pascal triangle A095666 (with leading 4).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A001025 Powers of 16: a(n) = 16^n.
(Formerly M5021 N2164)
+10
67
1, 16, 256, 4096, 65536, 1048576, 16777216, 268435456, 4294967296, 68719476736, 1099511627776, 17592186044416, 281474976710656, 4503599627370496, 72057594037927936, 1152921504606846976, 18446744073709551616, 295147905179352825856, 4722366482869645213696, 75557863725914323419136, 1208925819614629174706176 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 16), L(1, 16), P(1, 16), T(1, 16). Essentially same as Pisot sequences E(16, 256), L(16, 256), P(16, 256), T(16, 256). See A008776 for definitions of Pisot sequences.
Convolution-square (auto-convolution) of A098430. - R. J. Mathar, May 22 2009
Subsequence of A161441: A160700(a(n)) = 1. - Reinhard Zumkeller, Jun 10 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 16-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Right-hand side of the identity ( Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k) ) * ( Sum_{k = 0..n} (-1)^k/(2*k + 1)*binomial(2*n + 1, n - k) ) = 16^n. - Peter Bala, Feb 12 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..820 (terms n = 0..100 from T. D. Noe)
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: 1/(1-16*x).
E.g.f.: exp(16*x).
From Muniru A Asiru, Nov 07 2018: (Start)
a(n) = 16^n.
a(0) = 1, a(n) = 16*a(n-1). (End)
a(n) = 4^A005843(n) = 2^A008586(n) = A000302(n)^2 = A000079(n)*A001018(n). - Muniru A Asiru, Nov 10 2018
MAPLE
A001025:=-1/(-1+16*z); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[4^(2*n), {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Mar 01 2009 *)
PROG
(Sage) [lucas_number1(n, 16, 0) for n in range(1, 18)] # Zerinvary Lajos, Apr 29 2009
(PARI) a(n)=1<<(4*n) \\ Charles R Greathouse IV, Feb 01 2012
(Maxima) A001025(n):=16^n$
makelist(A001025(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Haskell)
a001025 = (16 ^)
a001025_list = iterate (* 16) 1 -- Reinhard Zumkeller, Nov 07 2012
(GAP) List([0..20], n->16^n); # Muniru A Asiru, Nov 07 2018
(Python) print([16**n for n in range(20)]) # Stefano Spezia, Nov 10 2018
CROSSREFS
Partial sums give A131865.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A001022 Powers of 13.
(Formerly M4914 N2107)
+10
66
1, 13, 169, 2197, 28561, 371293, 4826809, 62748517, 815730721, 10604499373, 137858491849, 1792160394037, 23298085122481, 302875106592253, 3937376385699289, 51185893014090757, 665416609183179841, 8650415919381337933, 112455406951957393129, 1461920290375446110677, 19004963774880799438801 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 13), L(1, 13), P(1, 13), T(1, 13). Essentially same as Pisot sequences E(13, 169), L(13, 169), P(13, 169), T(13, 169). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 13-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(13*n) = 13*n+sigma(n). - Jahangeer Kholdi, Nov 23 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: 1/(1-13*x).
E.g.f.: exp(13*x).
a(n) = 13^n. - Vincenzo Librandi, Nov 21 2010
a(n) = 13*a(n-1) n > 0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
a(n) = Sum_{k=0..n} A001021(k)*binomial(n,k). It is well known that Sum_{k=0..n} (h-1)^k*binomial(n,k) = h^n. - Bruno Berselli, Aug 06 2013
EXAMPLE
For the fifth formula: a(7) = 1*1 + 12*7 + 144*21 + 1728*35 + 20736*35 + 248832*21 + 2985984*7 + 35831808*1 = 62748517. - Bruno Berselli, Aug 06 2013
MAPLE
A001022:=-1/(-1+13*z); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[13^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
13^Range[0, 20] (* Harvey P. Dale, Jun 16 2024 *)
PROG
(Magma) [13^n: n in [0..100]]; // Vincenzo Librandi, Nov 21 2010
(Maxima) A001022(n):=13^n$ makelist(A001022(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(PARI) first(n)=powers(13, n) \\ Charles R Greathouse IV, Jun 17 2021
CROSSREFS
Cf. A001021.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 21

Search completed in 0.142 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 11:14 EDT 2024. Contains 375543 sequences. (Running on oeis4.)