[go: up one dir, main page]

login
Search: a008776 -id:a008776
     Sort: relevance | references | number | modified | created      Format: long | short | data
Powers of 42.
+0
4
1, 42, 1764, 74088, 3111696, 130691232, 5489031744, 230539333248, 9682651996416, 406671383849472, 17080198121677824, 717368321110468608, 30129469486639681536, 1265437718438866624512, 53148384174432398229504
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 42), L(1, 42), P(1, 42), T(1, 42). Essentially same as Pisot sequences E(42, 1764), L(42, 1764), P(42, 1764), T(42, 1764). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 42-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-42*x). - Philippe Deléham, Nov 24 2008
a(n) = 42^n; a(n) = 42*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
42^Range[0, 14] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(Magma)[42^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n) = 42^n; \\ Michel Marcus, Jan 14 2018
KEYWORD
nonn,easy
STATUS
approved
Powers of 43.
+0
10
1, 43, 1849, 79507, 3418801, 147008443, 6321363049, 271818611107, 11688200277601, 502592611936843, 21611482313284249, 929293739471222707, 39959630797262576401, 1718264124282290785243, 73885357344138503765449
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 43), L(1, 43), P(1, 43), T(1, 43). Essentially same as Pisot sequences E(43, 1849), L(43, 1849), P(43, 1849), T(43, 1849). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 43-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(43*n) = 43*n + sigma(n). - Jahangeer Kholdi, Nov 24 2013
FORMULA
G.f.: 1/(1-43*x). - Philippe Deléham, Nov 24 2008
a(n) = 43^n; a(n) = 43*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
43^Range[0, 20] (* Harvey P. Dale, Nov 30 2014 *)
PROG
(Magma)[43^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=43^n \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Powers of 44.
+0
3
1, 44, 1936, 85184, 3748096, 164916224, 7256313856, 319277809664, 14048223625216, 618121839509504, 27197360938418176, 1196683881290399744, 52654090776777588736, 2316779994178213904384, 101938319743841411792896
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 44), L(1, 44), P(1, 44), T(1, 44). Essentially same as Pisot sequences E(44, 1936), L(44, 1936), P(44, 1936), T(44, 1936). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 44-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-44*x). - Philippe Deléham, Nov 24 2008
a(n) = 44^n; a(n) = 44*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
44^Range[0, 20] (* Harvey P. Dale, May 22 2017 *)
PROG
(Magma)[44^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
KEYWORD
nonn,easy
STATUS
approved
Powers of 45.
+0
4
1, 45, 2025, 91125, 4100625, 184528125, 8303765625, 373669453125, 16815125390625, 756680642578125, 34050628916015625, 1532278301220703125, 68952523554931640625, 3102863559971923828125, 139628860198736572265625
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 45), L(1, 45), P(1, 45), T(1, 45). Essentially same as Pisot sequences E(45, 2025), L(45, 2025), P(45, 2025), T(45, 2025). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 45-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-45*x). - Philippe Deléham, Nov 24 2008
a(n) = 45^n; a(n) = 45*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
45^Range[0, 20] (* Harvey P. Dale, May 09 2012 *)
PROG
(Magma)[45^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=45^n \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
STATUS
approved
Powers of 46.
+0
3
1, 46, 2116, 97336, 4477456, 205962976, 9474296896, 435817657216, 20047612231936, 922190162669056, 42420747482776576, 1951354384207722496, 89762301673555234816, 4129065876983540801536, 189937030341242876870656
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 46), L(1, 46), P(1, 46), T(1, 46). Essentially same as Pisot sequences E(46, 2116), L(46, 2116), P(46, 2116), T(46, 2116). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 46-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-46*x). - Philippe Deléham, Nov 24 2008
a(n) = 46^n; a(n) = 46*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
46^Range[0, 20] (* or *) NestList[46#&, 1, 20] (* Harvey P. Dale, Jan 15 2017 *)
PROG
(Magma)[46^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
KEYWORD
nonn,easy
STATUS
approved
Powers of 47.
+0
10
1, 47, 2209, 103823, 4879681, 229345007, 10779215329, 506623120463, 23811286661761, 1119130473102767, 52599132235830049, 2472159215084012303, 116191483108948578241, 5460999706120583177327
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 47), L(1, 47), P(1, 47), T(1, 47). Essentially same as Pisot sequences E(47, 2209), L(47, 2209), P(47, 2209), T(47, 2209). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 47-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(47*n) = 47*n + sigma(n). - Jahangeer Kholdi, Nov 24 2013
FORMULA
G.f.: 1/(1-47*x). - Philippe Deléham, Nov 24 2008
a(n) = 47^n; a(n) = 47*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
MATHEMATICA
47^Range[0, 13] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(Magma)[47^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=47^n \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
STATUS
approved
Powers of 48: a(n) = 48^n.
+0
11
1, 48, 2304, 110592, 5308416, 254803968, 12230590464, 587068342272, 28179280429056, 1352605460594688, 64925062108545024, 3116402981210161152, 149587343098087735296, 7180192468708211294208, 344649238497994142121984, 16543163447903718821855232
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 48), L(1, 48), P(1, 48), T(1, 48). Essentially same as Pisot sequences E(48, 2304), L(48, 2304), P(48, 2304), T(48, 2304). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6,7} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6,7} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 48-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-48*x). - Philippe Deléham, Nov 24 2008
a(n) = 48^n; a(n) = 48*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
E.g.f.: exp(48*x). - Muniru A Asiru, Nov 21 2018
MAPLE
A009992 := n -> 48^n: seq(A009992(n), n=0..20); # M. F. Hasler, Apr 19 2015
MATHEMATICA
48^Range[0, 15] (* Michael De Vlieger, Jan 13 2018 *)
PROG
(Magma)[48^n: n in [0..20]] // Vincenzo Librandi, Nov 21 2010
(PARI) A009992(n)=48^n \\ M. F. Hasler, Apr 19 2015
(GAP) List([0..20], n->48^n); # Muniru A Asiru, Nov 21 2018
(Python) for n in range(0, 20): print(48**n, end=', ') # Stefano Spezia, Nov 21 2018
(Sage) [(48)^n for n in range(20)] # G. C. Greubel, Nov 21 2018
CROSSREFS
Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009991 (powers of 47), A087752 (powers of 49).
Cf. A000079 (2^n), A000244 (3^n), A000302 (4^n), A000400 (6^n), A001018 (8^n), A001021 (12^n), A001025 (16^n), A009968 (24^n).
KEYWORD
nonn,easy
EXTENSIONS
Edited by M. F. Hasler, Apr 19 2015
STATUS
approved
Pisot sequence E(4,13): a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
+0
3
4, 13, 42, 136, 440, 1424, 4609, 14918, 48285, 156284, 505844, 1637264, 5299328, 17152321, 55516872, 179691313, 581606398, 1882483892, 6093030640, 19721296176, 63831867233, 206604436042, 668716032329, 2164431415224, 7005609443657, 22675037578854
OFFSET
0,1
COMMENTS
According to David Boyd his last use (as of April, 2006) of his Pisot number finding program was to prove that in fact this sequence does not satisfy a linear recurrence. He remarks "This took a couple of years in background on various Sun workstations." - Gene Ward Smith, Apr 11 2006
Satisfies a linear recurrence of order 6 just for n <= 23 (see A274952). - N. J. A. Sloane, Aug 07 2016
REFERENCES
Cantor, D. G. "Investigation of T-numbers and E-sequences." In Computers in Number Theory, ed. AOL Atkin and BJ Birch, Acad. Press, NY (1971); pp. 137-140.
Cantor, D. G. (1976). On families of Pisot E-sequences. In Annales scientifiques de l'École Normale Supérieure (Vol. 9, No. 2, pp. 283-308).
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
David Cantor, Investigation of T-numbers and E-sequences, In Computers in Number Theory, ed. A. O. L. Atkin and B. J. Birch, Acad. Press, NY (1971); pp. 137-140. [Annotated scanned copy]
C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa, 7 (1938), 205-248.
FORMULA
It is known that this does not satisfy any linear recurrence [Boyd].
MATHEMATICA
nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; NestList[nxt, {4, 13}, 30][[All, 1]] (* Harvey P. Dale, Jun 24 2018 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 4, 13) \\ Colin Barker, Jul 28 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
KEYWORD
nonn
AUTHOR
STATUS
approved
Pisot sequences E(4,7), P(4,7).
+0
2
4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521, 786584466
OFFSET
0,1
COMMENTS
Essentially the same as A005251: a(n) = A005251(n+5).
See A008776 for definitions of Pisot sequences.
LINKS
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016).
Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
FORMULA
a(n) = 2a(n-1) - a(n-2) + a(n-3) for n>=3. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
MATHEMATICA
LinearRecurrence[{2, -1, 1}, {4, 7, 12}, 35] (* Jean-François Alcover, Oct 05 2018 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 4, 7) \\ Colin Barker, Jul 27 2016
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jul 26 2016
STATUS
approved
Pisot sequence E(14,23), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
+0
2
14, 23, 38, 63, 104, 172, 284, 469, 775, 1281, 2117, 3499, 5783, 9558, 15797, 26109, 43152, 71320, 117875, 194819, 321989, 532170, 879548, 1453680, 2402581, 3970885, 6562912, 10846905, 17927308, 29629500, 48970390, 80936199, 133767942, 221086022, 365401668
OFFSET
0,1
LINKS
D. W. Boyd, Pisot sequences which satisfy no linear recurrences, Acta Arith. 32 (1) (1977) 89-98
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
It is known (Boyd, 1977) that this sequence does not satisfy a linear recurrence. - N. J. A. Sloane, Aug 07 2016
MATHEMATICA
RecurrenceTable[{a[1] == 14, a[2] == 23, a[n] == Floor[a[n-1]^2/a[n-2]+1/2]}, a, {n, 40}] (* Vincenzo Librandi, Aug 09 2016 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 14, 23) \\ Colin Barker, Jul 28 2016
(Python)
a, b = 14, 23
A010902_list = [a, b]
for i in range(1000):
c, d = divmod(b**2, a)
a, b = b, c + (0 if 2*d < a else 1)
A010902_list.append(b) # Chai Wah Wu, Aug 08 2016
CROSSREFS
Cf. A008776.
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.133 seconds