[go: up one dir, main page]

login
Search: a008776 -id:a008776
     Sort: relevance | references | number | modified | created      Format: long | short | data
Powers of 48: a(n) = 48^n.
+10
11
1, 48, 2304, 110592, 5308416, 254803968, 12230590464, 587068342272, 28179280429056, 1352605460594688, 64925062108545024, 3116402981210161152, 149587343098087735296, 7180192468708211294208, 344649238497994142121984, 16543163447903718821855232
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 48), L(1, 48), P(1, 48), T(1, 48). Essentially same as Pisot sequences E(48, 2304), L(48, 2304), P(48, 2304), T(48, 2304). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6,7} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6,7} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 48-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-48*x). - Philippe Deléham, Nov 24 2008
a(n) = 48^n; a(n) = 48*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
E.g.f.: exp(48*x). - Muniru A Asiru, Nov 21 2018
MAPLE
A009992 := n -> 48^n: seq(A009992(n), n=0..20); # M. F. Hasler, Apr 19 2015
MATHEMATICA
48^Range[0, 15] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(Magma)[48^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) A009992(n)=48^n \\ M. F. Hasler, Apr 19 2015
(GAP) List([0..20], n->48^n); # Muniru A Asiru, Nov 21 2018
(Python) for n in range(0, 20): print(48**n, end=', ') # Stefano Spezia, Nov 21 2018
(Sage) [(48)^n for n in range(20)] # G. C. Greubel, Nov 21 2018
CROSSREFS
Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009991 (powers of 47), A087752 (powers of 49).
Cf. A000079 (2^n), A000244 (3^n), A000302 (4^n), A000400 (6^n), A001018 (8^n), A001021 (12^n), A001025 (16^n), A009968 (24^n).
KEYWORD
nonn,easy
EXTENSIONS
Edited by M. F. Hasler, Apr 19 2015
STATUS
approved
Pisot sequences E(4,8), L(4,8), P(4,8), T(4,8).
+10
11
4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
OFFSET
0,1
COMMENTS
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
FORMULA
a(n) = 2^(n+2).
a(n) = 2*a(n-1).
G.f.: 4/(1-2*x). - Philippe Deléham, Nov 23 2008
E.g.f.: 4*exp(2*x). - Stefano Spezia, May 15 2021
MATHEMATICA
2^(Range[0, 50] + 2) (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
PROG
(Magma) [2^(n+2): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=4<<n \\ Charles R Greathouse IV, Apr 08 2012
CROSSREFS
Subsequence of A000079. See A008776 for definitions of Pisot sequences.
Cf. A051916.
KEYWORD
nonn,easy
STATUS
approved
T(n,k)=Number of nXk 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally, diagonally or antidiagonally
+10
11
3, 6, 9, 12, 18, 27, 24, 54, 54, 81, 48, 144, 246, 162, 243, 96, 396, 912, 1122, 486, 729, 192, 1080, 3612, 5808, 5118, 1458, 2187, 384, 2952, 13992, 33702, 37008, 23346, 4374, 6561, 768, 8064, 54600, 186720, 316800, 235824, 106494, 13122, 19683, 1536, 22032
OFFSET
1,1
COMMENTS
Table starts
.....3......6.......12........24..........48............96............192
.....9.....18.......54.......144.........396..........1080...........2952
....27.....54......246.......912........3612.........13992..........54600
....81....162.....1122......5808.......33702........186720........1054446
...243....486.....5118.....37008......316800.......2515716.......20706696
...729...1458....23346....235824.....2986152......33994188......409408542
..2187...4374...106494...1502736....28178262.....459797904.....8119777890
..6561..13122...485778...9575856...266016264....6221092260...161274860934
.19683..39366..2215902..61020048..2511769872...84180552504..3205524631536
.59049.118098.10107954.388836912.23718269934.1139126465856.63736076920680
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 3*a(n-1)
k=3: a(n) = 5*a(n-1) -2*a(n-2)
k=4: a(n) = 7*a(n-1) -4*a(n-2)
k=5: a(n) = 14*a(n-1) -45*a(n-2) +15*a(n-3) +36*a(n-4) -19*a(n-5) +2*a(n-6)
k=6: [order 9]
k=7: [order 19]
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 2*a(n-1) +2*a(n-2)
n=3: a(n) = 3*a(n-1) +4*a(n-2) -2*a(n-3) for n>4
n=4: a(n) = 3*a(n-1) +16*a(n-2) -3*a(n-3) -25*a(n-4) +2*a(n-5) +4*a(n-6) for n>7
n=5: [order 10] for n>11
n=6: [order 23] for n>24
n=7: [order 46] for n>47
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0....0..0..1..0....0..0..1..0....0..0..1..0....1..0..0..1
..0..0..1..2....0..0..1..2....1..0..1..0....1..0..1..0....1..0..0..1
..1..0..1..2....0..0..1..0....1..0..1..2....0..0..1..2....0..0..0..0
..0..0..1..2....0..0..0..0....0..0..1..0....1..0..1..2....1..0..1..0
CROSSREFS
Column 1 is A000244
Column 2 is A008776
Column 3 is A206144(n-1) for n>2
Column 4 is A223373
Row 1 is A003945
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 02 2013
STATUS
approved
Powers of 43.
+10
10
1, 43, 1849, 79507, 3418801, 147008443, 6321363049, 271818611107, 11688200277601, 502592611936843, 21611482313284249, 929293739471222707, 39959630797262576401, 1718264124282290785243, 73885357344138503765449
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 43), L(1, 43), P(1, 43), T(1, 43). Essentially same as Pisot sequences E(43, 1849), L(43, 1849), P(43, 1849), T(43, 1849). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 43-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(43*n) = 43*n + sigma(n). - Jahangeer Kholdi, Nov 24 2013
FORMULA
G.f.: 1/(1-43*x). - Philippe Deléham, Nov 24 2008
a(n) = 43^n; a(n) = 43*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
43^Range[0, 20] (* Harvey P. Dale, Nov 30 2014 *)
PROG
(Magma)[43^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=43^n \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Powers of 47.
+10
10
1, 47, 2209, 103823, 4879681, 229345007, 10779215329, 506623120463, 23811286661761, 1119130473102767, 52599132235830049, 2472159215084012303, 116191483108948578241, 5460999706120583177327
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 47), L(1, 47), P(1, 47), T(1, 47). Essentially same as Pisot sequences E(47, 2209), L(47, 2209), P(47, 2209), T(47, 2209). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 47-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(47*n) = 47*n + sigma(n). - Jahangeer Kholdi, Nov 24 2013
FORMULA
G.f.: 1/(1-47*x). - Philippe Deléham, Nov 24 2008
a(n) = 47^n; a(n) = 47*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
47^Range[0, 13] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(Magma)[47^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=47^n \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
STATUS
approved
Pisot sequences E(7,9), P(7,9).
+10
10
7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537
OFFSET
0,1
LINKS
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016)
FORMULA
a(n) = a(n-2) + a(n-3) for n>=3. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
G.f.: (7+9*x+5*x^2) / (1-x^2-x^3). - Colin Barker, Jun 05 2016
MATHEMATICA
LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50] (* Jean-François Alcover, Aug 31 2018 *)
CoefficientList[Series[(7 + 9 x + 5 x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Stefano Spezia, Aug 31 2018 *)
CROSSREFS
A subsequence of A000931.
See A008776 for definitions of Pisot sequences.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
KEYWORD
nonn
STATUS
approved
Pisot sequence L(5,9).
+10
10
5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
OFFSET
0,1
COMMENTS
An Engel expansion of 1/2 to the base 2 as defined in A181565, with the associated series expansion 1/2 = 2/5 + 2^2/(5*9) + 2^3/(5*9*17) + 2^4/(5*9*17*33) + ... . - Peter Bala, Oct 28 2013
FORMULA
a(n) = 2^(n+2) + 1.
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: -(6*x-5) / ((x-1)*(2*x-1)). - Colin Barker, Jun 21 2014
E.g.f.: exp(x)*(1 + 4*exp(x)). - Stefano Spezia, Oct 08 2022
MATHEMATICA
LinearRecurrence[{3, -2}, {5, 9}, 40] (* Harvey P. Dale, Jun 10 2015 *)
PROG
(Magma) [2^(n+2)+1: n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=2^(n+2)+1 \\ Charles R Greathouse IV, Jun 05 2013
(PARI) Vec(-(6*x-5)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jun 21 2014
CROSSREFS
Subsequence of A000051. See A008776 for definitions of Pisot sequences.
KEYWORD
nonn,easy
STATUS
approved
Numbers n such that A081249(m)/m^2 has a local maximum for m = n.
+10
10
2, 6, 20, 60, 182, 546, 1640, 4920, 14762, 44286, 132860, 398580, 1195742, 3587226, 10761680, 32285040, 96855122, 290565366, 871696100, 2615088300, 7845264902, 23535794706, 70607384120, 211822152360, 635466457082, 1906399371246
OFFSET
1,1
COMMENTS
The limit of the local maxima, lim A081249(n)/n^2 = 1/6. For local minima cf. A081250.
Also the number of different 4- and 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices, if the colors of the two base vertices are fixed. - Patrick Labarque, Mar 23 2010
From Toby Gottfried, Apr 18 2010: (Start)
a(n) = the number of ternary sequences of length n+1 where the numbers of (0's, 1's) are both odd.
A015518 covers the (odd, even) and (even, odd) cases, and A122983 covers (even, even). (End)
FORMULA
G.f.: 2/((1-x)*(1+x)*(1-3*x)).
a(n) = a(n-2) + 2*3^(n) for n > 1.
a(n+2) - a(n) = A008776(n).
a(n) = 2*A033113(n+1).
a(2*n+1) = A054880(n+1).
a(n) = floor(3^(n+1)/4). - Mircea Merca, Dec 26 2010
From G. C. Greubel, Jul 14 2019: (Start)
a(n) = (9*3^(n-1) -(-1)^n -2)/4.
E.g.f.: (3*exp(3*x) - 2*exp(x) - exp(-x))/4. (End)
EXAMPLE
6 is a term since A081249(5)/5^2 = 4/25 = 0.160, A081249(6)/6^2 = 7/36 = 0.194, A081249(7)/7^2 = 9/49 = 0.184.
MAPLE
seq(floor(3^(n+1)/4), n=1..30). # Mircea Merca, Dec 27 2010
MATHEMATICA
a[n_]:= Floor[3^(n+1)/4]; Array[a, 30]
Table[(9*3^(n-1) -(-1)^n -2)/4, {n, 1, 30}] (* G. C. Greubel, Jul 14 2019 *)
PROG
(Magma) [Floor(3^(n+1)/4) : n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
(PARI) vector(30, n, (9*3^(n-1) -(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
(Sage) [(9*3^(n-1) -(-1)^n -2)/4 for n in (1..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([1..30], n-> (9*3^(n-1) -(-1)^n -2)/4) # G. C. Greubel, Jul 14 2019
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Mar 17 2003
STATUS
approved
Pisot sequence L(4,5).
+10
9
4, 5, 7, 10, 15, 23, 36, 57, 91, 146, 235, 379, 612, 989, 1599, 2586, 4183, 6767, 10948, 17713, 28659, 46370, 75027, 121395, 196420, 317813, 514231, 832042, 1346271, 2178311, 3524580, 5702889, 9227467, 14930354, 24157819, 39088171, 63245988, 102334157, 165580143
OFFSET
0,1
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993
FORMULA
a(n) = Fib(n+3)+2 = A020743(n-2) = A157725(n+3); a(n) = 2a(n-1) - a(n-3).
G.f.: -(-4+3*x+3*x^2)/(x-1)/(x^2+x-1) = -2/(x-1)+(-x-2)/(x^2+x-1) . - R. J. Mathar, Nov 23 2007
MATHEMATICA
LinearRecurrence[{2, 0, -1}, {4, 5, 7}, 40] (* Jean-François Alcover, Dec 12 2016 *)
PROG
(PARI) pisotL(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
a
}
pisotL(50, 4, 5) \\ Colin Barker, Aug 07 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Pisot sequence E(2,3).
+10
9
2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141
OFFSET
0,1
COMMENTS
Pisano period lengths: A001175. - R. J. Mathar, Aug 10 2012
LINKS
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (x)).
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = Fibonacci(n+3); a(n) = a(n-1) + a(n-2).
G.f.: (2+x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5))+(1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016
E.g.f.: 2*(2*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, Jun 05 2016
MATHEMATICA
CoefficientList[Series[(-x - 2)/(x^2 + x - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{1, 1}, {2, 3}, 40] (* or *) Fibonacci[Range[3, 50]] (* Harvey P. Dale, Nov 22 2012 *)
PROG
(Magma) [Fibonacci(n+3): n in [0..50]]; // Vincenzo Librandi, Apr 23 2011
(PARI) a(n)=fibonacci(n+3) \\ Charles R Greathouse IV, Jan 17 2012
(PARI) Vec((2+x)/(1-x-x^2) + O(x^40)) \\ Colin Barker, Jun 05 2016
(GAP)
A020695:=List([0..10^3], n->Fibonacci(n+3)); # Muniru A Asiru, Sep 05 2017
CROSSREFS
Subsequence of A000045. See A008776 for definitions of Pisot sequences.
See A000045 for the Fibonacci numbers.
KEYWORD
nonn,easy
STATUS
approved

Search completed in 0.126 seconds