# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a004171 Showing 1-1 of 1 %I A004171 #131 Dec 19 2023 17:45:01 %S A004171 2,8,32,128,512,2048,8192,32768,131072,524288,2097152,8388608, %T A004171 33554432,134217728,536870912,2147483648,8589934592,34359738368, %U A004171 137438953472,549755813888,2199023255552,8796093022208,35184372088832,140737488355328,562949953421312 %N A004171 a(n) = 2^(2n+1). %C A004171 Same as Pisot sequences E(2, 8), L(2, 8), P(2, 8), T(2, 8). See A008776 for definitions of Pisot sequences. %C A004171 In the Chebyshev polynomial of degree 2n, a(n) is the coefficient of x^2n. - _Benoit Cloitre_, Mar 13 2002 %C A004171 1/2 - 1/8 + 1/32 - 1/128 + ... = 2/5. - _Gary W. Adamson_, Mar 03 2009 %C A004171 From _Adi Dani_, May 15 2011: (Start) %C A004171 Number of ways of placing an even number of indistinguishable objects in n + 1 distinguishable boxes with at most 3 objects in box. %C A004171 Number of compositions of even natural numbers into n + 1 parts less than or equal to 3 (0 is counted as part). (End) %C A004171 Also the number of maximal cliques in the (n+1)-Sierpinski tetrahedron graph for n > 0. - _Eric W. Weisstein_, Dec 01 2017 %C A004171 Assuming the Collatz conjecture is true, any starting number eventually leads to a power of 2. A number in this sequence can never be the first power of 2 in a Collatz sequence except of course for the Collatz sequence starting with that number. For example, except for 8, 4, 2, 1, any Collatz sequence that includes 8 must also include 16 (e.g., 5, 16, 8, 4, 2, 1). - _Alonso del Arte_, Oct 01 2019 %C A004171 First differences of A020988, and thus the "wavelengths" of the local maxima in A020986. See the Brillhart and Morton link, pp. 855-856. - _John Keith_, Mar 04 2021 %D A004171 Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238. %H A004171 Vincenzo Librandi, Table of n, a(n) for n = 0..200 %H A004171 J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869. %H A004171 Ling Gao, Graph assembly for spider and tadpole graphs, Master's Thesis, Cal. State Poly. Univ. (2023). %H A004171 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets. %H A004171 Tanya Khovanova, Recursive Sequences. %H A004171 Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016. %H A004171 Eric Weisstein's World of Mathematics, Maximal Clique. %H A004171 Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph. %H A004171 Index entries for linear recurrences with constant coefficients, signature (4). %H A004171 Index to divisibility sequences. %F A004171 a(n) = 2*4^n. %F A004171 a(n) = 4*a(n-1). %F A004171 1 = 1/2 + Sum_{n >= 1} 3/a(n) = 3/6 + 3/8 + 3/32 + 3/128 + 3/512 + 3/2048 + ...; with partial sums: 1/2, 31/32, 127/128, 511/512, 2047/2048, ... - _Gary W. Adamson_, Jun 16 2003 %F A004171 From _Philippe Deléham_, Nov 23 2008: (Start) %F A004171 a(n) = 2*A000302(n). %F A004171 G.f.: 2/(1-4*x). (End) %F A004171 a(n) = A081294(n+1) = A028403(n+1) - A000079(n+1) for n >= 1. a(n-1) = A028403(n) - A000079(n). - _Jaroslav Krizek_, Jul 27 2009 %F A004171 E.g.f.: 2*exp(4*x). - _Ilya Gutkovskiy_, Nov 01 2016 %F A004171 a(n) = A002063(n)/3 - A000302(n). - _Zhandos Mambetaliyev_, Nov 19 2016 %F A004171 a(n) = Sum_{k = 0..2*n} (-1)^(k+n)*binomial(4*n + 2, 2*k + 1); a(2*n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A013776(n). - _Peter Bala_, Nov 25 2016 %F A004171 Product_{n>=0} (1 - 1/a(n)) = A132020. - _Amiram Eldar_, May 08 2023 %e A004171 G.f. = 2 + 8*x + 32*x^2 + 128*x^3 + 512*x^4 + 2048*x^5 + 8192*x^6 + 32768*x^7 + ... %e A004171 From _Adi Dani_, May 15 2011: (Start) %e A004171 a(1) = 8 because all compositions of even natural numbers into 2 parts less than or equal to 3 are: %e A004171 for 0: (0, 0) %e A004171 for 2: (0, 2), (2, 0), (1, 1) %e A004171 for 4: (1, 3), (3, 1), (2, 2) %e A004171 for 6: (3, 3). %e A004171 a(2) = 32 because all compositions of even natural numbers into 3 parts less than or equal to 3 are: %e A004171 for 0: (0, 0, 0) %e A004171 for 2: (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1) , (1, 1, 0) %e A004171 for 4: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1) %e A004171 for 6: (0, 3, 3), (3, 0, 3), (3, 3, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2) %e A004171 for 8: (2, 3, 3), (3, 2, 3), (3, 3, 2). %e A004171 (End) %p A004171 seq(2^(2*n+1),n=0..24); # _Nathaniel Johnston_, Jun 25 2011 %t A004171 Table[2^(2 n + 1), {n, 0, 24}] %t A004171 2^(2 Range[20] - 1) (* _Eric W. Weisstein_, Dec 01 2017 *) %t A004171 LinearRecurrence[{4}, {2}, 20] (* _Eric W. Weisstein_, Dec 01 2017 *) %t A004171 CoefficientList[Series[2/(1 - 4 x), {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 01 2017 *) %o A004171 (Magma) [2^(2*n+1): n in [0..30]]; // _Vincenzo Librandi_, May 16 2011 %o A004171 (PARI) a(n)=2<<(2*n) \\ _Charles R Greathouse IV_, Apr 07 2012 %o A004171 (PARI) a(n) = 2^(2*n+1) \\ _Michel Marcus_, Aug 12 2014 %o A004171 (Haskell) %o A004171 a004171 = (* 2) . a000302 %o A004171 a004171_list = iterate (* 4) 2 -- _Reinhard Zumkeller_, Jan 09 2013 %o A004171 (GAP) List([0..30],n->2^(2*n+1)); # _Muniru A Asiru_, Mar 12 2019 %o A004171 (Scala) ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).map(2 * _) // _Alonso del Arte_, Sep 12 2019 %Y A004171 Cf. A013708-A013729. %Y A004171 Absolute value of A009117. Essentially the same as A081294. %Y A004171 Cf. A132020, A164632. Equals A000980(n) + 2*A181765(n). Cf. A013776. %K A004171 easy,nonn %O A004171 0,1 %A A004171 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE